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Fonctions L abéliennes

1. Notations

Soit K un corps de nombres. On note :
OK l’anneau des entiers de K,
O×K le groupe des unités de OK ,
DK le discriminant absolu de K,
µK le groupe (fini) des racines de l’unité de K×,
ωK l’ordre du groupe µK ,
I(K) le groupe des idéaux fractionnaires de K,
P(K) le groupe des idéaux fractionnaires principaux de K,
C`(K) = I(K)/P(K) le groupe des classes d’idéaux (ou groupe des classes) de K,
hK = |C`(K)| le nombre de classe de K,
AK l’anneau des adèles de K,
A×K le groupe des idèles de K,
CK = A×K/K

× le groupe des classes d’idèles de K,
RegK le régulateur de O×K ,
ΩK l’ensemble des places de K,
ΩK,∞ l’ensemble des places infinies (ou archimédiennes) de K,
r1 = r1(K) le nombre de places réelles de K,
r2 = r2(K) le nombre de places complexes non réelles de K,
ζK la fonction ζ de Dedekind de K.

Soit v une placede K. On note :
Kv le complété de K en v,
|.|v la valeur absolue normalisée associée à v.

Si, de plus, v est finie, on note :
Pv le premier de K associé à v,
OK,v ou Ov l’anneau des entiers de Kv (le complété Pv-adique de OK),
Pv l’idéal maximal de Ov (abus de notation),
πv une uniformisante de Pv dans Kv,
kv le corps résiduel OK/Pv.

On note ||.|| l’application A×K → R× qui à l’idèle x = (xv)v∈ΩK
associe

||x|| =
∏
v∈ΩK

|xv|v.

On note A×,0K = {x ∈ A×K | ||x|| = 1}.
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2. Cycles arithmétiques

Un cycle arithmétique (attention le terme n’est pas standard et varie suivant les
auteurs) de K est une application presque nulle ΩK → N qui à v associe nv et telle
que nv = 0 si v est une place complexe non réelle, nv ∈ {0, 1} si v est une place réelle. On
le note de façon multiplicative

M =
∏
v

Pnv
v ,

où Pv est une notation sans signification si v est une place infinie. Ainsi la notion de cycle
arithmétique généralise (légèrement) la notion d’idéal de OK . On peut associer àM l’idéal∏

v/∈ΩK,∞

Pnv
v .

On associe à M les généralisations OK,M, O×K,M, µK,M = µMK , I(K)M, P(K)M,

C`(K)M, hMK , RegMK , A×K,M, CMK des objets ci-dessus.

3. Fonctions L de caractères galoisiens

Soit K̄ une clôture algébrique de K. L’arithmétique a pour thème majeur la
compréhension du groupe Gal(K̄/K), en particulier pour K = Q. Cela revient à com-
prendre la collection des groupes Gal(L/K), pour L|K extension galoisienne finie. Notre
premier but est de comprendre les caractères de tels groupes (représentations complexes
de dimension 1).

Soit χ : Gal(K̄/K) → C× d’image finie. Dire que χ est d’image finie revient à dire
que χ est continu si on munit Gal(K̄/K) de la topologie profinie. Alors χ se factorise par
Gal(L/K), avec L|K extension abélienne finie. On pose alors

L(χ, s) =
∏
v

1

1− χ(Frobv)|Pv|−s
,

où v parcourt les places finies de K non ramifiées dans L et s ∈ C. Ici Frobv est défini
à conjugaison près dans Gal(L/K) et modulo un groupe d’inertie en v, qui est trivial si
v est non ramifié dans L. Ainsi, χ(Frobv) est bien défini puisque L|K est abélienne. On
peut développer le produit eulérien pour obtenir une série de Dirichlet

L(χ, s) =
∑
I

aI
|I|s

,

où I parcourt les idéaux de OK . Cette série converge absolument pour Re(s) > 1, puisque
χ prend des valeurs de module 1, si bien que aI est nul ou un nombre complexe de module
1.
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Remarque . — 1) Soit M |K une extension galoisienne intermédiaire à L|K. Supposons
que χ se factorise par χ′ : Gal(M/K)→ C×. On a alors

L(χ, s) = L(χ′, s)
∏
v

(1− χ(Frobv)|Pv|−s),

où v parcourt les places finies ramifiées dans L mais pas dans M . Si M est minimal pour
la factorisation de χ, on dit que χ est primitif. L’information contenue dans L(χ, s) est
maximale si on choisit χ primitif.

