
XIV

Motifs d’Artin

1. Représentations de groupes

Soit G un groupe fini. Une représentation complexe de G sur un espace vectoriel
complexe E est un morphisme de groupes ρ : G→ GL(E). On parle encore d’une action
linéaire de G sur E. C’est la même notion que celle d’un C[G]-module à gauche. Ainsi,
parfois, ρ est oublié et on note g.e pour ρ(g)(e) (pour g ∈ G et e ∈ E). Lorsque E est de
dimension finie n, on dit que n est la dimension ou le degré de ρ.

Si ρ1 et ρ2 sont deux représentations de G sur E1 et E2. Un morphisme (resp.
isomorphisme) de représentations de G est un morphisme (resp. isomorphisme) de C[G]-
modules E1 → E2. On peut par ailleurs considérer la somme ρ1 ⊕ ρ2 de ρ1 et ρ2 qui est
une représentation sur E1 ⊕ E2 donnée par (ρ1 ⊕ ρ2)(g) = ρ1(g) ⊕ ρ2(g). De même, on
peut considérer le produit tensioriel ρ1 ⊗C ρ2 qui fait opérer G sur E1 ⊗C E2.

Lorsque E ne possède pas de sous-espace distinct de {0} et E stable par G (i.e. par
ρ(G)), on dit que ρ est irréductible. Les représentations irréductibles de G sont en nombre
fini à isomorphisme près. Le caractère de la représentation est la fonction G → C qui
à g associe Tr(ρ(g)). (Cette notion contient comme cas particuliers les caractères de G
définis comme morphismes de groupes G → {z ∈ C/|z| = 1}.) Attention au conflit de
terminologie : un caractère désigne à la fois une représentation de dimension 1 à valeurs
dans les nombres complexes de module 1 et un la trace d’une représentation. Une telle
fonction est constante sur les classes de conjugaison de G. On appelle fonctions centrales
sur G les fonctions G → C constantes sur les classes de conjugaison. Un théorème de
théorie des groupes affirme que toute fonction centrale sur G est combinaison linéaire
complexe de caractères de représentations. Mieux encore cette combinaison linéaire est
unique si on se restreint aux caractères de représentations irréductibles. Il en résulte que
deux représentations de G ayant mêmes caractères sont isomorphes.

On note ρ∗ la représentation contragrédiente de ρ. C’est la représentation sur l’espace
dual de E qui à g associe l’endomorphisme ρ∗(g) dual de ρ(g−1). Son caractère est conjugué
du caractère de ρ, puisque les valeurs propres de ρ(g) sont des racines de l’unité, si bien
que les valeurs propres de ρ(g−1) sont inverses, et donc conjuguées, des valeurs propres de
ρ(g). Ainsi, si ρ est de dimension 1, ρ∗ est la représentation ρ̄, au sens de la conjugaison
complexe des caractères de dimension 1.

Une représentation de G est fournie par la représentation régulière C[G] de G.
L’élément g ∈ G opère sur C[G] par multiplication à gauche par [g] dans l’anneau en groupe
C[G]. Plus généralement, si G opère sur un ensemble fini X, on a une représentation de G
sur C[X]. Dans ses fondements, la théorie des représentations contient le théorème suiv-
ant, qui utilise implicitement que les représentations irréductibles de G sont en nombre
fini, à isomorphisme près.
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Théorème 1. — La représentation régulière de G est isomorphe à ⊕ττ⊕dτ , où τ parcourt
les représentations complexes irréductibles de G à isomorphisme près, où on a noté dτ la
dimension de τ .

Lorsque H est sous-groupe d’indice fini de G. Soit τ une représentation continue de
H sur un espace vectoriel complexe F . On obtient une représentation de G par induction
de τ de H à G en posant E = F ⊗C[H] C[G] (produit tensoriel de C[H]-modules). En
termes concrets, on choisit un système de représentants (gs)s∈S de H\G. On pose E = FS

et on note, pour s ∈ S et e ∈ F , es l’application qui à s associe e et à t associe 0 si t 6= s.
On munit alors E d’une action linéaire de G par g.es = τ(h)(et) où h ∈ H et t ∈ S sont
uniquement déterminés par l’identité gs = ht. On peut encore écrire E = ⊕ssF , muni de
l’action ρ(g).sx = tτ(h)(x) (avec les mêmes notations).

