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Les groupes de ramification

1. Le lemme de Hensel

Soit p un nombre premier. Soit K un corps p-adique, donc muni d’une valuation
discrete notée vi ou simplement v lorsqu’il n’y a pas d’ambiguité (la théorie décrite ci-
dessous s’applique en fait a des corps locaux plus généraux). Notons Ok l'anneau des
entiers de K*. Notons Q l’idéal premier non nul de Ok. Soit 7 une uniformisante de Q.

Voyons une des incarnations du lemme de Hensel. On trouve dans la littérature des
formulations littéralement différentes mais qui expriment la méme idée.

PROPOSITION 1. — Soit P € Ok[X] un polynome de degré d. Notons P limage de P
dans k[X]. Supposons que le degré de P soit égal ¢ d et que P soit égal au produit de deuz
polynomes R et Q premiers entre eux. Il existe Q, R € Ok [X] d’images Q et R dans k[ X]
de mémes degrés que Q et R respectivement et vérifiant P = QR.

De plus Q (resp. R) peut étre choisi unitaire lorsque Q (resp. R) est unitaire.
Démonstration. — On construit les polynomes () et R par approximations successives.

Soient Qg et Ry deux polynémes de O [X] d’images dans k[X] égales & Q et R et
tels que P — Qo Ry soit de degré strictement inférieur a d (cela entraine que @ et Ry sont
de méme degrés que Q et R respectivement). On a

P = QoRoy + 751,

avec 51 € Ok [X] de degré < d. Notons S; l'image de S; dans k[X]. Puisque les polynomes
P et Q sont premiers entre eux, il existe deux polynémes U, V € k[X] de degrés inférieurs
strictement aux degrés de Q et R et vérifiant

On a donc
S| = UQ() + V Ry + nT,

avec U, V, T trois polynoémes de Ok [X] de degrés strictement inférieurs aux degrés de Ry,
Qo et P respectivement. Cela donne

P =QoRo+7(UQo+ RVy+7T) = (Qo + 7V)(Ro + nU) + n*(T — UV).

Posons Q1 = Qo+ 7V, Ry = Ry +7U et So =T — UV. Ce sont des polynomes dee
mémes degrés que (g et Ry, donc de mémes degrés que Q et R. En itérant I'opération
on obtient des suites (Qn)n>0, (Rn)n>0 €t (Sp)n>1 de polynomes de Ox[X] telles que
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P=Q.,R,+7""1S, 1 et telles que les coefficients de Q,, 11 — Q,, (resp. R,11— R,) soient
dans P!, Les suites (Qn)n>0 et (Ry)n>0 convergent donc vers des polynomes @ et R et
ona P =CQR.

Lorsque @ (resp. R) est un polynéme unitaire, la suite (Qy)n>0 (resp. (Rp)n>0) peut
étre choisie a valeurs dans les polynomes unitaires. L’assertion subsidiaire découle de cette
constatation.

COROLLAIRE . — Soit M une extension finie de K. Il existe une extension intermédiaire
K C L C M telle que L soit non ramifiée sur K et telle que M soit totalement ramifiée
sur L.

Démonstration. — Notons M et K les corps résiduels de de M et K. Ils sont finis donc
parfaits.

Soit #; € M — K de polynéme minimal P € K[X]. On a P(X) = (X — ,)Q(X) €
M [X]. Puisque M est parfait, I'extension M |K est séparable, donc x; est séparable, donc
Z1 est racine simple de son polynéme minimal. Les polynomes (X — %) et Q sont donc
premiers entre eux.

Soit P € Ok[X] un polynéme unitaire d’image P dans K[X] et de méme degré que P.
C’est un polynéme irréductible dans O [X] puisque P est irréductible. Utilisons le lemme
de Hensel pour voir que P est le produit d’un polynéme unitaire de Op/[X] de degré 1 et
d’un polynéme @ € Op/[X]. On obtient donc P = (X — 21)Q(X) avec x; € Oy d’image
#1 dans M. L’extension K[z1]|K est non ramifiée puisque son degré est égal & son degré
résiduel.

Itérons cette opération en considérant tous les éléments Z1, Zo,..., Zn de M — K et leurs
représentants xi, Ty ..., , dans Oy;. L'extension K|z, ..., z,]|K est non ramifiée puisque
la composée d’extensions non ramifiées est non ramifiée. Puisqu'on a M = K[Z1,...2,],
Pextension K[Zy,...%,]|K est de degré égal au degré résiduel de l'extension M|K. Par
conséquent l'extension M |K|zq,...,z,] est de degré égal a l'indice de ramification de
I'extension M|K. Elle est donc totalement ramifiée. Le corps L = Klz1,...,2,] remplit
donc les conditions recherchées.

