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Les groupes de ramification

1. Le lemme de Hensel

Soit p un nombre premier. Soit K un corps p-adique, donc muni d’une valuation
discrète notée vK ou simplement v lorsqu’il n’y a pas d’ambigüıté (la théorie décrite ci-
dessous s’applique en fait à des corps locaux plus généraux). Notons OK l’anneau des
entiers de K∗. Notons Q l’idéal premier non nul de OK . Soit π une uniformisante de Q.

Voyons une des incarnations du lemme de Hensel. On trouve dans la littérature des
formulations littéralement différentes mais qui expriment la même idée.

Proposition 1. — Soit P ∈ OK [X] un polynôme de degré d. Notons P̃ l’image de P
dans k[X]. Supposons que le degré de P̃ soit égal à d et que P̃ soit égal au produit de deux
polynômes R̃ et Q̃ premiers entre eux. Il existe Q, R ∈ OK [X] d’images Q̃ et R̃ dans k[X]
de mêmes degrés que Q̃ et R̃ respectivement et vérifiant P = QR.

De plus Q (resp. R) peut être choisi unitaire lorsque Q̃ (resp. R̃) est unitaire.
Démonstration. — On construit les polynômes Q et R par approximations successives.

Soient Q0 et R0 deux polynômes de OK [X] d’images dans k[X] égales à Q̃ et R̃ et
tels que P −Q0R0 soit de degré strictement inférieur à d (cela entrâıne que Q0 et R0 sont
de même degrés que Q̃ et R̃ respectivement). On a

P = Q0R0 + πS1,

avec S1 ∈ OK [X] de degré < d. Notons S̃1 l’image de S1 dans k[X]. Puisque les polynômes
P̃ et Q̃ sont premiers entre eux, il existe deux polynômes Ũ , Ṽ ∈ k[X] de degrés inférieurs
strictement aux degrés de Q̃ et R̃ et vérifiant

S̃1 = ŨQ̃+ Ṽ R̃.

On a donc
S1 = UQ0 + V R0 + πT,

avec U , V , T trois polynômes de OK [X] de degrés strictement inférieurs aux degrés de R0,
Q0 et P respectivement. Cela donne

P = Q0R0 + π(UQ0 +RV0 + πT ) = (Q0 + πV )(R0 + πU) + π2(T − UV ).

Posons Q1 = Q0 + πV , R1 = R0 + πU et S2 = T − UV . Ce sont des polynômes dee
mêmes degrés que Q0 et R0, donc de mêmes degrés que Q̃ et R̃. En itérant l’opération
on obtient des suites (Qn)n≥0, (Rn)n≥0 et (Sn)n≥1 de polynômes de OK [X] telles que
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P = QnRn+πn+1Sn+1 et telles que les coefficients de Qn+1−Qn (resp. Rn+1−Rn) soient
dans Pn+1. Les suites (Qn)n≥0 et (Rn)n≥0 convergent donc vers des polynômes Q et R et
on a P = QR.

Lorsque Q (resp. R) est un polynôme unitaire, la suite (Qn)n≥0 (resp. (Rn)n≥0) peut
être choisie à valeurs dans les polynômes unitaires. L’assertion subsidiaire découle de cette
constatation.

Corollaire . — Soit M une extension finie de K. Il existe une extension intermédiaire
K ⊂ L ⊂ M telle que L soit non ramifiée sur K et telle que M soit totalement ramifiée
sur L.

Démonstration. — Notons M̃ et K̃ les corps résiduels de de M et K. Ils sont finis donc
parfaits.

Soit x̃1 ∈ M̃ − K̃ de polynôme minimal P̃ ∈ K̃[X]. On a P̃ (X) = (X − x̃1)Q̃(X) ∈
M̃ [X]. Puisque M̃ est parfait, l’extension M̃ |K̃ est séparable, donc x̃1 est séparable, donc
x̃1 est racine simple de son polynôme minimal. Les polynômes (X − x̃1) et Q̃ sont donc
premiers entre eux.