On note IndGH(τ) la représentation induite de τ de H à G. On s’intéresse tout
particulièrement au cas où τ est de dimension 1, on a alors l’induite est dite induite
d’un caractère. L’induction commute au passage à la contragrédiente. La représentation
induite de la représentation de dimension 1 du sous-groupe trivial de G n’est autre que la
représentation régulière de G.

Lorsque G est un quotient de G′, une représentation de G′ est obtenue en composant

ρ avec le morphisme surjectif G′ → G. C’est l’inflation de G à G′. On la note InfG
′

G .
Puisque G est un groupe fini, son image par ρ est un sous-groupe fini de GL(E).

Supposons E de dimension finie, il existe un corps de nombres F tel que l’image de ρ est
contenue dans GL(E′) où E′ est un sous-F -espace vectoriel de E.

Toutes ces notions s’adaptent au cas où G est un groupe topologique. Il faut alors
supposer que l’action est continue.

2. Représentations galoisiennes complexes d’image finie

Soit K un corps de nombres. Soit K̄ une clôture algébrique de K. On s’intéresse aux
représentations de dimension finie de Gal(K̄/K) sur un espace vectoriel complexe, que l’on
suppose continues, ce qui revient à dire que leurs images sont finies. On les appelle encore
motifs d’Artin.

Soit ρ une telle représentation. Il existe L|K une extension galoisienne finie telle que
ρ se factorise par G = Gal(L/K).

Exemple 1. — Les premiers exemples sont fournis par les morphismes de groupes G→ C×,
qui sont les représentations de dimension 1.

Exemple 2. — Soit P ∈ K[X]. Soit L un corps de décomposition de P sur K. Le groupe
Gal(L/K) opère sur l’ensemble R des racines de P . On a donc une représentation de
Gal(L/K) sur C[R] par linéarité.

Exemple 3. — On a une version plus fine de l’exemple précédent. Soit T le sous-groupe du
groupe des permutations R form par l’action de Gal(L/K). On obtient une représentation
de GK en combinant le morphisme GK → T avec une représentation complexe de T .
Considérons par exemple P = X3 − 3X + 1. Le groupe de Galois de son corps de
décomposition sur Q est le groupe symétrique S3. Ce groupe admet deux représentations

XIV — 2



irréductibles de dimension 1 (représentation triviale et signature) et une représentation
irréductible de dimension 2, qu’on peut utiliser.

Exemple 4. — Soit L|K une extension Galoisienne. Le groupe G opère sur O×L , qui est un
groupe de type fini. On obtient une représentation de G en considérant O×L ⊗C.

Exemple 5. — Un exemple du même type que le précédent est fourni par le groupe
E(L) des points L-rationnels d’une courbe elliptique E sur K. Là encore, on obtient une
représentation complexe en considérant E(L)⊗C.

En général, comme ρ est d’image finie, pour tout σ ∈ G, les valeurs propres de ρ(σ)
sont des racines de l’unité, qui sont a fortiori de module 1.

Si l’image (finie) de ρ est à conjugaison près contenue dans GLd(R), avec R sous-
anneau de C, on dit que R est un anneau de coefficients de ρ. En particulier le polynôme
caractéristique de tout élément de l’image de ρ est à coefficients dans R. En particulier,
si ρ est de dimension 1, et donc associée à un caractère χ, l’anneau Z[χ] engendré par les
valeurs de χ est un anneau de coefficients.

