XIV
Motifs d’Artin

1. Représentations de groupes

Soit G un groupe fini. Une représentation complexe de G sur un espace vectoriel
complexe F est un morphisme de groupes p : G — GL(FE). On parle encore d’une action
linéaire de G sur E. C’est la méme notion que celle d'un C[G]-module a gauche. Ainsi,
parfois, p est oublié et on note g.e pour p(g)(e) (pour g € G et e € E). Lorsque E est de
dimension finie n, on dit que n est la dimension ou le degré de p.

Si p1 et ps sont deux représentations de G sur FE; et Fy. Un morphisme (resp.
isomorphisme) de représentations de G est un morphisme (resp. isomorphisme) de C[G]-
modules 1 — Fs. On peut par ailleurs considérer la somme p; @ ps de p1 et ps qui est
une représentation sur Fy @ E» donnée par (p1 @ p2)(g9) = p1(g) ® p2(g). De méme, on
peut considérer le produit tensioriel p; ®c p2 qui fait opérer G sur F; Q¢ Fo.

Lorsque E ne posseéde pas de sous-espace distinct de {0} et E stable par G (i.e. par
p(@Q)), on dit que p est irréductible. Les représentations irréductibles de G sont en nombre
fini a isomorphisme pres. Le caractére de la représentation est la fonction G — C qui
a g associe Tr(p(g)). (Cette notion contient comme cas particuliers les caracteres de G
définis comme morphismes de groupes G — {z € C/|z| = 1}.) Attention au conflit de
terminologie : un caractere désigne a la fois une représentation de dimension 1 a valeurs
dans les nombres complexes de module 1 et un la trace d’une représentation. Une telle
fonction est constante sur les classes de conjugaison de G. On appelle fonctions centrales
sur G les fonctions G — C constantes sur les classes de conjugaison. Un théoreme de
théorie des groupes affirme que toute fonction centrale sur GG est combinaison linéaire
complexe de caracteres de représentations. Mieux encore cette combinaison linéaire est
unique si on se restreint aux caracteres de représentations irréductibles. Il en résulte que
deux représentations de G ayant mémes caracteres sont isomorphes.

On note p* la représentation contragrédiente de p. C’est la représentation sur I’espace
dual de E qui & g associe I’endomorphisme p*(g) dual de p(g~!). Son caractere est conjugué
du caractere de p, puisque les valeurs propres de p(g) sont des racines de 'unité, si bien
que les valeurs propres de p(g~—1) sont inverses, et donc conjuguées, des valeurs propres de
p(g). Ainsi, si p est de dimension 1, p* est la représentation p, au sens de la conjugaison
complexe des caracteres de dimension 1.

Une représentation de G est fournie par la représentation réguliere C[G| de G.
L’élément g € G opere sur C[G] par multiplication & gauche par [g] dans ’anneau en groupe
C[G]. Plus généralement, si G opere sur un ensemble fini X, on a une représentation de G
sur C[X]. Dans ses fondements, la théorie des représentations contient le théoreme suiv-
ant, qui utilise implicitement que les représentations irréductibles de G sont en nombre
fini, & isomorphisme pres.
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THEOREME 1. — La représentation régulicre de G est isomorphe a @799, ot T parcourt
les représentations complexes irréductibles de G a isomorphisme prés, ou on a noté d, la
dimension de T.

Lorsque H est sous-groupe d’indice fini de G. Soit 7 une représentation continue de
H sur un espace vectoriel complexe F'. On obtient une représentation de G par induction
de 7 de H a G en posant £ = F ®cjp) C[G] (produit tensoriel de C[H]-modules). En
termes concrets, on choisit un systéme de représentants (gs)ses de H\G. On pose E = F*°
et on note, pour s € S et e € F, e 'application qui a s associe e et a t associe 0 si t # s.
On munit alors £ d’une action linéaire de G par g.e; = 7(h)(e;) ou h € H et t € S sont
uniquement déterminés par l'identité gs = ht. On peut encore écrire £ = ®¢sF', muni de
laction p(g).sx = tT(h)(x) (avec les mémes notations).

On note Ind%(7) la représentation induite de 7 de H & G. On s'intéresse tout
particulierement au cas ou 7 est de dimension 1, on a alors l'induite est dite induite
d’un caractere. L’induction commute au passage a la contragrédiente. La représentation
induite de la représentation de dimension 1 du sous-groupe trivial de G n’est autre que la
représentation réguliere de G.

Lorsque G est un quotient de G’, une représentation de G’ est obtenue en composant
p avec le morphisme surjectif G — G. C’est 'inflation de G & G'. On la note Infg/.