On peut donc parler de la plus grande sous-extension non ramifiée d’une extension de
corps p-adiques.

Ajoutons que la composée de deux extensions de K non ramifiées est non ramifiée.
Cela se vérifie facilement en observant qu’une extension est non ramifiée si et seulement si
le degré de ’extension est égal au degré résiduel.

Par ailleurs on vérifie facilement que si M|K est une extension quelconque et si
I'extension L|K est non ramifiée alors 'extension M L|M K est non ramifiée. On a utilisé
implicitement cette propriété dans la démonstration du corollaire.

Le lemme de Hensel permet d’établir I’existence d’extensions ramifiées de degré quel-
conque de K. En effet il existe une unique extension de degré du corps résiduel de K. Cette
extension est engendrée par les racines de 'unité et donc par la réduction d’un polynéme
cyclotomique ®. L’extension de K engendrée par ® est alors de degré égal a son degré
résiduel et donc non ramifiée.

Etudions maintenant les extensions totalement ramifiées.
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2. Les polynomes d’Eisenstein
Reprenons les notations de la section précédente. Un polynome
PX)=X"+ap, 1 X" ' +..+ap € K[X]
est dit polynéme d’Eisenstein si on a a; € Q pour i = 0,2,....,n — 1, et ag ¢ Q°.

PROPOSITION 2. — Tout polynome d’Fisenstein est irréductible. Toute racine d’un
polynome d’Fisenstein engendre une extension totalement ramifiée pour laquelle elle est
une uniformisante de l’idéal maximal de 'anneau des entiers.

Réciproquement, soient L|K une extension totalement ramifiée et m une uniformisante
de Uidéal mazximal de 'anneau O, des entiers de L. On a

LZK[W] et OLIO[([T('].

De plus le polynome minimal de m est un polynome d’Fisenstein.
Démonstration. — Abordons d’abord la premiere partie. Il suffit de prouver que toute
racine d’'un polynoéme d’Eisenstein est une uniformisante dans le corps qu’elle engendre.
Soient P = a4, X™ + a,_ 1 X" 1 + ...+ ag € Ox[X] un polynéme d’Eisenstein et 7 une
racine de P. Posons L = K|[r]. Posons d = [L : K| et notons e I'indice de ramification de
I'extension L|K. Notons vy, la valuation de L.
Le nombre 7 est entier. On a donc

vp (1) = vp(an 17"t + .+ ag) > min(vr (ap_ 17", ..., vr(ag)).

On a donc vr(m) > 1.

Supposons qu’on ait n > e/vr (). On a alors vg,(7™) > e. Rappelons que la restriction
de vz, & K coincide avec evg. On a donc vy (a;) = evi(a;) > e et donc vy (a;7) > e pour
i > 1. Cela entraine

v (7" 4 a1+ L FagT) > e

et donc
vr(ag) = v (1" + a1 7"+ Fagm) > e.

Or on a vy (ag) = evi(ap) = e. L’hypothese n > e/vr () est donc absurde.
Comme on a les inégalités

n>d>e>efv(n),

on obtient la relation vy (7) = 1.

Etudions maintenant la réciproque. Soit R un systeme de représentants de O /Q.
Puisque lextension L|K est totalement ramifiée, c’est aussi un systéme de représentants
de O /P (le degré résiduel est égal a 1). Supposons que 0 € R. Soit A une uniformisante
de Q. Posons mpers = A7 (avec n et s entiers). Lorsque n parcourt Z et s parcourt
{0,1,...,e — 1}, les valuations des 7,1 sont deux a deux distinctes et parcourent Z.
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Soit y € L*. 1l s’crit de fagcon unique sous la forme (c’est une variante du
développement p-adique)
o0
Y= Z TETE

k=ko

avec kg € Z, r, € R et rp, # 0. On a donc

e—1 [ee)
Yy = E T E Tit+me A"
=0 m:ko

Ona Zfrf:ko TitmeA™ € K, sibien quey € K[r|. Sionsupposedeplusy € Oy, i.e. kg > 0,
on a Z::ko TizmeA™ € Ok, d’ott I'égalité O = Ok |n].