Par l’inflation, toutes les représentations galoisiennes sont des représentations de
Gal(K̄/K) (le groupe de Galois absolu de K) où K̄ est une clôture algébrique de K.
On doit imposer toutefois une condition de continuité, en munissant Gal(K̄/K) de la
topologie profinie. La topologie des espaces vectoriels sur C impose que la représentation
se factorise par un groupe de Galois fini.

Si on admet des représentations galoisiennes sur des espaces vectoriels sur d’autres
corps que C, tel qu’un corps l-adique, on est amené à considérer des représentations qui
ne se factorisent pas par des groupes de Galois finis.

3. Fonctions L

Soit ρ une représentation galoisienne complexe de dimension finie comme ci-dessus.
Soit v une place finie de K. On dit que ρ est non ramifiée en v si ρ(Iv) est trivial, où
Iv est un groupe d’inertie en v de Gal(L/K). Dans ce cas, l’image d’une substitution de
Frobenius Frobv est définie à conjugaison près dans Gal(L/K), si bien que ρ(Frobv) est
définie à conjugaison près dans GL(E). Notez que, comme ρ(Frobv) est d’ordre fini, il est
diagonalisable. Le polynôme caractéristique de ρ(Frobv) ne dépend que de v et pas du
choix de Frobv. Il détermine la classe de conjugaison de ρ(Frobv) dans GL(E) et donc la
restriction de ρ à un sous-groupe de décomposition en v, à isomorphisme près.

Lorsque v est éventuellement ramifiée, on peut considérer le sous-espace vectoriel EIv

de E formé par les élément fixes par un sous-groupe d’inertie Iv. Dans ce cas, ρ(Frobv)
est défini à conjugaison près dans GL(EIv ). Ainsi on pose

Pv(X) = det(1−Xρ(Frobv);E
Iv ) ∈ C[X]

(on considère le déterminant de l’opérateur 1 − Xρ(Frobv) qui opère sur EIv ). Noter le
degré de Pv tend à diminuer lorsque Iv grandit. On peut même avoir EIv = {0} et donc
Pv(X) = 1. Ainsi, le polynôme Pv(X) ne contient pas d’information sur ρ(Iv).
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Suivant Artin, on pose le produit eulérien :

L(ρ, s) =
∏
v

1

Pv(|Pv|−s)

où v parcourt les places finies de K. C’est la fonction L d’Artin de ρ. Il est essentiel de
noter que le facteur en la place v ne dépend que de la restriction de ρ à un groupe de
décomposition en v. La représentation ne dépend que de la classe d’isomorphie de ρ, et
donc que de la fonction centrale définie par la trace de ρ. Puisque toute fonction centrale
G → C est combinaison linéaire de traces de représentations de la forme

∑
i λiTr(ρi),

une fonction de cette forme admet comme fonction L le produit
∏
i L(ρi, s)

λi , au moins
lorsque λi ∈ Z pour tout i. On peut définir une fonction L d’Artin pour toute telle fonction
centrale sur G, en particulier pour les caractères des représentations.

Lorsque ρ est de dimension 1, elle se factorise par une le groupe de Galois G d’une
extension L/K abélienne. C’est ainsi un caractère de G. Ainsi on peut invoquer la théorie
du corps de classe pour identifier G à un quotient d’un groupe de classe de rayon (ou à
un groupe de classe d’idèle). Il existe un caractère de Hecke χ : A×K/K

× d’image finie tel
que, pour tout idéal premier P de OK non ramifié dans L|K, on a ρ(FrobP) = χ(πP) où
πP est un l’idèle dont toutes les composantes sont 1, sauf celle en la place P, où on a une
uniformisante de P. On a ainsi

L(ρ, s) = L(χ, s)

(les facteurs en les places ramifiées valent 1). Ainsi on retrouve les fonctions L de Hecke
d’image finie. En particulier, lorsque ρ est la représentation triviale de dimension 1, on
retrouve la fonction ζK de Dedekind de K.