Puisque G est un groupe fini, son image par p est un sous-groupe fini de GL(FE).
Supposons E de dimension finie, il existe un corps de nombres F' tel que I'image de p est
contenue dans GL(E’) ou E’ est un sous-F-espace vectoriel de E.

Toutes ces notions s’adaptent au cas o G est un groupe topologique. Il faut alors
supposer que ’action est continue.

2. Représentations galoisiennes complexes d’image finie

Soit K un corps de nombres. Soit K une cloture algébrique de K. On s’intéresse aux
représentations de dimension finie de Gal(K /K) sur un espace vectoriel complexe, que ’'on
suppose continues, ce qui revient a dire que leurs images sont finies. On les appelle encore
motifs d’Artin.

Soit p une telle représentation. Il existe L|K une extension galoisienne finie telle que
p se factorise par G = Gal(L/K).

Exemple 1. — Les premiers exemples sont fournis par les morphismes de groupes G — C*,
qui sont les représentations de dimension 1.

Ezemple 2. — Soit P € K[X]. Soit L un corps de décomposition de P sur K. Le groupe
Gal(L/K) opere sur I'ensemble R des racines de P. On a donc une représentation de
Gal(L/K) sur C[R] par linéarité.

Ezemple 3. — On a une version plus fine de I’exemple précédent. Soit T le sous-groupe du
groupe des permutations R form par I'action de Gal(L/K). On obtient une représentation
de Gk en combinant le morphisme G — T avec une représentation complexe de T
Considérons par exemple P = X2 — 3X + 1. Le groupe de Galois de son corps de
décomposition sur Q est le groupe symétrique S3. Ce groupe admet deux représentations
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irréductibles de dimension 1 (représentation triviale et signature) et une représentation
irréductible de dimension 2, qu’on peut utiliser.

Exemple 4. — Soit L|K une extension Galoisienne. Le groupe G opére sur OF, qui est un
groupe de type fini. On obtient une représentation de G en considérant O @ C.

Ezemple 5. — Un exemple du méme type que le précédent est fourni par le groupe
E(L) des points L-rationnels d'une courbe elliptique E sur K. La encore, on obtient une
représentation complexe en considérant E(L) @ C.

En général, comme p est d’image finie, pour tout o € G, les valeurs propres de p(o)
sont des racines de I'unité, qui sont a fortiori de module 1.

Si I'image (finie) de p est a conjugaison pres contenue dans GLg4(R), avec R sous-
anneau de C, on dit que R est un anneau de coefficients de p. En particulier le polynome
caractéristique de tout élément de 'image de p est a coefficients dans R. En particulier,
si p est de dimension 1, et donc associée a un caractére x, 'anneau Z[x]| engendré par les
valeurs de y est un anneau de coefficients.

Par l'inflation, toutes les représentations galoisiennes sont des représentations de
Gal(K/K) (le groupe de Galois absolu de K) olt K est une cloture algébrique de K.
On doit imposer toutefois une condition de continuité, en munissant Gal(K/K) de la
topologie profinie. La topologie des espaces vectoriels sur C impose que la représentation
se factorise par un groupe de Galois fini.

Si on admet des représentations galoisiennes sur des espaces vectoriels sur d’autres
corps que C, tel qu’'un corps l-adique, on est amené a considérer des représentations qui
ne se factorisent pas par des groupes de Galois finis.

3. Fonctions L

Soit p une représentation galoisienne complexe de dimension finie comme ci-dessus.
Soit v une place finie de K. On dit que p est non ramifiée en v si p(I,) est trivial, ou
I,, est un groupe d’inertie en v de Gal(L/K). Dans ce cas, I'image d’une substitution de
Frobenius Frob, est définie a conjugaison pres dans Gal(L/K), si bien que p(Frob,) est
définie a conjugaison pres dans GL(E). Notez que, comme p(Frob,) est d’ordre fini, il est
diagonalisable. Le polynome caractéristique de p(Frob,) ne dépend que de v et pas du
choix de Frob,. Il détermine la classe de conjugaison de p(Frob,) dans GL(F) et donc la
restriction de p a un sous-groupe de décomposition en v, a isomorphisme pres.