2) Pour Q premier de K non ramifié dans L, attaché à une place finie v, on pose

Lv(χ, s) = LQ(χ, s) =
1

1− χ(FrobQ)|Q|−s
.

C’est le facteur local ou facteur d’Euler en Q ou v.
3) Soit Q premier de K non ramifié dans L. Soit P un premier de L au dessus de

K. Le groupe de décomposition DP en P de Gal(L/K) s’identifie à Gal(LP/KQ), qui est
cyclique et engendré par une substitution de Frobenius FrobQ. Ainsi la restriction de χ à
DP est déterminée par LQ(χ, s). Donc LQ(χ, s) sait “tout” sur χ|DP .

4) Le théorème de densité de Chebotarev nous dit que l’extension L de K est
déterminée par l’ensemble des premiers de K non ramifiés dans L qui sont totalement
décomposés dans L, c’est-à-dire par l’ensemble des premiers Q tels que χ(FrobQ) = 1, et
que tout élément de Gal(L/K) est une substitution de Frobenius. Ainsi, la connaissance
de L(χ, s) détermine χ, mais de façon très indirecte.

5) Si Q est ramifié dans L|K, LQ(χ, s) est par définition trivial. Mais le groupe de
décomposition DP en P|Q n’est pas trivial, ni même cyclique en général. Donc LQ(χ, s)
ne sait, a priori, rien sur χ|DP . Comment intégrer l’information manquante à L(χ, s) ?

6) Le produit eulérien qui définit L(χ, s) ne fait intervenir que les places finies. Qu’en
est-il des places infinies ?

4. Fonctions L de caractères de classes d’idèles, et de classes d’idéaux

Soit
M =

∏
v

Pnv
v

un cycle arithmétique.
Rappelons qu’on a un isomorphisme canonique de groupes finis : CK/C

M → C`(K)M

caractérisé par le fait que pour tout premier Q de K ne dividant pas M, l’image d’une
uniformisante πQ de l’idéal premier de KQ vu comme un sous-anneau de AK a pour image
la classe de l’idéal Q.

Soit χ un caractère du groupe abélien fini CK/C
M des classes d’idèles de rayon M.

On pose

L(χ, s) =
∏

v,Pv 6|M

1

1− χ(πv)|Pv|−s
,
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ou encore en identifiant CK/C
M au groupe C`(K)M des classes de rayonM, et en notant

encore χ : C`(K)M → C× le caractère obtenu,

L(χ, s) =
∏

v,Pv 6|M

1

1− χ(Pv)|Pv|−s
.

Remarque . — Soit M′ un cycle arithmétique de K tel que M divise M′. Le groupe des
classes d’idèles de rayon M est un quotient du groupe des classes d’idèles de rayon M′.
Soit χ′ un caractère de CK/C

M′
qui se factorise par CK/C

M. On a alors

L(χ′, s) = L(χ, s)
∏

v,Pv|M′,Pv 6|M

1

1− χ(πv)|Pv|−s
.

Si χ ne se factorise par aucun groupe de classe de rayon divisant strictement M, on dit
que χ est primitif.

On peut étendre la définition des fonctions L aux morphismes continus de groupes χ :
A×K/K

× → C× (les pseudo-caractères). Il s’agit des caractères de Hecke.

Alors, comme A×,0K /K× est compact, son image par χ est compacte et donc contenue
dans U = {z ∈ C| |z| = 1}. Il existe χ0 un caractère de A×K/K

× et t ∈ R tel que pour
tout x ∈ A×K tels qu’on ait

χ(x) = ||x||tχ0(x).

On a alors
L(χ, s) = L(χ0, s− t).

Ainsi la variable complexe s peut être incorporée dans la variable que constitue le caractère,
si on autorise les pseudo-caractères. Noter que χ0 n’est pas nécessairement d’image finie.

