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Applications et versions effectives
du théorème de Chebotarev

1. Caractérisation de corps de nombres par les critères locaux

Soit K un corps de nombres. Si E et F sont deux sous-ensembles de premiers non
nuls de K, on pose E⊂̃F si F − E est fini (presque inclusion).

Soit L|K une extension finie. Notons P(L/K) l’ensemble des premiers de K non
ramifiés dans L qui sont au-dessous d’un premier de L de degré résiduel égal à 1. En
particulier, si l’extension L|K est galoisienne, P(L/K) est l’ensemble des premiers de K
totalement décomposés dans L. Il est utile de garder à l’esprit le critère suivant.

Proposition 1. — Soit M |K une clôture galoisienne de l’extension L|K. Un premier de
K non ramifié dans M est totalement décomposé dans L si et seulement si il est totalement
décomposé dans M .
Démonstration. — Il suffit de montrer qu’un idéal premier Q de K non ramifié est
totalement décomposé dans L est totalement décomposé dans M . Dire que M |K est
une clôture galoisienne signifie que M est minimal parmi les extensions galoisiennes de
M qui contiennent L, ou encore que le seul sous-groupe normal de G contenu dans H est
trivial. Soit H ′ le sous-groupe de G engendré par les groupes de décomposition en les
idéaux premiers de M au dessus de Q. C’est un sous-groupe normal puisque l’ensemble
des sous-groupes de décomposition est stable par conjugaison. On a donc H ′ = 1 et tout
sous-groupe de décomposition de Gal(M/K) est trivial. Il en résulte que Q est totalement
décomposé dans M .

En général, on peut décrire P(L/K) ainsi.

Proposition 2. — Soit M |K une extension galoisienne finie contenant L. Posons
G = Gal(N/K) et H = Gal(N/L). On a la réunion disjointe

P(L/K) = t<σ>∩H 6=∅PN/K(σ),

où σ parcourt les élément de G et < σ > est la classe de conjugaison de σ dans G.
Démonstration. — Un premier Q de K non ramifié dans L appartient à P(L/K) si et
seulement si il existe P premier de L au dessus de Q tel que la substitution de Frobenius
en P soit triviale dans le groupe de Galois résiduel en P. C’est le cas si et seulement
si il existe R premier de M au dessus de Q tel que la substitution de Frobenius en R

XII — 1



soit dans H. Cela revient encore à dire que la classe de conjugaison de la substitution de
Frobenius en R rencontre H ou encore que P ∈ PN/K(σ) pour un élément σ de G tel que
< σ > ∩H 6= ∅.

Proposition 3. — Notons d le degré de l’extension L|K. Alors l’ensemble P(L/K) a
densité ≥ 1/n. Par ailleurs, on a d(P(L/K)) ≥ 1/n si et seulement si l’extension L|K est
galoisienne.
Démonstration. — Soit M |K une extension galoisienne finie contenant L. Posons encore
G = Gal(N/K) et H = Gal(N/L). D’après la proposition 2, l’ensemble P(L/K) s’écrit
comme une réunion disjointe. On a donc, en reprenant les notations de la proposition 2,

d(P(L/K)) =
∑

<σ>∩H 6=∅

PN/K(σ)
| < σ|
|G|

=
|t<σ>∩H 6=∅ < σ > |

|G|
.

On a l’inclusion tautologique H ⊂ t<σ>∩H 6=∅ < σ >. Il en résulte que d(P(L/K)) ≥
|H|/|G| = 1/n.

L’extension L|K est galoisienne si et seulement si H est un sous-groupe normal de G.
Cela se traduit par le fait < σ >⊂ H si et seulement si < σ > ∩H 6= ∅. C’est le cas si et
seulement si on a l’égalité Ht<σ>∩H 6=∅ < σ >. Cette dernière égalité équivaut au fait que
d(P(L/K)) = |H|/|G|.

