XIII
Fonctions L abéliennes

1. Notations

Soit K un corps de nombres. On note :

Ok l'anneau des entiers de K,

O le groupe des unités de O,

Dgk le discriminant absolu de K,

px le groupe (fini) des racines de l'unité de K*,

wg 'ordre du groupe ug,

Z(K) le groupe des idéaux fractionnaires de K,

P(K) le groupe des idéaux fractionnaires principaux de K,
CUK)=TI(K)/P(K) le groupe des classes d’idéaux (ou groupe des classes) de K,
hx = |CL(K)| le nombre de classe de K,

A i Panneau des adeles de K,

A} le groupe des ideles de K,

Ck = A% /K* le groupe des classes d’ideles de K,

Reg le régulateur de O,

QO Pensemble des places de K,

QK  l'ensemble des places infinies (ou archimédiennes) de K,
r1 = r1(K) le nombre de places réelles de K,

ro = 1r2(K) le nombre de places complexes non réelles de K,
(k la fonction ¢ de Dedekind de K.

Soit v une placede K. On note :
K, le complété de K en v,
|.|» la valeur absolue normalisée associée a v.

Si, de plus, v est finie, on note :

P, le premier de K associé a v,

Ok » ou O, I'anneau des entiers de K, (le complété P,-adique de Ok ),
P, I'idéal maximal de O, (abus de notation),

7, une uniformisante de P, dans K,,

k, le corps résiduel Ok /P,.

On note ||.|| 'application A% — R* qui a l'ideéle x = (2,)yeq, associe
lell = 1T lwolo-
VEQK

On note A = {z € A%|||z]| = 1}.
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2. Cycles arithmétiques

Un cycle arithmétique (attention le terme n’est pas standard et varie suivant les
auteurs) de K est une application presque nulle Qx — N qui & v associe n, et telle
que n, = 0 si v est une place complexe non réelle, n,, € {0,1} si v est une place réelle. On
le note de fagon multiplicative

M=]]Py,
v

ou P, est une notation sans signification si v est une place infinie. Ainsi la notion de cycle
arithmétique généralise (légerement) la notion d’idéal de Ok . On peut associer a M l'idéal

1 7

’UQQK,OO

On associe a M les généralisations O m, Of vy HEM = i, Z(KOM, P(K)M,
CU(K)M, b1, Regyd, A%\ OF des objets ci-dessus.

3. Fonctions L de caracteres galoisiens

Soit K une cloture algébrique de K. L’arithmétique a pour théme majeur la
compréhension du groupe Gal(K/K), en particulier pour K = Q. Cela revient & com-
prendre la collection des groupes Gal(L/K), pour L|K extension galoisienne finie. Notre
premier but est de comprendre les caracteres de tels groupes (représentations complexes
de dimension 1).

Soit x : Gal(K/K) — C* d’image finie. Dire que Y est d’image finie revient & dire
que x est continu si on munit Gal(K/K) de la topologie profinie. Alors x se factorise par
Gal(L/K), avec L|K extension abélienne finie. On pose alors

1
L(X,S) = H 1 — X(Frobv)|73v’_s’

v

ou v parcourt les places finies de K non ramifiées dans L et s € C. Ici Frob, est défini
a conjugaison pres dans Gal(L/K) et modulo un groupe d’inertie en v, qui est trivial si
v est non ramifié dans L. Ainsi, x(Frob,) est bien défini puisque L|K est abélienne. On
peut développer le produit eulérien pour obtenir une série de Dirichlet

ou I parcourt les idéaux de Ok . Cette série converge absolument pour Re(s) > 1, puisque
x prend des valeurs de module 1, si bien que a; est nul ou un nombre complexe de module
1.
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Remarque . — 1) Soit M|K une extension galoisienne intermédiaire & L|K. Supposons
que x se factorise par x' : Gal(M/K) — C*. On a alors

L(x:s) = LY, 8) ] (1 = x(Frob, )P, ),

v

ou v parcourt les places finies ramifiées dans L mais pas dans M. Si M est minimal pour
la factorisation de x, on dit que x est primitif. L’information contenue dans L(y, s) est
maximale si on choisit y primitif.

2) Pour Q premier de K non ramifié dans L, attaché a une place finie v, on pose

1

L) = Lol s) = T mop i

C’est le facteur local ou facteur d’Fuler en Q ou v.

3) Soit Q premier de K non ramifié dans L. Soit P un premier de L au dessus de
K. Le groupe de décomposition Dp en P de Gal(L/K) s’identifie & Gal(Lp/Kg), qui est
cyclique et engendré par une substitution de Frobenius Frobg. Ainsi la restriction de y a
Dp est déterminée par Lo(x, s). Donc Lgo(x, s) sait “tout” sur x|p,.

4) Le théoreme de densité de Chebotarev nous dit que l'extension L de K est
déterminée par ’ensemble des premiers de K non ramifiés dans L qui sont totalement
décomposés dans L, c’est-a-dire par I’ensemble des premiers Q tels que x(Frobg) =1, et
que tout élément de Gal(L/K) est une substitution de Frobenius. Ainsi, la connaissance
de L(x,s) détermine y, mais de facon tres indirecte.