Soit P ∈ OK [X] un polynôme unitaire d’image P̃ dans K̃[X] et de même degré que P̃ .
C’est un polynôme irréductible dans OK [X] puisque P̃ est irréductible. Utilisons le lemme
de Hensel pour voir que P est le produit d’un polynôme unitaire de OM [X] de degré 1 et
d’un polynôme Q ∈ OM [X]. On obtient donc P = (X − x1)Q(X) avec x1 ∈ OM d’image
x̃1 dans M̃ . L’extension K[x1]|K est non ramifiée puisque son degré est égal à son degré
résiduel.

Itérons cette opération en considérant tous les éléments x̃1, x̃2,..., x̃n de M̃−K̃ et leurs
représentants x1, x2 ..., xn dans OM . L’extension K[x1, ..., xn]|K est non ramifiée puisque
la composée d’extensions non ramifiées est non ramifiée. Puisqu’on a M̃ = K̃[x̃1, ...x̃n],
l’extension K̃[x̃1, ...x̃n]|K̃ est de degré égal au degré résiduel de l’extension M |K. Par
conséquent l’extension M |K[x1, ..., xn] est de degré égal à l’indice de ramification de
l’extension M |K. Elle est donc totalement ramifiée. Le corps L = K[x1, ..., xn] remplit
donc les conditions recherchées.

On peut donc parler de la plus grande sous-extension non ramifiée d’une extension de
corps p-adiques.

Ajoutons que la composée de deux extensions de K non ramifiées est non ramifiée.
Cela se vérifie facilement en observant qu’une extension est non ramifiée si et seulement si
le degré de l’extension est égal au degré résiduel.

Par ailleurs on vérifie facilement que si M |K est une extension quelconque et si
l’extension L|K est non ramifiée alors l’extension ML|MK est non ramifiée. On a utilisé
implicitement cette propriété dans la démonstration du corollaire.

Le lemme de Hensel permet d’établir l’existence d’extensions ramifiées de degré quel-
conque de K. En effet il existe une unique extension de degré du corps résiduel de K. Cette
extension est engendrée par les racines de l’unité et donc par la réduction d’un polynôme
cyclotomique Φ. L’extension de K engendrée par Φ est alors de degré égal à son degré
résiduel et donc non ramifiée.

Étudions maintenant les extensions totalement ramifiées.
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2. Les polynômes d’Eisenstein

Reprenons les notations de la section précédente. Un polynôme

P (X) = Xn + an−1X
n−1 + ...+ a0 ∈ K[X]

est dit polynôme d’Eisenstein si on a ai ∈ Q pour i = 0, 2, ..., n− 1, et a0 /∈ Q2.

Proposition 2. — Tout polynôme d’Eisenstein est irréductible. Toute racine d’un
polynôme d’Eisenstein engendre une extension totalement ramifiée pour laquelle elle est
une uniformisante de l’idéal maximal de l’anneau des entiers.

Réciproquement, soient L|K une extension totalement ramifiée et π une uniformisante
de l’idéal maximal de l’anneau OL des entiers de L. On a

L = K[π] et OL = OK [π].

De plus le polynôme minimal de π est un polynôme d’Eisenstein.
Démonstration. — Abordons d’abord la première partie. Il suffit de prouver que toute
racine d’un polynôme d’Eisenstein est une uniformisante dans le corps qu’elle engendre.

Soient P = anX
n + an−1X

n−1 + ...+ a0 ∈ OK [X] un polynôme d’Eisenstein et π une
racine de P . Posons L = K[π]. Posons d = [L : K] et notons e l’indice de ramification de
l’extension L|K. Notons vL la valuation de L.

Le nombre π est entier. On a donc

vL(πn) = vL(an−1π
n−1 + ...+ a0) ≥ min(vL(an−1π

n−1), ..., vL(a0)).

On a donc vL(π) ≥ 1.
Supposons qu’on ait n > e/vL(π). On a alors vL(πn) > e. Rappelons que la restriction

de vL à K cöıncide avec evK . On a donc vL(ai) = evK(ai) ≥ e et donc vL(aiπ
i) > e pour

i > 1. Cela entrâıne
vL(πn + an−1π

n−1 + ...+ a1π) > e

et donc
vL(a0) = vL(πn + an−1π

n−1 + ...+ a1π) > e.