Corollaire 1. — Si presque tous les premiers de K sont totalement décomposés dans
l’extension L|K, on a L = K.
Démonstration. — On considère une clôture galoisienne M de L|K. On utilise la propo-
sition 1 si bien que

1 = d(P(M/K)) = d(P(L/K)) = 1/m,

où m est le degré de l’extension M |K, si bien que m = 1 et qu’on a l’égalité M = L = K.

Corollaire 2. — L’extension L|K est galoisienne si et seulement si tout idéal de P(L/K)
est totalement décomposé dans L.
Démonstration. — Il suffit de montrer que si tout idéal de P(L/K) est totalement
décomposé dans L, l’extension L|K est galoisienne. Considérons une clôture galoisienne
M |K de l’extension L|K. Notons m son degré. L’ensemble P(M/K) cöıncide avec
les premiers de K totalement décomposés dans L d’après la proposition 1. On a donc
P(M/K) = P(L/K) et donc

1/m = d(P(M/K)) = d(P(L/K)) ≥ 1/d.

Comme d ≤ m on a d = m et donc M = L.

Proposition 4. — Supposons L|K galoisienne. Soit L′|K une extension finie telle qu’il
existe un corps M contenant L et L′. On a P(L′/K)⊂̃P(L/K) si et seulement si on a
L ⊂ L′.
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Démonstration. — Il suffit de montrer que si on a P(L′/K)⊂̃P(L/K), alors on a L ⊂ L′.
On peut supposer que l’extension M |K est galoisienne. Posons G = Gal(M/K), H =
Gal(M/L) et H ′ = Gal(M/L′). Il suffit de montrer que H ′ est contenu dans H. Utilisons
l’hypothèse et la proposition 2. On a

P(L′/K) = t<σ>∩H′ 6=∅PN/K(σ)⊂̃P(L/K) = t<σ>∩H 6=∅PN/K(σ).

Soit σ ∈ H ′. D’après le théorème de Chebotarev, il existe un premier R de M tel que
R ∈ PM/K(η) où η ∈ G est tel que η ∩ H 6= ∅. Dans ce cas σ et η sont conjugués dans
G. Comme H est un sous-groupe normal de G, la classe de conjugaison de σ est contenue
dans H. Ainsi on a σ ∈ H et H ′ ⊂ H.

Théorème 1. — Une extension galoisienne L|K est déterminée à isomorphisme près par
l’ensemble P(L/K) des premiers de K totalement décomposés dans L.
Démonstration. — En effet, soit L′|K une extension galoisienne telle que P(L/K) =
P(L′/K). On peut plonger L et L′ dans un corps commun M . On applique alors la
proposition 4, qui entrâıne que les images de L et L′ dans M sont égales. Ainsi, L et L′

sont isomorphes.

Corollaire 1. — Soient L1 et L2 deux extensions finies de K telles que P(L1/K) et
P(L2/K) ne diffèrent que par un nombre fini d’éléments. Alors les clôtures galoisiennes
de L1 et L2 sont isomorphes.
Démonstration. — Soient M1 et M2 les clôtures galoisiennes de L1 et L2. Les ensembles
P(M1/K) = P(L1/K) et P(M2/K) = P(L2/K) ne diffèrent que par un nombre fini
d’éléments. Donc M1 et M2 sont isomorphes.

Remarque . — 1) Un tel énoncé est faux si on remplace la notion de totalement décomposé
par inerte. Il existe des extensions L|K sans premiers de K inerte dans L. Le théorème
de Chebotarev, qui repose sur la notion de densité de Dirichlet, s’intéresse en premier lieu
aux premiers qui sont décomposés.

2) Le théorème 1 soulève la question de caractériser les ensembles P(L/K) en termes
purement de K. La théorie du corps de classe fournit une réponse lorsque l’extension
L|K est abélienne. Par exemple, lorsque K = Q, le corps L est contenu dans un corps
cyclotomique, engendré, disons, par les racines m-èmes de l’unité. L’ensemble P(L/K)
est alors l’ensemble des nombres premiers satisfaisant certaines congruences modulo m.
En particulier si L est le corps cyclotomique engendré par les racines m-èmes de l’unité,
P(L/K) est constitué des nombres premiers congrus à 1 modulo m.