Soit P(X) = X%+ aq 1 X%t + ...+ ap € K[X] le polynéme minimal de 7 sur K. On
a e = d car I'extension L|K est totalement ramifiée. On a donc ag = =Ny, /i 7 et donc

vk (ag) = ng(ﬂ') = 1.

Par ailleurs P est le polynome caractéristique de la multiplication par m dans le K-
espace vectoriel L. La réduction modulo Q de P est donc le polynome caractéristique de la
multiplication par 7 dans le Ok /Q-espace vectoriel O, /Q. Cette derniere multiplication
est nilpotente puisqu’'on a 7¢ € QOr. ona P = X? (mod Q). Cela prouve que P est un
polynéme d’Eisenstein.

Remarque . — La proposition 2 assure de I'existence d’extensions totalement ramifiées de
degré arbitraire. En effet, soit A une uniformisante de Ok. Le polynéme X°¢— \ (ou mieux
X¢—AX — ) est un polynome d’Eisenstein de degré e ; ses racines engendrent donc une
extension totalement ramifiée de degré e de K.

3. Définition des groupes de ramification

Soit L|K une extension galoisienne et finie. Notons Op la cloture intégrale de Ok
dans L. Soit P l'idéal premier non nul de Oy, et w la valuation discrete de L associée. Soit
7 un entier > —1. Posons

Gi={o € Gal(L/K)/o(z) €z + P 2 c O}

C’est le i-iéme groupe de ramification (en numérotation inférieure) de l'extension L|K. Les
groupes GG_1 et Gy ne sont autres que les groupes de décomposition et d’inertie en P de
I'extension L|K.

Soit o € Gal(L/K). Posons

ir/k(0) = Mingeo, w(o(x) — x)).
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On a
G; = {(T S G_l/iL/K(U) >4+ 1}.

Comme on a pour tout 7 € G_1,
iL/K(TUT_l) = iL/K(O-)y
le groupe G; est un sous-groupe distingué de G_;.

ProrPOsSITION 3. — Soit mp une uniformisante de P. Notons ¢ lapplication G_1 =
Gal(L/K) — Oy, qui a o associe o(wy) /7. Soit i un entier > 0.
On a ¢(G;) C Ug’). L’application ¢ définit un homomorphisme injectif de groupes ¢; :

Gi/Gi+1 — Uéz)/U£z+1)

indépendant du choix de l'uniformisante my,.

En particulier, G est le p-sous-groupe de Sylow de Gj.
Démonstration. — La premiere assertion résulte de la relation o () € 71, + P! pour
o€ GZ ) )

Soit o € G;. Vérifions que la classe de ¢(o) dans US)/USH) ne dépend pas de 7.
Soit 7} une uniformisante de P. On a 7} = uny, avec u € Of. On a

o(urr)/(urr) = (o(u)/u)p(0).
Comme (o(u)/u) € Ugﬂ), on en déduit qu’on a
o(urp)/(ury) € gb(U)UgH).

Soit 7 € G;. L’élément 7(my) est une uniformisante de P. On a donc

¢i(o7) = (or(my) e ) UL T = (or(my) f7(mp))(r(mn) Jep) UL T = di(0)gi(r).

Cela prouve que ¢; est un homomorphisme de groupes.

Il reste a vérifier I'injectivité. On se ramene d’abord au cas ou l'extension L|K est
totalement ramifiée. En effet considérons la plus grande extension non ramifiée K'|K
contenue dans L. Elle coincide avec le sous corps de L fixé par Gg. Le i-eme groupe de
ramification de Gal(L/K) coincide avec le i-eme groupe de ramification de Gal(L/K") C
Gal(L/K). D’apres la théorie des polynomes d’Eisenstein, on a O = Ok [7].

Soit € Op. Il s’écrit donc comme un polynéme en 7y, a coefficients dans K’. On
adonc xz =y + 2z avec y € Op et z € Og/. Soit o € G; tel que ¢(o) € USH). On a
o(r) € m+ P2, pour toute uniformisante 7 de P. Il suffit de démontrer que o € G4 1,
c’est-a-dire qu'on a o(z) — z € P2, Comme o € Gy, on a o(z) = 2. On a

o(x) —x =o(yry) —yny € yr, P C P2
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On en déduit que Gy est le p-sous-groupe de Sylow de (G; en remarquant que le
quotient Ug) / U}jﬂ) est un p-groupe (c’est-a-dire un groupe d’ordre une puissance de p)
lorsque ¢ > 1 et que Uéo) JU g) est d’ordre premier a p puisqu’il s’identifie au sous-groupe
des éléments inversibles d’un corps fini de caractéristique p. Voir la structure des quotients
o U

On a montré au passage que, lorsque L|K est totalement ramifiée, on a
ir/k(0) =w(o(ry) —7L)).