Or on a vL(a0) = evK(a0) = e. L’hypothèse n > e/vL(π) est donc absurde.
Comme on a les inégalités

n ≥ d ≥ e ≥ e/vL(π),

on obtient la relation vL(π) = 1.
Etudions maintenant la réciproque. Soit R un système de représentants de OK/Q.

Puisque l’extension L|K est totalement ramifiée, c’est aussi un système de représentants
de OL/P (le degré résiduel est égal à 1). Supposons que 0 ∈ R. Soit λ une uniformisante
de Q. Posons πne+s = λsπn (avec n et s entiers). Lorsque n parcourt Z et s parcourt
{0, 1, ..., e− 1}, les valuations des πne+s sont deux à deux distinctes et parcourent Z.
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Soit y ∈ L∗. Il s’écrit de façon unique sous la forme (c’est une variante du
développement p-adique)

y =
∞∑

k=k0

rkπk

avec k0 ∈ Z, rk ∈ R et rk0 6= 0. On a donc

y =

e−1∑
i=0

πi
∞∑

m=k0

ri+meλ
m.

On a
∑∞
m=k0

ri+meλ
m ∈ K, si bien que y ∈ K[π]. Si on suppose de plus y ∈ OL, i.e. k0 ≥ 0,

on a
∑∞
m=k0

ri+meλ
m ∈ OK , d’où l’égalité OL = OK [π].

Soit P (X) = Xd + ad−1X
d−1 + ...+ a0 ∈ K[X] le polynôme minimal de π sur K. On

a e = d car l’extension L|K est totalement ramifiée. On a donc a0 = ±NL/K π et donc

vK(a0) =
e

d
vL(π) = 1.

Par ailleurs P est le polynôme caractéristique de la multiplication par π dans le K-
espace vectoriel L. La réduction modulo Q de P est donc le polynôme caractéristique de la
multiplication par π dans le OK/Q-espace vectoriel OL/Q. Cette dernière multiplication
est nilpotente puisqu’on a πd ∈ QOL. on a P ≡ Xd (mod Q). Cela prouve que P est un
polynôme d’Eisenstein.

Remarque . — La proposition 2 assure de l’existence d’extensions totalement ramifiées de
degré arbitraire. En effet, soit λ une uniformisante de OK . Le polynôme Xe−λ (ou mieux
Xe − λX − λ) est un polynôme d’Eisenstein de degré e ; ses racines engendrent donc une
extension totalement ramifiée de degré e de K.

3. Définition des groupes de ramification

Soit L|K une extension galoisienne et finie. Notons OL la clôture intégrale de OK
dans L. Soit P l’idéal premier non nul de OL et w la valuation discrète de L associée. Soit
i un entier ≥ −1. Posons

Gi = {σ ∈ Gal(L/K)/σ(x) ∈ x+ Pi+1, x ∈ OL}.

C’est le i-ième groupe de ramification (en numérotation inférieure) de l’extension L|K. Les
groupes G−1 et G0 ne sont autres que les groupes de décomposition et d’inertie en P de
l’extension L|K.

Soit σ ∈ Gal(L/K). Posons

iL/K(σ) = Minx∈OL
w(σ(x)− x)).
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On a
Gi = {σ ∈ G−1/iL/K(σ) ≥ i+ 1}.

Comme on a pour tout τ ∈ G−1,

iL/K(τστ−1) = iL/K(σ),

le groupe Gi est un sous-groupe distingué de G−1.

Proposition 3. — Soit πL une uniformisante de P. Notons φ l’application G−1 =
Gal(L/K) −→ OL qui à σ associe σ(πL)/πL. Soit i un entier ≥ 0.

On a φ(Gi) ⊂ U (i)
L . L’application φ définit un homomorphisme injectif de groupes φi :

Gi/Gi+1 −→ U
(i)
L /U

(i+1)
L

indépendant du choix de l’uniformisante πL.
En particulier, G1 est le p-sous-groupe de Sylow de G0.

Démonstration. — La première assertion résulte de la relation σ(πL) ∈ πL + Pi+1 pour
σ ∈ Gi.

Soit σ ∈ Gi. Vérifions que la classe de φ(σ) dans U
(i)
L /U

(i+1)
L ne dépend pas de πL.