Théorème 2. — Notons H le corps de classe de Hilbert de K. La densité de l’ensemble
des premiers de K totalement décomposés dans H est égale à 1/hK , où hK est le nombre
de classe de K.
Démonstration. — On sait que cette densité est l’inverse du degré de H|K. Mais ce degré
est égal à hK par la théorie du corps de classe.

Remarque . — Il existe des versions du théorème 2 pour toute extension abélienne en
terme de groupe de classe de rayon.
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2. Versions effectives du théorème de Chebotarev

Il n’y aura pas de démonstration dans cette section. Pour x nombre réel ≥ 2, on pose

Li(x) =

∫ x

2

dt

log(t)
.

Cette fonction intervient dans le théorème des nombres premiers, puisqu’elle constitue un
équivalent au nombre de nombre premier ≤ x. Il en existe une généralisation au corps de
nombres K. C’est le théorème des idéaux premiers de Landau.

Théorème 3. — Soit x un nombre réels > 0. Le nombre d’idéaux premiers de OK de
norme absolue < x est égal à

Li(x) + ρ(x),

où ρ(x) est tel qu’il existe des nombres réels AK et BK ne dépendant que de K avec

|ρ(x)| ≤ AKxe−BK

√
log(x).

La question du terme d’erreur dans cette estimation est cruciale. Rappelons que la bande
critique pour la fonction ζK est {s ∈ C/0 < <(s) < 1} et que la droite critique est
{s ∈ C/<(s) = 1/2}. L’hypothèse de Riemann généralisée (ou hypothèse de Riemann
étendue, selon les auteurs) pour la fonction ζ de Dedekind ζK affirme que les seuls zéros
de ζK dans la bande critique sont sur la droite critique. Admettre l’hypothèse de Riemann
généralisée permet d’améliorer le théorème de Landau avec l’estimation, pour tout réel
ε > 0,

|ρ(x)| ≤ CK,εx1/2+ε,

où CK,ε est une constante qui ne dépend que de K et ε.

Soit L|K une extension galoisienne de corps de nombres. Soit σ ∈ Gal(L/K). Soit X
un nombre réel > 0. Les versions effectives du théorème de Chebotarev visent à répondre
à la question suivante.

Existe-t-il un premier P de L au dessus d’un premier Q de K tel que la classe de
conjugaison d’une substitution de Frobenius en P soit égale à σ avec |Q| < X ?

On dispose de réponses à cette question qui dépendent de l’hypothèse de Riemann
généralisée. Une réponse typique est due à Oesterlé.

Théorème 4. — Supposons l’hypothèse de Riemann généralisée pour ζL. Soit C une classe
de conjugaison de G = Gal(L/K). Notons πC(x) le nombre d’idéaux de K non ramifiés
dans L, de norme absolue ≤ x et pour lesquels la classe de conjugaison du Frobenius dans
G est égale à C. On a alors, pour tout réel x ≥ 2,

|πC(x)− |C|
|G|

Li(x)| ≤ |C|
|G|
√
x[(log(|DL|)(1/π + 5, 3/log(x)) + [L : Q](log(x)2/(2π) + 2)].
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On en déduit que, si L 6= Q et si x ≥ 70 log(|DL|)2, on a πC(x) ≥ 1.

Il existe des versions effectives du théorème de Chebotarev sans admettre l’hypothèse
de Riemann généralisée. Toutefois les évaluations obtenues sont considérablement moins
précises, si bien que les bornes sur x pour πC(x) 6= ∅ sont d’un intérêt quantitatif moindre.
C’est par exemple le cas pour le problème suivant.

3. La conjecture d’Artin sur les racines primitives

Soit a un entier qui n’est ni nul, ni une unité, ni un carré parfait. Notons P (a)
l’ensemble formé par les nombres premiers p tels que a engendre (Z/pZ)× (on dit alors que
a est une racine primitive modulo p). La conjecture d’Artin (sur les racines primitives)
affirme que l’ensemble P (a) est infini. (Attention : il existe d’autres conjectures portant
le nom d’Artin.)