Lorsque le groupe d’inertie G est trivial, rappelons que I’on dit que I'extension L|K est
non ramifiée. Le groupe G s’appelle le sous-groupe d’inertie sauvage. Lorsqu’il est trivial
on dit que ’extension est modérément ramifiée. C’est le cas si et seulement si 'indice de
ramification est un nombre premier a p. Le groupe G/G; est le groupe d’inertie modérée.

Remarque . — La propriété O/ [rr] = Of indique que G; est 'ensemble des éléments o
de G tels que o(nr) € 7, + P, pour i > 0.

Soit s un nombre réel > —1. Posons
Gs={0cG_1/ipk(0) > s+ 1}.
Lorsque s = i est un entier > —1, on a bien G; = G,.
Comparons les groupes de ramification associés aux extensions composées.

PROPOSITION 4. — Soit M|K une extension galoisienne, finie et contenant L. Notons €’
Uindice de ramification de l’extension M|L. Soit 7 € Gal(L/K). On a

ZL/K(T):é Z ZM/K'(O.)

o€Gal(M/K),o|,=T

Démonstration. — On se rameéne au cas ou l'extension M| K est totalement ramifiée comme
dans la démonstration de la proposition 3.

Supposons que 7 soit distinct de l'identité. Soient x et y deux éléments de M et
L tels que Oglx] = Op et Okly] = Op. Notons w’ la valuation de M. On a donc
eip/k(T) =w'(1(y) —y) et iy (o) = w(o(z) — ).

Posons a = 7(y) —y et b = HUEG&](M/K),U‘L:T(U('I) — ). 1l faut donc prouver que
les valuations des éléments a et b de M sont égales. C’est-a-dire que les idéaux engendrés
par a et b sont égaux.

Démontrons que 'idéal engendré par a contient b. Notons P € Op[X] le polynome
minimal de z sur L. On a P(X) =[] cqan/r)(X — p(z)). Le polynome 7(P) — P est a
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coefficients dans I'idéal engendré par (7(y) —y) = a. On a donc (7(P) — P)(z) € aOr. On
a Plx)=0et 7(P)(X) = HoEGal(M/K),0|L:T(X —o(z)) = £b. Ainsi,on a

b==x7(P)(z) = £(7(P) — P)(z) € aOL.

Démontrons maintenant que a € bOp. 1l existe @ € Ok[X] tel que y = Q(x). Le
polynéme (Q(X) —y) € Or[X] est donc un multiple de P. Or 7(G) = G. Donc 7(P)
divise 7(Q) — 7(y). On a donc

a=1(y)—y=1(y) —y— (7(Q)(z) - Q@) = 7(y) — 7(Q)(z) € T7(P)(x)Or = bOL.
Cela acheve la démonstration de la proposition.

La proposition 4 nous indique que les groupes de ramification ne sont pas stables par
extension. Cela justifie le changement de numérotation.

4. La numérotation supérieure

Reprenons la situation que nous avons laissée dans la section précédente.

Posons g; = |G;|. Considérons la fonction continue [—1, +oo[— [—1,+00| et affine
sur les intervalles ]i,7 + 1] pour i € Z et qui & s > 0 de partie entiere m associe

1
pr/K(8) = 9_0(91 + g2+ o gm + (58— M)gmt1)-

Cette fonction est nulle en 0 et est égale & —1 en —1. Sa dérivée sur le segment |i,i + 1|
est égale a l'indice de G;41 dans Gg. On peut encore 'exprimer par l'intégrale :

(S)_/Sd—x
PLIK o 1Go/Gal

Ajoutons qu’elle prend des valeurs rationnelles en les nombres entiers.