Soit π′L une uniformisante de P. On a π′L = uπL, avec u ∈ O∗K . On a

σ(uπL)/(uπL) = (σ(u)/u)φ(σ).

Comme (σ(u)/u) ∈ U (i+1)
L , on en déduit qu’on a

σ(uπL)/(uπL) ∈ φ(σ)U
(i+1)
L .

Soit τ ∈ Gi. L’élément τ(πL) est une uniformisante de P. On a donc

φi(στ) = (στ(πL)/πL)U
(i+1)
L = (στ(πL)/τ(πL))(τ(πL)/πL)U

(i+1)
L = φi(σ)φi(τ).

Cela prouve que φi est un homomorphisme de groupes.
Il reste à vérifier l’injectivité. On se ramène d’abord au cas où l’extension L|K est

totalement ramifiée. En effet considérons la plus grande extension non ramifiée K ′|K
contenue dans L. Elle cöıncide avec le sous corps de L fixé par G0. Le i-ème groupe de
ramification de Gal(L/K) cöıncide avec le i-ème groupe de ramification de Gal(L/K ′) ⊂
Gal(L/K). D’après la théorie des polynômes d’Eisenstein, on a OL = OK′ [πL].

Soit x ∈ OL. Il s’écrit donc comme un polynôme en πL à coefficients dans K ′. On

a donc x = πLy + z avec y ∈ OL et z ∈ OK′ . Soit σ ∈ Gi tel que φ(σ) ∈ U (i+1)
L . On a

σ(π) ∈ π + Pi+2, pour toute uniformisante π de P. Il suffit de démontrer que σ ∈ Gi+1,
c’est-à-dire qu’on a σ(x)− x ∈ Pi+2. Comme σ ∈ G0, on a σ(z) = z. On a

σ(x)− x = σ(yπL)− yπL ∈ yπLPi+1 ⊂ Pi+2.
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On en déduit que G0 est le p-sous-groupe de Sylow de G1 en remarquant que le

quotient U
(i)
L /U

(i+1)
L est un p-groupe (c’est-à-dire un groupe d’ordre une puissance de p)

lorsque i ≥ 1 et que U
(0)
L /U

(1)
L est d’ordre premier à p puisqu’il s’identifie au sous-groupe

des éléments inversibles d’un corps fini de caractéristique p. Voir la structure des quotients

U
(i)
L /U

(i+1)
L .

On a montré au passage que, lorsque L|K est totalement ramifiée, on a

iL/K(σ) = w(σ(πL)− πL)).

Lorsque le groupe d’inertieG0 est trivial, rappelons que l’on dit que l’extension L|K est
non ramifiée. Le groupe G1 s’appelle le sous-groupe d’inertie sauvage. Lorsqu’il est trivial
on dit que l’extension est modérément ramifiée. C’est le cas si et seulement si l’indice de
ramification est un nombre premier à p. Le groupe G0/G1 est le groupe d’inertie modérée.

Remarque . — La propriété OK′ [πL] = OL indique que Gi est l’ensemble des éléments σ
de G0 tels que σ(πL) ∈ πL + Pi+1, pour i ≥ 0.

Soit s un nombre réel ≥ −1. Posons

Gs = {σ ∈ G−1/iL/K(σ) ≥ s+ 1}.

Lorsque s = i est un entier ≥ −1, on a bien Gi = Gs.

Comparons les groupes de ramification associés aux extensions composées.

Proposition 4. — Soit M |K une extension galoisienne, finie et contenant L. Notons e′

l’indice de ramification de l’extension M |L. Soit τ ∈ Gal(L/K). On a

iL/K(τ) =
1

e′

∑
σ∈Gal(M/K),σ|L=τ

iM/K(σ).

Démonstration. — On se ramène au cas où l’extension M |K est totalement ramifiée comme
dans la démonstration de la proposition 3.

Supposons que τ soit distinct de l’identité. Soient x et y deux éléments de M et
L tels que OK [x] = OM et OK [y] = OL. Notons w′ la valuation de M . On a donc
e′iL/K(τ) = w′(τ(y)− y) et iM/K(σ) = w(σ(x)− x).

