XII

Applications et versions effectives
du théoreme de Chebotarev

1. Caractérisation de corps de nombres par les criteres locaux

Soit K un corps de nombres. Si F et F' sont deux sous-ensembles de premiers non
nuls de K, on pose ECF si F' — F est fini (presque inclusion).

Soit L|K une extension finie. Notons P(L/K) l’ensemble des premiers de K non
ramifiés dans L qui sont au-dessous d’un premier de L de degré résiduel égal a 1. En
particulier, si I'extension L|K est galoisienne, P(L/K) est I’ensemble des premiers de K
totalement décomposés dans L. Il est utile de garder a ’esprit le critere suivant.

PROPOSITION 1. — Soit M|K une cléture galoisienne de ’extension L|K. Un premier de
K non ramifié dans M est totalement décomposé dans L si et seulement si il est totalement
décomposé dans M.

Démonstration. — 11 suffit de montrer qu’un idéal premier Q de K non ramifié est
totalement décomposé dans L est totalement décomposé dans M. Dire que M|K est
une cloture galoisienne signifie que M est minimal parmi les extensions galoisiennes de
M qui contiennent L, ou encore que le seul sous-groupe normal de GG contenu dans H est
trivial. Soit H' le sous-groupe de G engendré par les groupes de décomposition en les
idéaux premiers de M au dessus de Q. C’est un sous-groupe normal puisque I’ensemble
des sous-groupes de décomposition est stable par conjugaison. On a donc H' = 1 et tout
sous-groupe de décomposition de Gal(M/K) est trivial. Il en résulte que Q est totalement
décomposé dans M.

En général, on peut décrire P(L/K) ainsi.

PROPOSITION 2. — Soit M|K wune extension galoisienne finie contenant L. Posons
G = Gal(N/K) et H= Gal(N/L). On a la réunion disjointe

P(L/K) = |—|<U>OH75®PN/K(O-)7

ou o parcourt les élément de G et < o > est la classe de conjugaison de o dans G.

Démonstration. — Un premier Q de K non ramifié dans L appartient a P(L/K) si et
seulement si il existe P premier de L au dessus de Q tel que la substitution de Frobenius
en P soit triviale dans le groupe de Galois résiduel en P. C’est le cas si et seulement
si il existe R premier de M au dessus de Q tel que la substitution de Frobenius en R
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soit dans H. Cela revient encore a dire que la classe de conjugaison de la substitution de

Frobenius en R rencontre H ou encore que P € Py/x(c) pour un élément o de G tel que
<o >NH#0.

PROPOSITION 3. — Notons d le degré de lextension L|K. Alors l’ensemble P(L/K) a
densité > 1/n. Par ailleurs, on a d(P(L/K)) > 1/n si et seulement si l’extension L|K est
galoisienne.

Démonstration. — Soit M|K une extension galoisienne finie contenant L. Posons encore
G = Gal(N/K) et H = Gal(N/L). D’apres la proposition 2, I'ensemble P(L/K) s’écrit
comme une réunion disjointe. On a donc, en reprenant les notations de la proposition 2,

<o Uegy < o>
APLK) = X Pyl = B =2 2

<o>NH#D

On a Tinclusion tautologique H C Ucosnmpzp < o >. Il en résulte que d(P(L/K)) >
H|/|G] = 1/n.

L’extension L|K est galoisienne si et seulement si H est un sous-groupe normal de G.
Cela se traduit par le fait < ¢ >C H si et seulement si < o > NH # (. C’est le cas si et
seulement si on a I'égalité HU ,~np2p < 0 >. Cette derniere égalité équivaut au fait que

d(P(L/K)) = |H|/|G|.

COROLLAIRE 1. — Si presque tous les premiers de K sont totalement décomposés dans
lextension L|K, on a L = K.
Démonstration. — On considere une cloture galoisienne M de L|K. On utilise la propo-

sition 1 si bien que

1 = d(P(M/K)) = d(P(L/K)) = 1/m,

o m est le degré de l'extension M|K, si bien que m =1 et qu’'on a I'égalité M = L = K.

COROLLAIRE 2. — L’extension L|K est galoisienne si et seulement si tout idéal de P(L/K)
est totalement décomposé dans L.

Démonstration. — 1l suffit de montrer que si tout idéal de P(L/K) est totalement
décomposé dans L, I'extension L|K est galoisienne. Considérons une cloture galoisienne
M|K de lextension L|K. Notons m son degré. L’ensemble P(M/K) coincide avec
les premiers de K totalement décomposés dans L d’apres la proposition 1. On a donc
P(M/K) =P(L/K) et donc

1/m=d(P(M/K))=d(P(L/K)) > 1/d.
Commed<monad=metdonc M = L.
PROPOSITION 4. — Supposons L|K galoisienne. Soit L'|K une extension finie telle qu’il
existe un corps M contenant L et L'. On a P(L'/K)CP(L/K) si et seulement si on a
Lclr.
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Démonstration. — 11 suffit de montrer que si on a P(L'/K)CP(L/K), alors on a L C L'.
On peut supposer que l'extension M|K est galoisienne. Posons G = Gal(M/K), H =
Gal(M/L) et H' = Gal(M/L"). 11 suffit de montrer que H' est contenu dans H. Utilisons
I’hypothese et la proposition 2. On a

P(L,/K) = |—|<a>mH’;é®PN/K(U)éP(L/K) = U<a>ﬂH7é®PN/K(U)'

Soit o € H’. D’apreés le théoreme de Chebotarev, il existe un premier R de M tel que
R € Pyyx(n) o n € G est tel que nN H # (). Dans ce cas o et 1 sont conjugués dans
G. Comme H est un sous-groupe normal de G, la classe de conjugaison de o est contenue
dans H. Ainsionaoc € H et H C H.