Le dictionnaire entre classe d’idéaux et classes d’idèles peut-être prolongé. Les car-
actères de Hecke peuvent être traduits en termes de pseudo-caractères des groupes d’idéaux
vérifiant certaines propriétés vis-à-vis des idéaux principaux. Dans ce langage, on les ap-
pelle Grössencharakter.

5. Lien par la théorie du corps de classe

Soit L|K une extension abélienne finie. La loi de réciprocité d’Artin affirme qu’on a
un isomorphisme de groupes

A×K/K
×NL/K(A×L ) ' Gal(L/K),

caractérisé par le fait que pour tout premier de K non ramifié dans L, l’image de πQ ∈
KQ ⊂ A×K est la substition de Frobenius en Q de Gal(L/K). Ainsi les fonctions L
considérées dans les deux sections précédentes cöıncident.

XIII — 4



On peut être un peu plus précis. Il existe un cycle arithmétique minimal M tel que
A×K,M ⊂ NL/K(A×L ).

Pour tout cycle arithmétiqueM, il existe une extension abélienne HM|K, le corps de
classe de rayon M, telle que A×K,M = NHM/K(A×HM

). On a alors les isomorphismes

C`(K)M ' A×K/K
×NHM/K(A×HM

) ' Gal(HM/K).

Revenons à l’extension L|K. On a de plus la factorisation de la fonction ζ de Dedekind de
L :

ζL(s) =
∏
χ

L(χ, s)

où χ parcourt les caractères primitifs de Gal(L/K). La fonction ζL admet un prolongement
analytique à C et une équation fonctionnelle. Qu’en est-il de chacun des facteurs L(χ, s) ?

La fonction ζL admet un pôle simple en s = 1, de même que ζK . Or la fonction L(χ, .)
qui à s associe L(χ, s) vaut ζK si χ = 1. Si χ 6= 1, elle est holomorphe au voisinage de
s = 1. Que vaut-elle en s = 1 ? On attend une réponse compatible à la formule du nombre
de classe, qui décrit la résidu de ζL en s = 1.

6. Facteurs aux places infinies

Soit χ un caractère d’image finie de Gal(K̄/K). Il existe une extension abélienne
minimale L|K telle que χ se factorise par Gal(L/K). Notons M le cycle arithmétique de
K associé à l’extension abélienne L|K. Posons

M =
∏
v∈ΩK

Pnv
v .

Pour v ∈ ΩK,∞, on a :
nv = 0 si Kv = C,
nv = 0 si Kv = R et l’image par χ de la conjugaison complexe en v est 1,
nv = 1 si Kv = R et l’image par χ de la conjugaison complexe en v est −1.
Rappelons que la fonction Γ est définie par la formule

Γ(s) =

∫ ∞
0

e−tts
dt

t
,

qu’elle se prolonge en une fonction méromorphe sur C avec un pôle en les entiers ≤ 0, qui
sont simples et de résidu en −n égal à (−1)n/n!. Elle vérifie la propriété Γ(s+ 1) = sΓ(s).
On a Γ(1/2) =

√
π. On a la formule de duplication

Γ(s/2)Γ((s+ 1)/2) = 21−sπ1/2Γ(s).

Il est commode de poser

ΓR(s) = π−s/2Γ(s/2) =

∫ ∞
0

e−πtts/2
dt

t

XIII — 5



et

ΓC(s) = 2(2π)−sΓ(s) =

∫ +∞

−∞
e−2πtts

dt

t
.

Ainsi la formule de duplication devient

ΓC(s) = ΓR(s)ΓR(s+ 1).

On définit le facteur d’Euler en v de L(χ, s) par les formules suivantes :

Si nv = 0 et Kv = R, on pose

Lv(χ, s) = π−s/2Γ(s/2) = ΓR(s).

Si nv = 1 et Kv = R, on pose

Lv(χ, s) = π−(1+s)/2Γ((s+ 1)/2) = ΓR(s+ 1).

Si nv = 0 et Kv = C, on pose

Lv(χ, s) = π−1/2−sΓ(s/2)Γ((s+ 1)/2) = 21−sπ−sΓ(s) = ΓC(s).