Posons a = τ(y) − y et b =
∏
σ∈Gal(M/K),σ|L=τ (σ(x) − x). Il faut donc prouver que

les valuations des éléments a et b de M sont égales. C’est-à-dire que les idéaux engendrés
par a et b sont égaux.

Démontrons que l’idéal engendré par a contient b. Notons P ∈ OL[X] le polynôme
minimal de x sur L. On a P (X) =

∏
ρ∈Gal(M/L)(X − ρ(x)). Le polynôme τ(P )− P est à
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coefficients dans l’idéal engendré par (τ(y)− y) = a. On a donc (τ(P )−P )(x) ∈ aOL. On
a P (x) = 0 et τ(P )(X) =

∏
σ∈Gal(M/K),σ|L=τ (X − σ(x)) = ±b. Ainsi,on a

b = ±τ(P )(x) = ±(τ(P )− P )(x) ∈ aOL.

Démontrons maintenant que a ∈ bOL. Il existe Q ∈ OK [X] tel que y = Q(x). Le
polynôme (Q(X) − y) ∈ OL[X] est donc un multiple de P . Or τ(G) = G. Donc τ(P )
divise τ(Q)− τ(y). On a donc

a = τ(y)− y = τ(y)− y − (τ(Q)(x)−Q(x)) = τ(y)− τ(Q)(x) ∈ τ(P )(x)OL = bOL.

Cela achève la démonstration de la proposition.

La proposition 4 nous indique que les groupes de ramification ne sont pas stables par
extension. Cela justifie le changement de numérotation.

4. La numérotation supérieure

Reprenons la situation que nous avons laissée dans la section précédente.
Posons gi = |Gi|. Considérons la fonction continue [−1,+∞[−→ [−1,+∞[ et affine

sur les intervalles ]i, i+ 1[ pour i ∈ Z et qui à s > 0 de partie entière m associe

ρL/K(s) =
1

g0
(g1 + g2 + ...gm + (s−m)gm+1).

Cette fonction est nulle en 0 et est égale à −1 en −1. Sa dérivée sur le segment ]i, i + 1[
est égale à l’indice de Gi+1 dans G0. On peut encore l’exprimer par l’intégrale :

ρL/K(s) =

∫ s

0

dx

|G0/Gx|
.

Ajoutons qu’elle prend des valeurs rationnelles en les nombres entiers.

Lemme 1. — On a

ρL/K(s) =
1

g0

∑
σ∈Gal(L/K)

min(iL/K(σ), s+ 1)− 1.

Démonstration. — Comparons les deux fonctions qui apparaissent dans l’égalité. Elles
valent toutes deux 0 en 0. Elles sont toutes deux continues et affines par morceaux. Il
suffit de vérifier que leurs dérivées cöıncident en tout nombre réel non entier s. Notons m
la partie entière de s. La dérivée en s du membre de gauche figurant dans le lemme est
égale à

1

g0
|{σ ∈ G/iL/K(σ) ≥ m+ 2}|.
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Ce nombre n’est autre que l’inverse de l’indice de Gm+1 dans G0.

L’introduction de la numérotation supérieure est justifiée par le résultat suivant, dû à
Herbrand.

Proposition 5. — Soit M |K une extension galoisienne finie contenant L. Notons Hi le
i-ième groupe de ramification de Gal(M/K). Posons G′ = Gal(M/L). Soit s ∈ [−1,∞[.
Posons t = ρM/L(s). On a

(HsG
′)/G′ = Gt.

Démonstration. — Établissons au préalable une formule.

Lemme 2. — Soit τ ∈ Gal(L/K). Soit τ̃ tel que τ̃|L = τ et tel que iM/K(τ̃) soit maximal.
On a

iL/K(τ)− 1 = ρM/L(iM/K(τ̃)− 1).

Démonstration. — Posons m = iM/K(τ̃). Soit ρ ∈ G′. On a la formule

iM/K(ρτ̃) = min(iM/K(ρ),m);

Cela se vérifie immédiatement en examinant les deux cas iM/K(ρ) ≥ m et iM/K(ρ) ≤ m
et en utilisant la relation ρτ̃(x)− x = ρτ̃(x)− τ̃(x) + τ̃(x)− x qui donne après application
des valuations le résultat cherché.