THEOREME 1. — Une extension galoisienne L|K est déterminée a isomorphisme prés par
Uensemble P(L/K) des premiers de K totalement décomposés dans L.
Démonstration. — En effet, soit L'|K une extension galoisienne telle que P(L/K) =

P(L'/K). On peut plonger L et L' dans un corps commun M. On applique alors la
proposition 4, qui entraine que les images de L et L’ dans M sont égales. Ainsi, L et L'
sont isomorphes.

COROLLAIRE 1. — Soient Ly et Ly deux extensions finies de K telles que P(L1/K) et
P(L2/K) ne différent que par un nombre fini d’éléments. Alors les clétures galoisiennes
de L et Ly sont isomorphes.

Démonstration. — Soient M, et M, les clotures galoisiennes de Ly et Lo. Les ensembles
P(M,/K) = P(L1/K) et P(My/K) = P(Ly/K) ne different que par un nombre fini
d’éléments. Donc M, et My sont isomorphes.

Remarque . — 1) Un tel énoncé est faux si on remplace la notion de totalement décomposé
par inerte. Il existe des extensions L|K sans premiers de K inerte dans L. Le théoréme
de Chebotarev, qui repose sur la notion de densité de Dirichlet, s’intéresse en premier lieu
aux premiers qui sont décomposés.

2) Le théoréeme 1 souléve la question de caractériser les ensembles P(L/K) en termes
purement de K. La théorie du corps de classe fournit une réponse lorsque 'extension
L|K est abélienne. Par exemple, lorsque K = Q, le corps L est contenu dans un corps
cyclotomique, engendré, disons, par les racines m-émes de 1'unité. L’ensemble P(L/K)
est alors I’ensemble des nombres premiers satisfaisant certaines congruences modulo m.
En particulier si L est le corps cyclotomique engendré par les racines m-emes de l'unité,
P(L/K) est constitué des nombres premiers congrus a 1 modulo m.

THEOREME 2. — Notons H le corps de classe de Hilbert de K. La densité de l’ensemble
des premiers de K totalement décomposés dans H est égale a 1/hk, ou hx est le nombre
de classe de K.

Démonstration. — On sait que cette densité est l'inverse du degré de H|K. Mais ce degré
est égal a hx par la théorie du corps de classe.

Remarque . — 1l existe des versions du théoreme 2 pour toute extension abélienne en
terme de groupe de classe de rayon.
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2. Versions effectives du théoréme de Chebotarev

Il n’y aura pas de démonstration dans cette section. Pour x nombre réel > 2, on pose

. Toodt
e = [ iy

Cette fonction intervient dans le théoréeme des nombres premiers, puisqu’elle constitue un
équivalent au nombre de nombre premier < z. Il en existe une généralisation au corps de
nombres K. C’est le théoréme des idéauxr premiers de Landau.

THEOREME 3. — Soit x un nombre réels > 0. Le nombre d’idéaux premiers de O de
norme absolue < x est égal a

Li(z) + p(x),

ot p(x) est tel qu’il existe des nombres réels Ax et Bx ne dépendant que de K avec
|p(2)| < Agae™Prviosl®),

La question du terme d’erreur dans cette estimation est cruciale. Rappelons que la bande
critique pour la fonction (i est {s € C/0 < R(s) < 1} et que la droite critique est
{s € C/R(s) = 1/2}. L’hypothése de Riemann généralisée (ou hypothése de Riemann
étendue, selon les auteurs) pour la fonction ¢ de Dedekind (x affirme que les seuls zéros
de (x dans la bande critique sont sur la droite critique. Admettre I’hypothese de Riemann
généralisée permet d’améliorer le théoreme de Landau avec l’estimation, pour tout réel
e >0,
Ip(@)] < O /2,

ou Ck . est une constante qui ne dépend que de K et e.

Soit L|K une extension galoisienne de corps de nombres. Soit o € Gal(L/K). Soit X
un nombre réel > 0. Les versions effectives du théoreme de Chebotarev visent a répondre
a la question suivante.

Existe-t-il un premier P de L au dessus d’un premier Q de K tel que la classe de
conjugaison d’une substitution de Frobenius en P soit égale a o avec |Q] < X ?

On dispose de réponses a cette question qui dépendent de I’hypothese de Riemann
généralisée. Une réponse typique est due a Oesterlé.