Un autre cas particulier réside dans le cas où l’extension L/K est l’extension cyclo-
tomique Q(µn)/Q engendrée par une racine primitive n-ème de l’unité. On identifie le
groupe de Galois de l’extension à (Z/nZ)×. Ainsi, ρ s’identifie à un caractère de Dirichlet
χ, puisque l’image de la substitution de Frobenius en p est la classe de p modulo n. Ainsi
on retrouve une fonction L de Dirichlet.

4. Un exemple

Considérons le polynôme T 3 − T − 1, qui est irréductible sur Q. Soit L un corps
de décomposition de ce polynôme. Le groupe de Galois de L|K est isomorphe au groupe
symétrique S3, lequel opère sur les sommet d’un triangle équilatéral centré en l’origine
du plan. On a donc une représentation ρ : Gal(L/Q) → GL2(C). Plus précisément, un
corps de coefficients de ρ est l’anneau Z[e2iπ/3]. Le polynôme caractéristique de l’identité
est (X − 1)2. Le polynôme caractéristique de l’image par ρ d’une transposition de S3 est
X2− 1. Le polynôme caractéristique de l’image par ρ d’un cycle d’ordre 3 est X2 +X + 1.

Le polynôme T 3 − T − 1 a pour discriminant −23, si bien qu’on a une extension
intermédiaire Q(

√
−23) contenue dans L. L’extension L|Q est non ramifiée en dehors de

23.
Débutons notre étude locale en 23. Notons I23 un sous-groupe d’inertie en 23

de Gal(L/Q). Comme l’extension Q(
√
−23)|Q est totalement ramifiée en 23, et que
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l’extension L|Q(
√
−23) est non ramifiée en l’unique idéal au dessus de 23, le groupe ρ(I23)

est d’ordre pair mais I23 n’est pas égal à G. Donc le groupe ρ(I23) est d’ordre 2, et a pour
éléments l’identité et une symétrie par rapport à une droite. La dimension de l’espace
Iρ(I23) des invariants de C2 sous I23 est donc égal à 1.

Examinons maintenant les autres places. Soit q un nombre premier distinct de 23.
Soit Frobq une substitution de Frobenius dans Gal(L/K). Notons Pq(X) le polynôme
caractéristique de ρ(Frobq). On est dans l’un des cas suivants :

Un 3-cycle de S3 si et seulement si le polynôme T 3−T − 1 est sans racine sur le corps
fini Fq. Notons T3 l’ensemble des nombres premiers q de ce type. On a alors

Pq(X) = X2 +X + 1.

Une transposition de S3 si et seulement si le polynôme T 3−T −1 a une unique racine
dans le corps fini Fq. Notons T2 l’ensemble des nombres premiers q de ce type. On a alors

Pq(X) = X2 − 1.

L’identité de S3 si et seulement si le polynôme T 3 − T − 1 est scindé sur le corps fini
Fq. Notons T1 l’ensemble des nombres premiers q de ce type. On a alors

Pq(X) = (X − 1)2.

Finalement, la fonction L de ρ est donnée par

L(ρ, s) =
1

1− 23−s

∏
q∈T1

1

1− 2q−s + q−2s

∏
q∈T2

1

1− q−2s

∏
q∈T3

1

1 + q−s + q−2s
.

5. Quelques propriétés élémentaires

La fonction L d’une représentation galoisienne pour l’extension L|K est invariante
par inflation, c’est-à-dire qu’elle ne change pas si on remplace L par un corps plus grand.
Voyons ce qu’est la fonction L d’une somme de représentations.

Proposition 1. — Soient ρ1 et ρ2 des représentations galoisiennes complexes. On a

L(ρ1 ⊕ ρ2, s) = L(ρ1, s)L(ρ2, s).

Démonstration. — On démontre cela facteur par facteur. L’identité repose entièrement
sur le fait que le polynôme caractéristique d’une somme directe d’endomorphismes est le
produit des polynômes caractéristiques de ces endomorphismes.

Observer qu’on ne peut pas donner de formule simple pour L(ρ1⊗ ρ2, s) en terme des
fonctions L de ρ1 et ρ2.
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Proposition 2. — Soit L|K une extension galoisienne finie de groupe de Galois G.
Notons ρR la représentation régulière de G. On a

ζL(s) = L(ρR, s).