Utilisons maintenant la proposition 4. On obtient

iL/K(τ) =
1

e′

∑
ρ∈G′

iM/K(ρτ̃) =
1

e′

∑
ρ∈G′

min(iM/K(ρ),m).

Utilisons la relation iM/K(ρ) = iM/L(ρ) et le lemme 1. On obtient

iL/K(τ) = (ρM/L(m− 1) + 1)
|G′0|
e′

= ρM/L(iM/K(τ̃)− 1) + 1.

Cela achève de prouver le lemme.

Venons-en à la démonstration de la proposition 5. Soit τ ∈ Gal(L/K). Soit τ̃ ∈
Gal(M/K) tel que τ̃|L = τ . C’est un élément de HsG

′/G′ si seulement si on a iM/K(τ̃)−1 ≥
s, ou encore si et seulement si ρM/L(iM/K(τ̃) − 1) ≥ ρM/L(s) (car la fonction ρM/L est
croissante). D’après le lemme 2 , cela revient à dire qu’on a iL/K(τ) − 1 ≥ ρM/L(s), ou
encore qu’on a τ ∈ Gt. Cela prouve donc la proposition 5.

La fonction ρL/K est une fonction strictement croissante et non bornée. C’est donc une
bijection [−1,+∞[−→ [−1,+∞[. Considérons la fonction φL/K : [−1,+∞[−→ [−1,+∞[
qui est réciproque de ρL/K . Soit t un nombre réel ≥ 1. On appelle groupe de ramification
en numérotation supérieure d’indice t le sous-groupe

Gt = GφL/K(t)
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de Gal(L/K).

Proposition 6. — Soit M/K une extension galoisienne finie contenant L. On a

ρM/K = ρL/K ◦ ρM/L

et
φM/K = φM/L ◦ φL/K .

Démonstration. — Ces deux égalités sont équivalentes. Démontrons la première. Les
deux membres de l’égalité sont des fonctions continues et affines par morceaux. Elles sont
toutes les deux nulles en 0. Démontrons que leurs dérivées sont égales partout où elles
sont définies.

Soit s un nombre réel ≥ 1 non entier. D’après la proposition 5, on a Hs/G
′
s = Gt (en

reprenant les notations de la proposition 5). Cela entrâıne qu’on a, en notant eU/V l’indice
de ramification de l’extension de corps p-adiques U |V ,

1

eM/K
|Hs| =

1

eL/K
|Gt|

1

eM/L
|G′s|.

On a donc, en appliquant la formule de composition des dérivées en le nombre réel
non entier s,

ρ′M/K(s) =
1

eL/K
|Gt|

1

eM/L
|G′s| = ρ′L/K(ρM/L(s))ρ′M/L(s) = (ρL/K ◦ ρM/L)′(s).

Cela prouve la proposition 6.

Examinons le comportement des groupes de ramification en numérotation supérieure
par composition d’extensions.

Proposition 7. — Soit M |K une extension galoisienne finie contenant L. Notons
Hi le i-ième groupe de ramification de Gal(M/K) en numérotation supérieure. Posons
G′ = Gal(M/L). Soit s ∈ [−1,∞[. On a

(HsG′)/G′ = Gs.

Démonstration. — Posons t = ρL/K(s). On a

(HsG′)/G′ = (HφM/K(t)G
′)/G′.

D’après la proposition 5, ce dernier groupe est égal à GρM/L◦φM/K(t). D’après la proposition
6, il est égal à

GρM/L◦φM/L◦φL/K(t) = GφL/K(t) = Gs.
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Cela achève la démonstration.

5. Lien avec le discriminant

Soit L|K une extension galoisienne de corps p-adiques. Considérons le discriminant
DL/K de l’extension L|K. On note Gi le i-ème groupe de ramification de Gal(L/K).

Proposition 8. — On a les formules

vK(DL/K) =
∑

σ∈Gal(L/K),σ 6=1

iK(σ) =

∞∑
i=0

(|Gi| − 1).

Démonstration. — On se ramène encore au cas où l’extension L|K est totalement ramifiée
puisque les deux membres de l’égalité que nous voulons démontrer ne changent pas si on
remplace K par un sous-corps non ramifié.