5) Si Q est ramifié dans L|K, Lg(x,s) est par définition trivial. Mais le groupe de
décomposition Dp en P|Q n’est pas trivial, ni méme cyclique en général. Donc Lg(y, $)
ne sait, a priori, rien sur x|p,. Comment intégrer I'information manquante a L(x,s) ?

6) Le produit eulérien qui définit L(x, s) ne fait intervenir que les places finies. Qu’en
est-il des places infinies 7

4. Fonctions L de caracteres de classes d’ideles, et de classes d’idéaux

Soit
M=]]Py

un cycle arithmétique.

Rappelons qu’on a un isomorphisme canonique de groupes finis : Cx /CM — Cl(K)
caractérisé par le fait que pour tout premier Q de K ne dividant pas M, I'image d’une
uniformisante 7o de I'idéal premier de Ko vu comme un sous-anneau de A g a pour image
la classe de l'idéal Q.

Soit x un caractere du groupe abélien fini Cx/CM des classes d’ideles de rayon M.
On pose

M

1

Lix.s)= ][] —,
B ey
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ou encore en identifiant Cx/C™ au groupe C/(K)™ des classes de rayon M, et en notant
encore x : C/(K)™ — C* le caractére obtenu,

1

L(X?‘S) = H -5’
v, Pu M 1 — x(Pu)|Pol

Remarque . — Soit M’ un cycle arithmétique de K tel que M divise M’. Le groupe des
classes d’ideles de rayon M est un quotient du groupe des classes d’ideles de rayon M.
Soit x’ un caractere de O /CM qui se factorise par Cx/CM. On a alors

1
L(X/,S) :L(X,S> H —s
U7Pv|M/7PUW 1- X(TF’U)|PU|

Si x ne se factorise par aucun groupe de classe de rayon divisant strictement M, on dit
que x est primatif.

On peut étendre la définition des fonctions L aux morphismes continus de groupes Y :
A% /K* — C* (les pseudo-caractéres). 1l s’agit des caractéres de Hecke.

Alors, comme A;((’O/ K* est compact, son image par y est compacte et donc contenue
dans U = {z € C||z| = 1}. 1l existe x" un caractere de A% /K> et t € R tel que pour
tout = € A% tels qu'on ait

x(2) = ||lz]|'X" ().

On a alors
L(X7S) = L(X07S - t)

Ainsi la variable complexe s peut étre incorporée dans la variable que constitue le caractére,
si on autorise les pseudo-caracteres. Noter que X n’est pas nécessairement d’image finie.

Le dictionnaire entre classe d’idéaux et classes d’ideles peut-étre prolongé. Les car-
acteres de Hecke peuvent étre traduits en termes de pseudo-caracteres des groupes d’idéaux
vérifiant certaines propriétés vis-a-vis des idéaux principaux. Dans ce langage, on les ap-
pelle Grdssencharakter.

5. Lien par la théorie du corps de classe

Soit L|K une extension abélienne finie. La loi de réciprocité d’Artin affirme qu’on a
un isomorphisme de groupes

caractérisé par le fait que pour tout premier de K non ramifié dans L, I'image de mg €
Ko C A} est la substition de Frobenius en Q de Gal(L/K). Ainsi les fonctions L
considérées dans les deux sections précédentes coincident.
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On peut étre un peu plus précis. Il existe un cycle arithmétique minimal M tel que
Pour tout cycle arithmétique M, il existe une extension abélienne Hpq|K, le corps de
classe de rayon M, telle que A?{,M = NHM/K(A}}M). On a alors les isomorphismes

CUK)M ~ A% /K™ Ny, /k(Af,,) ~ Gal(Hum/K).

Revenons a l'extension L|K. On a de plus la factorisation de la fonction ¢ de Dedekind de
L :
c(s) = [T Lx:s)
X

ou x parcourt les caracteres primitifs de Gal(L/K). La fonction (z, admet un prolongement
analytique a C et une équation fonctionnelle. Qu’en est-il de chacun des facteurs L(y,s) 7

La fonction (7, admet un pole simple en s = 1, de méme que (x. Or la fonction L(y, .)
qui a s associe L(x,s) vaut (x si x = 1. Si x # 1, elle est holomorphe au voisinage de
s = 1. Que vaut-elle en s = 17 On attend une réponse compatible a la formule du nombre
de classe, qui décrit la résidu de (7 en s = 1.

6. Facteurs aux places infinies

Soit x un caractere d’image finie de Gal(K/K). Il existe une extension abélienne
minimale L|K telle que x se factorise par Gal(L/K). Notons M le cycle arithmétique de
K associé a I'extension abélienne L|K. Posons

m= 1] Py
vEQK

Pour v € 0k o, On a :
n, =0si K, =C,
n, = 0 si K, = R et 'image par x de la conjugaison complexe en v est 1,
n, = 1 si K, = R et 'image par x de la conjugaison complexe en v est —1.
Rappelons que la fonction I' est définie par la formule

o dt
I'(s) = / e Mt —,
0

t

qu’elle se prolonge en une fonction méromorphe sur C avec un pole en les entiers < 0, qui
sont simples et de résidu en —n égal & (—1)"/n!. Elle vérifie la propriété I'(s +1) = sI'(s).
On a I'(1/2) = \/m. On a la formule de duplication

[(s/2)T((s+1)/2) = 2175720 (s).