Ce n’est connu pour aucun entier a. Toutefois Gupta et R. Murty ont montré que
P (a) est infini pour une infinité de a. Mieux, Heath-Brown a montré que l’ensemble des
nombres premiers q tels que P (q) est fini contient au plus deux éléments, et que l’ensemble
des nombres entier m > 1 sans facteur carré tels que P (m) est fini contient au plus trois
éléments. Mais notre propos est ici d’indiquer le lien entre le problème d’Artin et le
théorème de Chebotarev.

Proposition 5. — L’entier a est une racine primitive modulo p si et seulement si
a(p−1)/k ≡ 1 (mod p) pour tout nombre premier k divisant p− 1.
Démonstration. — Cela résulte du fait que le groupe (Z/pZ)× est cyclique d’ordre p− 1.

Soit k un entier ≥ 1 sans facteur carré. Soit K un corps de décomposition du polynôme
Xk − a. Il est égal à Q(ζ, b) où ζ est une racine primitive k-ème de l’unité et b une racine
k-ème de a. Si a n’est pas une puissance parfaite d’ordre premier à p, l’extension K|Q est
galoisienne de degré φ(k)k, en particulier de degré k(k − 1) si k est premier.

Proposition 6. — Soit p un nombre premier. Il est totalement décomposé dans K si et
seulement si on a simultanément p ≡ 1 (mod k) et a(p−1)/k ≡ 1 (mod p).
Démonstration. — Si p est totalement décomposé dans K, le polynôme Xk − a est scindé
sur le corps fini Fp si bien que 1 et a admettent des racines k-èmes dans Fp, ce qui revient
à dire que p ≡ 1 (mod k) et a(p−1)/k ≡ 1 (mod p). Réciproquement, si p ≡ 1 (mod k)
et a(p−1)/k ≡ 1 (mod p), le polynôme Xk − a est scindé sur le corps fini Fp si bien que p
est totalement décomposé dans K.

Corollaire 1. — Soit Pk(a) l’ensemble des nombres premiers p tels que p ≡ 1 (mod k)
et a(p−1)/k ≡ 1 (mod p). Cet ensemble a pour densité de Dirichlet 1/[K : Q], et est donc
infini.
Démonstration. — On applique le théorème de Chebotarev au corps K.

Rappelons que la fonction de Moebius µ : N → {−1, 0, 1} est donnée par µ(x) = 0
si x a des facteurs carrés et, si x n’a pas de facteur carré, µ(x) = (−1)σ(x), où σ(x) est
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le nombre de diviseurs premiers de x. À partir de ces considérations, Hooley a démontré
le résultat suivant, qui indique quel devrait être la forme quantitative de la conjecture
d’Artin.

Théorème 5. — Supposons que l’hypothèse de Riemann généralisée pour ζK soit valide.
L’ensemble P (a) a pour densité naturelle d(a) (et donc de Dirichlet)

d(a) =
∞∑
k=1

µ(k)

[K : Q]
,

et est donc infini. La densité d(a) est donnée ainsi. Notons |Da| le discriminant absolu du
corps quadratique Q(

√
a). Soit h l’entier ≥ 1 maximal tel qu’il existe a0 ∈ N avec a = ah0 .

Posons

A(h) =
∏
q 6|h

(1− 1

q(q − 1)
)
∏
q|h

(1− 1

q − 1
),

où q parcourt les nombres premiers ne divisant pas h dans le premier facteur, et les nombres
premiers divisant h dans le deuxième facteur. On a alors

d(a) = A(h)

si |Da| ≡ 0 (mod 4) et

d(a) = A(h)(1− µ(|Da|))
∏

q|Da|,q|h

1

q − 2

∏
q|Da|,q 6|h

1

q2 − q − 1
,

où q parcourt les nombres premiers, si |Da| ≡ 1 (mod 4).

Comme h = 1 dans de nombreux cas, par exemple si a est sans facteur carré, notons
la quantité

A(1) =
∏
q

(1− 1

q(q − 1)
) = 0, 37...,

où q parcourt les nombres premiers. C’est la constante d’Artin.
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