Lemme 1. — On a
1 ..
pryx(s)=— > min(i/k(o),s+1)—1.
90 ceGal(L/K)
Démonstration. — Comparons les deux fonctions qui apparaissent dans 1’égalité. Elles

valent toutes deux 0 en 0. Elles sont toutes deux continues et affines par morceaux. Il
suffit de vérifier que leurs dérivées coincident en tout nombre réel non entier s. Notons m
la partie entiere de s. La dérivée en s du membre de gauche figurant dans le lemme est
égale a

1 .
9—0’{0' S G/ZL/K(O'> > m+2}]
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Ce nombre n’est autre que 'inverse de l'indice de G,,+1 dans Gy.

L’introduction de la numérotation supérieure est justifiée par le résultat suivant, di a
Herbrand.

PROPOSITION 5. — Soit M|K une extension galoisienne finie contenant L. Notons H; le
i-iéme groupe de ramification de Gal(M/K). Posons G' = Gal(M/L). Soit s € [—1,00].
Posons t = ppr/r(s). On a

(H;G")/G" = Gy.

Démonstration. — Etablissons au préalable une formule.
Lemme 2. — Soit 7 € Gal(L/K). Soit T tel que 7|, = T et tel que iy (T) soit maximal.
On a

ir/k(T) =1 = pryp(ing i (7) —1).

Démonstration. — Posons m = iy;/k (7). Soit p € G'. On a la formule

iv/x (pT) = min(iyy x (p), m);

Cela se vérifie immédiatement en examinant les deux cas iy i (p) > m et iy x(p) < m
et en utilisant la relation p7(z) —x = p7(x) — 7(x) + 7(z) —  qui donne apres application
des valuations le résultat cherché.

Utilisons maintenant la proposition 4. On obtient

1

. , - 1 o
in/k(T) = o Z iv/(pT) = o Z min(iy, i (p), m).
peG’ peG’

Utilisons la relation iy x(p) = iar/1(p) et le lemme 1. On obtient

|G| . .
o= payr(ine ke (7) — 1) + 1.

ir)k(T) = (payp(m —1) +1)

Cela acheve de prouver le lemme.

Venons-en a la démonstration de la proposition 5. Soit 7 € Gal(L/K). Soit 7 €
Gal(M/K) tel que 7y, = 7. C’est un élément de H,G'/G" si seulement si on a iy /i (7)—1 >
s, ou encore si et seulement si pyr/r(in/kx(T) — 1) > par/r(s) (car la fonction ppr/p est
croissante). D’apres le lemme 2 , cela revient a dire qu'on a iy /x(7) —1 > par/r(s), ou
encore qu'on a 7 € GG;. Cela prouve donc la proposition 5.

La fonction pr, /i est une fonction strictement croissante et non bornée. C’est donc une
bijection [~1, +-0o[— [~1, +oo[. Considérons la fonction ¢ g : [~1,+oo[— [~1, +o0]
qui est réciproque de pr, /g . Soit ¢ un nombre réel > 1. On appelle groupe de ramification
en numérotation supérieure d’indice t le sous-groupe



de Gal(L/K).
PROPOSITION 6. — Soit M /K une extension galoisienne finie contenant L. On a

PM/K = PL/K ©PM/L

et
Oy = PMm/L© PL K-

Démonstration. — Ces deux égalités sont équivalentes. Démontrons la premiere. Les
deux membres de 1’égalité sont des fonctions continues et affines par morceaux. Elles sont
toutes les deux nulles en 0. Démontrons que leurs dérivées sont égales partout ou elles
sont définies.

Soit s un nombre réel > 1 non entier. D’apres la proposition 5, on a H; /G, = G, (en
reprenant les notations de la proposition 5). Cela entraine qu’on a, en notant eg;/y 'indice
de ramification de I’extension de corps p-adiques U|V,

1 1 1
|Hs| = (e Gl
eM/K €L/K EM/L

On a donc, en appliquant la formule de composition des dérivées en le nombre réel
non entier s,

1 1

P/ (8) = |G| Gl = 07k (Paryn(8))Phry . (8) = (pryx © paryr)' ().
€L/K €EM/L

Cela prouve la proposition 6.

Examinons le comportement des groupes de ramification en numérotation supérieure
par composition d’extensions.

PROPOSITION 7. — Soit M|K wune extension galoisienne finie contenant L. Notons

H' le i-iéme groupe de ramification de Gal(M/K) en numérotation supérieure. Posons
G' = Gal(M/L). Soit s € [-1,00]. On a

(H*G')/G' = G*.

Démonstration. — Posons t = pr,/x(s). On a
(H*G")/G" = (Hy,,,c(1yG")/G'.