Démonstration. — Cette identité se vérifie facteur par facteur. Nous allons la montrer
seulement pour les facteur non ramifié dans L|K (voir proposition 3 pour se ramener au
cas non ramifié). Soit Q un idéal premier de K non ramifié dans L. Considérons le facteur
suivant de ζL :

∏
P|Q

1
1−|P|−s où P parcourt les idéaux premier de L au dessus de Q. Il

y a gQ tels idéaux P. On a |G| = gQfQ, où fQ est le degré résiduel, puisque Q est non
ramifié. Ainsi, on obtient

∏
P|Q

1

1− |P|−s
= (

1

1− |Q|−s
)gQ .

Par ailleurs, pour R représentation régulière de G, et g ∈ G d’ordre f , le polynôme
caractéristique de R(g) est (Xf − 1)|G|/f . Ainsi, le polynôme caractéristique de FrobP est
(XfQ − 1)gQ . On obtient ainsi l’identité

∏
P|Q

1

1− |P|−s
=

1

PQ(|Q|−s)
,

où PQ(X) = (1−XfQ)gQ . C’est précisément ce que nous voulions démontrer.

Corollaire . — Soit L|K une extension galoisienne finie de groupe de Galois G. On a

ζL(s) = ζK(s)
∏
ρ

L(ρ, s)dρ ,

où ρ parcourt, à isomorphisme près, les représentations irréductibles, distinctes de 1, de
G, et où dρ est la dimension de ρ.
Démonstration. — Il résulte du théorème 1 que la représentation régulière de G a pour
fonction L : ∏

ρ

L(ρ, s)dρ

où ρ parcourt, à isomorphisme près, toutes les représentations irréductibles de G. C’est le
membre de droite dans l’énoncé du corollaire, puisque la représention irréductible triviale
est de degré 1.

Le corollaire suggère une relation entre les zéros de ζK et ceux de ζL.

Conjecture (Dedekind). — Si L|K est une extension finie quelconque, la fonction
x 7→ ζL(s)/ζK(s) est entière.
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Cette conjecture est démontrée si L|K est Galoisienne. Cela suggère que les facteurs
L(ρ, s) admettent un prolongement méromorphe, voire holomorphe à C. C’est l’objet de
la conjecture d’Artin.

6. Facteurs d’Euler en les places infinies

Soient L|K une extension galoisienne finie de groupe de Galois G. Soit ρ un motif
d’Artin Gal(L/K)→ GLV , avec V de dimension n.

Dans notre définition de L(ρ, s), il manque à ce produit eulérien des facteurs corre-
spondant aux places ramifiées et aux places infinies.

On peut étudier les places infinies comme suit. Rappelons les fonctions

ΓR(s) = π−s/2Γ(s/2)

et
ΓC(s) = 2(2π)−sΓ(s).

Soit v ∈ ΩK,∞. Soit w ∈ ΩL,∞ au dessus de v. Le groupe Gal(Lw/Kv) est trivial ou
d’ordre 2. Dans ce dernier cas, v est réelle, et l’élément d’ordre deux, s’il existe, est la
conjugaison complexe en w. Il ne dépend que de v à conjugaison près. On pose

n+
v = dim(V Gal(Lw/Kv))

et
n−v = n− n+

v .

Si v est une place réelle, on pose

Lv(ρ, s) = ΓR(s)n
+
v ΓR(s+ 1)n

−
v .

Si v est une place complexe non réelle, on pose

Lv(ρ, s) = ΓC(s)n.

On pose alors

Λnr(ρ, s) =
∏
v∈ΩK

Lv(ρ, s).

On vérifie facilement que la proposition 2 est encore valable si on remplace L(ρ, s) par
Λnr(ρ, s). Il reste à ajouter des facteurs tenant compte plus pleinement des places ramifiées
dans L.
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