THEOREME 4. — Supposons ’hypothése de Riemann généralisée pour (1. Soit C une classe
de congugaison de G = Gal(L/K). Notons mc(x) le nombre d’idéaur de K non ramifiés
dans L, de norme absolue < x et pour lesquels la classe de conjugaison du Frobenius dans
G est égale a C. On a alors, pour tout réel x > 2,

e (x) — %Limr < %ﬁ[aegwm(l/w 1 5,3/log(x)) + [L : Q](log(x)?/(27) + 2)].
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On en déduit que, si L # Q et si x > 701og(|Dr|)?, on a no(z) > 1.

Il existe des versions effectives du théoreme de Chebotarev sans admettre ’hypothese
de Riemann généralisée. Toutefois les évaluations obtenues sont considérablement moins
précises, si bien que les bornes sur x pour ¢ (x) # () sont d’un intérét quantitatif moindre.
C’est par exemple le cas pour le probleme suivant.

3. La conjecture d’Artin sur les racines primitives

Soit a un entier qui n’est ni nul, ni une unité, ni un carré parfait. Notons P(a)
I’ensemble formé par les nombres premiers p tels que a engendre (Z/pZ)* (on dit alors que
a est une racine primitive modulo p). La conjecture d’Artin (sur les racines primitives)
affirme que I’ensemble P(a) est infini. (Attention : il existe d’autres conjectures portant
le nom d’Artin.)

Ce n’est connu pour aucun entier a. Toutefois Gupta et R. Murty ont montré que
P(a) est infini pour une infinité de a. Mieux, Heath-Brown a montré que ’ensemble des
nombres premiers ¢ tels que P(q) est fini contient au plus deux éléments, et que I’ensemble
des nombres entier m > 1 sans facteur carré tels que P(m) est fini contient au plus trois
éléments. Mais notre propos est ici d’indiquer le lien entre le probleme d’Artin et le
théoreme de Chebotarev.

PROPOSITION 5. — L’entier a est une racine primitive modulo p si et seulement si
aP~V/k =1 (mod p) pour tout nombre premier k divisant p — 1.
Démonstration. — Cela résulte du fait que le groupe (Z/pZ)* est cyclique d’ordre p — 1.

Soit k un entier > 1 sans facteur carré. Soit K un corps de décomposition du polynéme
X* —a. Tl est égal & Q((,b) ol  est une racine primitive k-eme de I'unité et b une racine
k-éme de a. Si a n’est pas une puissance parfaite d’ordre premier a p, 'extension K |Q est
galoisienne de degré ¢(k)k, en particulier de degré k(k — 1) si k est premier.

PROPOSITION 6. — Soit p un nombre premier. Il est totalement décomposé dans K si et
seulement si on a simultanément p=1 (mod k) et a»~D/* =1 (mod p).
Démonstration. — Si p est totalement décomposé dans K, le polynome X* — a est scindé

sur le corps fini F, si bien que 1 et a admettent des racines k-emes dans F,,, ce qui revient
adirequep=1 (modk)eta®V/* =1 (mod p). Réciproquement, sip=1 (mod k)
et alP~V/k =1 (mod p), le polynome X* — a est scindé sur le corps fini F, si bien que p
est totalement décomposé dans K.

COROLLAIRE 1. — Soit Px(a) l’ensemble des nombres premiers p tels que p =1 (mod k)
et aP~V/* =1 (mod p). Cet ensemble a pour densité de Dirichlet 1/[K : Q], et est donc
Démonstration. — On applique le théoreme de Chebotarev au corps K.

Rappelons que la fonction de Moebius p : N — {—1,0,1} est donnée par u(x) = 0
si = a des facteurs carrés et, si « n’a pas de facteur carré, pu(z) = (—=1)7®), ol o(x) est

XII —5



le nombre de diviseurs premiers de . A partir de ces considérations, Hooley a démontré
le résultat suivant, qui indique quel devrait étre la forme quantitative de la conjecture

d’Artin.

THEOREME 5. — Supposons que I’hypothése de Riemann généralisée pour (i soit valide.
L’ensemble P(a) a pour densité naturelle d(a) (et donc de Dirichlet)

= k
0 =3 g

et est donc infini. La densité d(a) est donnée ainsi. Notons |Dg| le discriminant absolu du
corps quadratique Q(~y/a). Soit h Uentier > 1 mazimal tel qu’il existe ag € N avec a = alt.

Posons

qlh

ot q parcourt les nombres premiers ne divisant pas h dans le premier facteur, et les nombres
premiers divisant h dans le deuziéme facteur. On a alors

d(a) = A(h)
si Dyl =0 (mod 4) et
d@) = A -p) I —5 I 7=
q|Dal,qlh q|Dal,qlh

ot q parcourt les nombres premiers, si Dy =1 (mod 4).

Comme h = 1 dans de nombreux cas, par exemple si a est sans facteur carré, notons

la quantité
1

q(q—1)

ou g parcourt les nombres premiers. C’est la constante d’Artin.

A =TJa -

q

) =0,37...,
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