Lorsque v est éventuellement ramifiée, on peut considérer le sous-espace vectoriel E'v
de E formé par les élément fixes par un sous-groupe d’inertie I,. Dans ce cas, p(Frob,)
est défini & conjugaison prés dans GL(E?+). Ainsi on pose

P,(X) = det(1 — X p(Frob,); E*) € C[X]
(on considere le déterminant de I'opérateur 1 — X p(Frob,) qui opere sur Efv). Noter le
degré de P, tend & diminuer lorsque I, grandit. On peut méme avoir Efv = {0} et donc

P,(X) = 1. Ainsi, le polynome P,(X) ne contient pas d’information sur p(l,).
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Suivant Artin, on pose le produit eulérien :

1
o) = 5 m

ou v parcourt les places finies de K. C’est la fonction L d’Artin de p. Il est essentiel de
noter que le facteur en la place v ne dépend que de la restriction de p a un groupe de
décomposition en v. La représentation ne dépend que de la classe d’isomorphie de p, et
donc que de la fonction centrale définie par la trace de p. Puisque toute fonction centrale
G — C est combinaison linéaire de traces de représentations de la forme ) . \;Tr(p;),
une fonction de cette forme admet comme fonction L le produit [, L(p;, s)™, au moins
lorsque \; € Z pour tout i. On peut définir une fonction L d’Artin pour toute telle fonction
centrale sur (G, en particulier pour les caracteres des représentations.

Lorsque p est de dimension 1, elle se factorise par une le groupe de Galois G d’une
extension L/K abélienne. C’est ainsi un caractere de GG. Ainsi on peut invoquer la théorie
du corps de classe pour identifier G & un quotient d’un groupe de classe de rayon (ou &
un groupe de classe d’idele). Il existe un caractére de Hecke x : A /K> d’image finie tel
que, pour tout idéal premier P de Ok non ramifié dans L|K, on a p(Frobp) = x(7p) ou
mp est un l'idele dont toutes les composantes sont 1, sauf celle en la place P, ot on a une
uniformisante de P. On a ainsi

L(p;s) = L(x; s)

(les facteurs en les places ramifiées valent 1). Ainsi on retrouve les fonctions L de Hecke
d’image finie. En particulier, lorsque p est la représentation triviale de dimension 1, on
retrouve la fonction (x de Dedekind de K.

Un autre cas particulier réside dans le cas ou lextension L/K est l’extension cyclo-
tomique Q(u,)/Q engendrée par une racine primitive n-eme de I'unité. On identifie le
groupe de Galois de I'extension a (Z/nZ)*. Ainsi, p s’identifie & un caractere de Dirichlet
X, puisque 'image de la substitution de Frobenius en p est la classe de p modulo n. Ainsi
on retrouve une fonction L de Dirichlet.

4. Un exemple

Considérons le polynéome T3 — T — 1, qui est irréductible sur Q. Soit L un corps
de décomposition de ce polynéme. Le groupe de Galois de L|K est isomorphe au groupe
symétrique S3, lequel opere sur les sommet d’un triangle équilatéral centré en l’origine
du plan. On a donc une représentation p : Gal(L/Q) — GL3(C). Plus précisément, un
corps de coefficients de p est 'anneau Z[e%”/ 3]. Le polynome caractéristique de I'identité
est (X — 1)2. Le polynéme caractéristique de I’image par p d’une transposition de S3 est
X? —1. Le polynome caractéristique de I'image par p d’un cycle d’ordre 3 est X2 + X + 1.

Le polynéme T3 — T — 1 a pour discriminant —23, si bien qu’on a une extension
intermédiaire Q(+/—23) contenue dans L. L’extension L|Q est non ramifiée en dehors de
23.

Débutons notre étude locale en 23. Notons Ip3 un sous-groupe d’inertie en 23
de Gal(L/Q). Comme l'extension Q(1/—23)|Q est totalement ramifiée en 23, et que
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I'extension L|Q(+/—23) est non ramifiée en 'unique idéal au dessus de 23, le groupe p(123)
est d’ordre pair mais Io3 n’est pas égal & G. Donc le groupe p(Ia3) est d’ordre 2, et a pour
éléments l'identité et une symétrie par rapport a une droite. La dimension de l’espace
I7U23) des invariants de C2 sous I3 est donc égal a 1.

Examinons maintenant les autres places. Soit ¢ un nombre premier distinct de 23.
Soit Frob, une substitution de Frobenius dans Gal(L/K). Notons P,(X) le polynéme
caractéristique de p(Frob,). On est dans 'un des cas suivants :

Un 3-cycle de S5 si et seulement si le polynéme 73 — T — 1 est sans racine sur le corps
fini F;. Notons T3 I’ensemble des nombres premiers g de ce type. On a alors

P(X)=X*+X+1.

Une transposition de Ss si et seulement si le polynéme T3 — T — 1 a une unique racine
dans le corps fini F,. Notons 75 I’ensemble des nombres premiers ¢ de ce type. On a alors

P (X)=X*-1.

L’identité de Ss si et seulement si le polynéme 72 — T — 1 est scindé sur le corps fini
F,. Notons T} I'ensemble des nombres premiers ¢ de ce type. On a alors

Py(X) = (X —1)*.