D’apres la proposition 5, ce dernier groupe est égala G, JLoba K (1) D’apres la proposition
6, il est égal a
G = Gd’L/K(t) =G

PM/Lod)M/LOd)L/K(t)
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Cela achéve la démonstration.

5. Lien avec le discriminant

Soit L|K une extension galoisienne de corps p-adiques. Considérons le discriminant
Dp /i de I'extension L|K. On note G; le i-eme groupe de ramification de Gal(L/K).

PROPOSITION 8. — On a les formules
oo
vk (Dr/K) = > ix(o) =) (IGi| - 1).
ceGal(L/K),0#1 1=0
Démonstration. — On se ramene encore au cas ou 'extension L|K est totalement ramifiée

puisque les deux membres de 1’égalité que nous voulons démontrer ne changent pas si on
remplace K par un sous-corps non ramifié.
Soit z € L tel que O = Ok|z]. Notons P le polynéme minimal de x sur K. On a

P(X) =[l,ecair/x)(X —o(z)) et donc

Pay= [  (X-o@)

ceGal(L/K),0#1

D’apres les propositions IV-4 et IV-5, on a

Dr/x = Np/k( H P'(x))Ok.
c€Gal(L/K),0#1

On a donc, en utilisant le fait que I'extension L|K est totalement ramifiée,

vk (Dryx) = vi(P'(2)) = > v (z —o(z)) = > ic(0).

ceGal(L/K),0#1 c€Gal(L/K),0#1

Passons maintenant a la deuxieme égalité figurant dans la proposition. La fonction
ig est égale a i sur G;,_1 — G;. On a donc

> ic(o) =Y i(|Gi—1| — |Gi]).
c€Gal(L/K),0#1 =0

Cela donne la formule cherchée en simplifiant le dernier membre.

PROPOSITION 9. — Le i-éme groupe de ramification de Gal(L/K) est nul lorsqu’on a
i >vr(p)/(p—1).
Démonstration. — Supposons donc que i est un entier > v (p)/(p —1). On se ramene

encore au cas ou l'extension L|K est totalement ramifiée. Soit ¢ € G;. Soit m une
uniformisante de I’anneau des entiers de L. On a o(7) = 7(1 4+ a) avec a € P".
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Observons qu’on a, pour k > 0,
(0 —1)*(x) =0 (mod PFT1),

Cela se vérifie par une récurrence immédiate sur k£ en utilisant que o € G; ; En effet on a

-1 k—1 )
ollo = 1) o
(0 — 1)k~ ()
Lemme 3. — Supposons qu’on ait 0 ¢ Giy1. On a alors 0P € Gity, (p) — Gigoy (p)+1-
Démonstration. — Calculons oP(7) grace a la formule du bindéme. On a

oP(m) = (6 — 1+ 1)P(x) = i (Z) (o — 1)*(x).

k=0

Dans cette derniere somme, les termes correspondant a k # 0, 1, p s’écrivent sous la forme

(Z) (0 — 1)*1(am); Or dans ces cas on a p| (Z) et (0 — 1) 1(ar) € P*?2 et donc

m(z) (0 — 1)*Yam)) > i+ vi(p) + 2.

On a donc
oP (1) —m = (0 —1)P(n) + par  (mod PHVLP)+2),

D’apres ce qui précede on a (0 — 1)P(w) € PPUTL. L’hypothese i > vy (p)/(p — 1) se traduit
par pi +1 > i +wvp(p) + 2. On a donc (o — 1)P(7) € PHeP)+2. Cela se traduit par la
congruence

oP (1) —m =par  (mod PHVEE)FTZ),

Comme vy (par) = vr(p) +i+ 1, on a oP(n) — 7 € PHve®)+l _ pitve(P)+2 o donc
0% € Givor(p) = Gitor(p)+1-

Poursuivons notre raisonnement en supposant qu'on a o ¢ G;;1. Comme les groupes
de ramification d’indice > 0 sont des p-groupes, o est d’ordre une puissance de p. On a
donc o?" = 1 pour un entier £ > 0. En itérant la construction qui précede, on obtient
A= Gitror(p) — Gitkor (p)+1- Cela est absurde puisque G4y, (p)+1 €St un sous-groupe
de Gal(L/K) et contient donc 1’élément neutre.

L’hypothese o ¢ G;11 est donc absurde. Cela entraine donc

0 € Njsupp)/-1)Gj = {1}

et donc la trivialité du i-eme groupe de ramification.
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