On peut ainsi modifier la fonction L(χ, s) par la formule

Λnr(χ, s) = L(χ, s)
∏

v∈ΩK,∞

Lv(χ, s),

où nr signifie non ramifiée (il manque encore des facteurs correspondant aux places ram-
ifiées).

7. Prolongement analytique et équation fonctionnelle

Supposons χ primitif. La considération de la fonction s 7→ Λnr(χ, s) est justifiée par
la l’incorporation si satisfaisante des places infinies, et davantage encore, par le théorème
suivant.

Théorème 1 (Hecke, Tate, Iwasawa). — La fonction s 7→ Λ(χ, s) s’étend en une fonction
méromorphe sur C avec des pôles seulement si χ = 1. Ces pôles sont simples et situés en
s = 0 et s = 1. Il existe un nombre réel Bχ > 0 et Cχ ∈ C tels qu’on ait la formule (dite
équation fonctionnelle) :

Λnr(χ, 1− s) = CχB
s
χΛnr(χ̄, s),

où χ̄ est le caractère inverse de χ.

La démonstration de ce théorème est due à Hecke, et, par la suite, à Tate et Iwasawa.
Elle repose de façon essentielle sur la théorie du corps de classe, en interprétant χ comme
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un caractère de C`(K)M (Hecke) ou du groupe des classes d’idèles (Tate, Iwasawa). Dans
toutes les approches, l’analyse de Fourier joue un rôle crucial.

L’équation fonctionnelle peut prendre une forme plus précise. On peut poser

wχ = B1/2
χ Cχ ∈ C.

C’est le root number. L’équation fonctionnelle devient :

Λnr(χ, 1− s) = wχB
s−1/2
χ Λnr(χ̄, s)

avec |wχ| = 1. On peut préciser Bχ par la formule

Bχ = |
∏

v∈ΩK−ΩK,∞

Pnv
v ||DK |.

Ainsi Bχ contient des informations sur la restriction de χ aux places de K ramifiées dans
L. On peut ainsi poser

Λ(χ, s) = Λnr(χ, s)Bs/2χ ,

qui est la fonction L de Hecke complétée. L’équation fonctionnelle prend alors la forme

Λ(χ, 1− s) = wχΛ(χ̄, s)

Les nombres Bχ et wχ répondent au problème de l’information manquante dans L(χ, s)
en les places ramifiées.

L’invariant wχ peut s’écire à l’aide de sommes de Gauss.

Exemple 1. — Si K = Q et χ est associé à un caractère de Dirichlet χ primitif modulo N .
On pose

G(χ) =
∑

a (mod N)

χ(a)e2iπa/N .

C’est un nombre complexe de module
√
N . On a alors

wχ = G(χ)/|G(χ)|.

Noter l’analogie formelle entre les sommes de Gauss et la fonction Γ : il s’agit d’une somme
d’un caractère additif contre un caractère multiplicatif. En général, wχ est un produit de
facteurs locaux en les places ramifiées dans L|K.

8. Formule du nombre de classe

Rappelons la formule du nombre de classes. Revenons à la définition de Λnr(χ, s)
pour χ = 1. Posons

ΛL(s) = Λnr(1, s) = ΓR(s)r1(L)ΓC(s)r2(L)ζL(s).
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L’équation fonctionnelle vérifie

Λnr
L (1− s) = |DL|1/2−sΛnr

L (s).

Rappelons la formule du nombre de classes :

lim
s−→1+

(s− 1)ζL(s) =
2r1(2π)r2reg(L)hL

ωL|DL|1/2
.

On en déduit la formule

Ress=0Λnr
L (s) =

2r1(L)(2π)r2(L)hLreg(L)

ωL
.

Revenons à la factorisation
ζL(s) =

∏
χ

L(χ, s)

où χ parcourt les caractères primitifs de Gal(L/K).
Existe-t-il une formule pour Λ(χ, 1) analogue à la formule de nombre de classes ?

C’est le cas pour χ = 1, puisque c’est la formule du nombre de classes pour ζK . On peut
remarquer que les objets qui interviennent dans la formule du nombre de classes pour L
sont munis d’une action de Gal(L/K) : c’est le cas du groupe des classes, du groupe des
unités, du groupe des racines de l’unité.

Pourquoi se limiter aux extensions abéliennes ?
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