Finalement, la fonction L de p est donnée par

1 1 1 1
L(p,s) = .
( ) 1—923—s qgl 1— 2q—s + q—2s qgQ 1— q—2s qgs 1 + q—s + q—25

5. Quelques propriétés élémentaires

La fonction L d’une représentation galoisienne pour ’extension L|K est invariante
par inflation, c’est-a-dire qu’elle ne change pas si on remplace L par un corps plus grand.
Voyons ce qu’est la fonction L d’une somme de représentations.

PROPOSITION 1. — Soient p1 et py des représentations galoisiennes complexes. On a

L(p1 @ p2,s) = L(p1, s)L(p2, 5).

Démonstration. — On démontre cela facteur par facteur. L’identité repose entierement
sur le fait que le polynome caractéristique d’une somme directe d’endomorphismes est le
produit des polyndémes caractéristiques de ces endomorphismes.

Observer qu’on ne peut pas donner de formule simple pour L(p; ® p2, s) en terme des
fonctions L de p; et ps.
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PROPOSITION 2. — Soit L|K wune extension galoisienne finie de groupe de Galois G.
Notons pr la représentation réguliere de G. On a

CL(s) = L(pr, 5)-

Démonstration. — Cette identité se vérifie facteur par facteur. Nous allons la montrer
seulement pour les facteur non ramifié dans L|K (voir proposition 3 pour se ramener au
cas non ramifié). Soit Q un idéal premier de K non ramifié dans L. Considérons le facteur
suivant de (y, : ng # ou P parcourt les idéaux premier de L au dessus de Q. 1l
y a go tels idéaux P. On a |G| = gofo, ou fgo est le degré résiduel, puisque Q est non
ramifié. Ainsi, on obtient

11 1 . 1 e,
seI-P 1]

Par ailleurs, pour R représentation réguliere de G, et ¢ € G d’ordre f, le polynome
caractéristique de R(g) est (X1 — 1)/ Ainsi, le polynéme caractéristique de Frobp est
(X/e —1)92. On obtient ainsi I'identité

H 1 _ 1
AT T Pl )

ot Po(X) = (1 — X/e)92. (Cest précisément ce que nous voulions démontrer.

COROLLAIRE . — Soit L|K une extension galoisienne finie de groupe de Galois G. On a

CL(s) = C(s) [ Lo, 9)%,

ou p parcourt, a isomorphisme prées, les représentations irréductibles, distinctes de 1, de
G, et ou d, est la dimension de p.
Démonstration. — 1l résulte du théoreme 1 que la représentation réguliere de G a pour

fonction L :
[T L0, 9)%
p

ol p parcourt, a isomorphisme pres, toutes les représentations irréductibles de G. C’est le
membre de droite dans I’énoncé du corollaire, puisque la représention irréductible triviale
est de degré 1.

Le corollaire suggere une relation entre les zéros de (x et ceux de (..

CONJECTURE (Dedekind). — Si L|K est une extension finie quelconque, la fonction
x — (r(s)/Ck(s) est entiere.
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Cette conjecture est démontrée si L|K est Galoisienne. Cela suggere que les facteurs
L(p, s) admettent un prolongement méromorphe, voire holomorphe & C. C’est I'objet de
la conjecture d’Artin.

6. Facteurs d’Euler en les places infinies

Soient L|K une extension galoisienne finie de groupe de Galois G. Soit p un motif
d’Artin Gal(L/K) — GLy, avec V de dimension n.

Dans notre définition de L(p,s), il manque & ce produit eulérien des facteurs corre-
spondant aux places ramifiées et aux places infinies.

On peut étudier les places infinies comme suit. Rappelons les fonctions

Tr(s) =7 %%D(s/2)
et
Da(s) = 2(2m) 7T (s).

Soit v € Qg oo. Soit w € Qf o au dessus de v. Le groupe Gal(L,,/K,) est trivial ou
d’ordre 2. Dans ce dernier cas, v est réelle, et 1’élément d’ordre deux, s’il existe, est la
conjugaison complere en w. Il ne dépend que de v a conjugaison pres. On pose

nt = dim(VGal(Lw/KU))

et
n, =n—mn,.

Si v est une place réelle, on pose
Ly(p,s) =Tr(s)™ Tr(s+1)".
Si v est une place complexe non réelle, on pose

Ly(p,s) =Tc(s)".

On pose alors

A (p,s) = ] Lolpss).

UEQK

On vérifie facilement que la proposition 2 est encore valable si on remplace L(p,s) par

A" (p, s). Il reste a ajouter des facteurs tenant compte plus pleinement des places ramifiées
dans L.
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