Il est commode de poser
o dt
Ta(s) =7 *2(s/2) = [ e
0
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et
oo dt
Fe(s) =2(2m) °T(s) = / e 2mits -

— 00

Ainsi la formule de duplication devient
Fc(s) =Tr(s)r(s+1).
On définit le facteur d’Euler en v de L(x, s) par les formules suivantes :
Sin, =0et K, =R, on pose
Ly(x,s) = 7 */?T(s/2) = T'r(s).
Sin,=1et K, =R, on pose
Ly(x,s) =7~ I)/20((s +1)/2) = Tr(s + 1).
Sin, =0et K, =C, on pose
Ly(x,s) =7 Y250 (s/2)T((s + 1) /2) = 21 *n*T'(s) = T (s).

On peut ainsi modifier la fonction L(y, s) par la formule

A" (xs) = Lx,s) [ Lo(xs),

UEQK,oo

ou nr signifie non ramifiée (il manque encore des facteurs correspondant aux places ram-
ifiées).

7. Prolongement analytique et équation fonctionnelle

Supposons x primitif. La considération de la fonction s — A™(x, s) est justifiée par
la I'incorporation si satisfaisante des places infinies, et davantage encore, par le théoreme
suivant.

THEOREME 1 (Hecke, Tate, Iwasawa). — La fonction s — A(x, s) s’étend en une fonction
méromorphe sur C avec des poles seulement si x = 1. Ces poles sont simples et situés en
s =0 et s=1. Il existe un nombre réel B, > 0 et C,, € C tels qu’on ait la formule (dite
équation fonctionnelle) :

A™(x,1—5) = C, ByA™(X,s),

ou X est le caractere inverse de x.

La démonstration de ce théoreme est due a Hecke, et, par la suite, & Tate et Iwasawa.
Elle repose de facon essentielle sur la théorie du corps de classe, en interprétant y comme
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un caractere de C/(K)™ (Hecke) ou du groupe des classes d’ideles (Tate, Iwasawa). Dans
toutes les approches, I'analyse de Fourier joue un role crucial.
L’équation fonctionnelle peut prendre une forme plus précise. On peut poser

Wy = B}C/QCX e C.
C’est le root number. L’équation fonctionnelle devient :
A" (x,1—s) = wXB;_1/2Am()_(, s)

avec |w,| = 1. On peut préciser B, par la formule

By=| Il PrIDxl

'UEQngK,oo

Ainsi B, contient des informations sur la restriction de x aux places de K ramifiées dans

L. On peut ainsi poser
A(x, s) = A™(x, s)BY?,

qui est la fonction L de Hecke complétée. L’équation fonctionnelle prend alors la forme

Alx,1—s) = wA(X, 5)

Les nombres B, et w, répondent au probleme de 'information manquante dans L(x, s)
en les places ramifiées.
L’invariant w, peut s’écire a I’aide de sommes de Gauss.

Ezemple 1. — Si K = Q et x est associé a un caractere de Dirichlet y primitif modulo N.
On pose

Gx)= Y xlaem/N.

a (mod N)

C’est un nombre complexe de module v/N. On a alors

wy = G(X)/IGOI-
Noter ’analogie formelle entre les sommes de Gauss et la fonction I' : il s’agit d’'une somme
d’un caractere additif contre un caractére multiplicatif. En général, w, est un produit de
facteurs locaux en les places ramifiées dans L|K.

8. Formule du nombre de classe

Rappelons la formule du nombre de classes. Revenons a la définition de Anr(y, s)
pour xy = 1. Posons

An(s) = A™(1,s) = Tr(s) P (s)2 ¢ (s).

XIII — 7



L’équation fonctionnelle vérifie
A (1 — ) = [DL 2 AY(5)
Rappelons la formule du nombre de classes :

. 2" (2m)"2reg(L)hy
SEIL(S — D) = wr,| Dy |12

On en déduit la formule

2ri(L) (22 (B) L
Ress—oAT'(s) = (27) Lreg( )

WL

Revenons a la factorisation

c(s) =[] L0e9)

ou x parcourt les caracteres primitifs de Gal(L/K).

Existe-t-il une formule pour A(x,1) analogue a la formule de nombre de classes?
C’est le cas pour x = 1, puisque c’est la formule du nombre de classes pour (k. On peut
remarquer que les objets qui interviennent dans la formule du nombre de classes pour L
sont munis d’une action de Gal(L/K) : c’est le cas du groupe des classes, du groupe des
unités, du groupe des racines de I'unité.

Pourquoi se limiter aux extensions abéliennes ?
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