Soit x ∈ L tel que OL = OK [x]. Notons P le polynôme minimal de x sur K. On a
P (X) =

∏
σ∈Gal(L/K)(X − σ(x)) et donc

P ′(x) =
∏

σ∈Gal(L/K),σ 6=1

(X − σ(x))

D’après les propositions IV-4 et IV-5, on a

DL/K = NL/K(
∏

σ∈Gal(L/K),σ 6=1

P ′(x))OK .

On a donc, en utilisant le fait que l’extension L|K est totalement ramifiée,

vK(DL/K) = vL(P ′(x)) =
∑

σ∈Gal(L/K),σ 6=1

vL(x− σ(x)) =
∑

σ∈Gal(L/K),σ 6=1

iG(σ).

Passons maintenant à la deuxième égalité figurant dans la proposition. La fonction
iG est égale à i sur Gi−1 −Gi. On a donc

∑
σ∈Gal(L/K),σ 6=1

iG(σ) =
∞∑
i=0

i(|Gi−1| − |Gi|).

Cela donne la formule cherchée en simplifiant le dernier membre.

Proposition 9. — Le i-ème groupe de ramification de Gal(L/K) est nul lorsqu’on a
i > vL(p)/(p− 1).
Démonstration. — Supposons donc que i est un entier > vL(p)/(p − 1). On se ramène
encore au cas où l’extension L|K est totalement ramifiée. Soit σ ∈ Gi. Soit π une
uniformisante de l’anneau des entiers de L. On a σ(π) = π(1 + a) avec a ∈ Pi.
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Observons qu’on a, pour k ≥ 0,

(σ − 1)k(π) ≡ 0 (mod Pki+1).

Cela se vérifie par une récurrence immédiate sur k en utilisant que σ ∈ Gi ; En effet on a

σ((σ − 1)k−1(π))

(σ − 1)k−1(π)
− 1 ∈ Pi.

Lemme 3. — Supposons qu’on ait σ /∈ Gi+1. On a alors σp ∈ Gi+vL(p) −Gi+vL(p)+1.
Démonstration. — Calculons σp(π) grâce à la formule du binôme. On a

σp(π) = (σ − 1 + 1)p(π) =

p∑
k=0

(
p
k

)
(σ − 1)k(π).

Dans cette dernière somme, les termes correspondant à k 6= 0, 1, p s’écrivent sous la forme(
p
k

)
(σ − 1)k−1(aπ) ; Or dans ces cas on a p|

(
p
k

)
et (σ − 1)k−1(aπ) ∈ Pi+2 et donc

vL(

(
p
k

)
(σ − 1)k−1(aπ)) ≥ i+ vL(p) + 2.

On a donc

σp(π)− π ≡ (σ − 1)p(π) + paπ (mod Pi+vL(p)+2).

D’après ce qui précède on a (σ− 1)p(π) ∈ Ppi+1. L’hypothèse i > vL(p)/(p− 1) se traduit
par pi + 1 ≥ i + vL(p) + 2. On a donc (σ − 1)p(π) ∈ Pi+vL(p)+2. Cela se traduit par la
congruence

σp(π)− π ≡ paπ (mod Pi+vL(p)+2).

Comme vL(paπ) = vL(p) + i + 1, on a σp(π) − π ∈ Pi+vL(p)+1 − Pi+vL(p)+2 et donc
σp ∈ Gi+vL(p) −Gi+vL(p)+1.

Poursuivons notre raisonnement en supposant qu’on a σ /∈ Gi+1. Comme les groupes
de ramification d’indice > 0 sont des p-groupes, σ est d’ordre une puissance de p. On a

donc σp
k

= 1 pour un entier k > 0. En itérant la construction qui précède, on obtient

σp
k ∈ Gi+kvL(p) − Gi+kvL(p)+1. Cela est absurde puisque Gi+kvL(p)+1 est un sous-groupe

de Gal(L/K) et contient donc l’élément neutre.
L’hypothèse σ /∈ Gi+1 est donc absurde. Cela entrâıne donc

σ ∈ ∩j>vL(p)/(p−1)Gj = {1}

et donc la trivialité du i-ème groupe de ramification.
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