Théorie algébrique des nombres I Année 2025-26 R. Brasca, L. Merel

EXAMEN du 21 octobre 2025

Durée: 3h

Tout appareil électronique et tout document sont interdits, exceptée une feuille manuscrite. Les parties sont indépendantes.

Ι

Soit $P \in \mathbf{Z}[X]$ un polynôme irréductible de degré premier p. Notons L un corps de décomposition de P. Notons G le groupe de Galois de $L|\mathbf{Q}$.

- 1. Montrer que G agit transitivement sur les racines de P.
- 2. En déduire que G contient un p-cycle.
- 3. Montrer qu'il y a une infinité de nombres premiers q tels que le groupe de décomposition en tout idéal premier de L au dessus de q soit cyclique d'ordre p.
- 4. En déduire que, pour ces nombres premiers q, la réduction de P modulo q est irréductible sur le corps fini \mathbf{F}_q .

II

Soit $P(X)=X^5-2\in \mathbf{Z}[X]$. Soit $K=\mathbf{Q}(\alpha)$ où α est une racine de P. On précise $\frac{5!}{5^5}(\frac{4}{\pi})^2\sqrt{50000}=13,919...$

- 1. Montrer que P est irréductible sur \mathbb{Q} .
- 2. Quel est le degré de l'extension $K|\mathbf{Q}|$?
- 3. Quels sont les nombres r_1 et $2r_2$ de plongements réels et complexes non réels de K?
- 4. Quel est le nombre de racines de l'unité de K?
- 5. Montrer que le discriminant de P est 50000.
- 6. Quels sont les nombres premiers ramifiés dans l'extension $K|\mathbf{Q}|$?
- 7. Montrer que 2 et 5 sont totalement ramifiés dans l'extension $K|\mathbf{Q}$. (On pourra considérer le polynôme $(X+2)^5-2$.)
- 8. Montrer que l'anneau des entiers de K est $\mathbf{Z}[\alpha]$.
- 9. Quel est le discriminant de K?
- 10. Montrer que pour p nombre premier ≤ 13 , il existe un unique premier non nul \mathcal{P}_p de \mathcal{O}_K de norme absolue p si et seulement si $p \neq 11$.
- 11. Montrer que le groupe des classes de K est engendré par $\{\mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_5, \mathcal{P}_7, \mathcal{P}_{13}\}$.
- 12. Notons les relations $N_{K/\mathbf{Q}}(1+2\alpha)=65$, $N_{K/\mathbf{Q}}(1-2\alpha)=-63$, $N_{K/\mathbf{Q}}(\alpha)=-2$, $N_{K/\mathbf{Q}}(2-\alpha)=-30$, $N_{K/\mathbf{Q}}(1+\alpha)=-3$. En déduire que le groupe des classes de K est trivial.

Soit $F \in \mathbf{Z}[X]$ unitaire, irréductible de degré d. Soit α un entier algébrique racine de F. Notons $\alpha_1, \alpha_2, ..., \alpha_d$ les conjugués de α dans \mathbf{C} . On pose $M(\alpha) = M(F) = \prod_{i=1}^d \operatorname{Max}(1, |\alpha_i|)$. C'est la mesure de Mahler de F (et de α). On pose $|\alpha| = \text{Max}(|\alpha_1|, |\alpha_2|, ..., |\alpha_d|)$. Supposons que α n'est pas une racine de l'unité et $\alpha \neq 0$. La conjecture de Lehmer affirme qu'il existe $c_L > 1$ (indépendant de F et d) tel que $M(\alpha) > c_L$. La conjecture de Schinzel-Zassenhaus, démontrée par Dimitrov, affirme qu'il existe $c_{SZ} > 0$ (indépendant de F et d) avec $|\alpha| > 1 + c_{SZ}/d$.

Rappelons que le résultant $\mathcal{R}(P,Q)$ de deux polynômes unitaires P et Q est $\prod_y Q(y)$ où y parcourt les racines de P, comptées avec multiplicité. Le discriminant $\mathcal{D}(P)$ de P est le résultant de P et P'. Si $P = \prod_{i=1}^n (X - \beta_i)$ est sans racine multiple, $\mathcal{D}(P)$ est, au signe près, $\prod_{i,j,i\neq j}(\beta_i-\beta_j)$, ce qui est, au signe près, le carré du déterminant de Vandermonde $\det(\beta_i^j)_{1 \le i \le n, 0 \le j \le n-1}.$

- 1. Montrer que la conjecture de Lehmer entraîne la conjecture de Schinzel-Zassenhaus.
- 2. Quels sont les entiers algébriques α tels que $M(\alpha) = 1$?
- 3. Montrer que si α n'est pas une unité, on a $M(\alpha) \geq 2$. En déduire que ces conjectures sont vraies si on se restreint au cas où α n'est pas une unité.
- 4. Soit p un nombre premier. Posons $F_p(X) = (X \alpha_1^p)(X \alpha_2^p)...(X \alpha_d^p)$. Montrer que $F_p \in \mathbf{Z}[X]$ et que $F_p \equiv F \pmod{p}$.
- 5. En déduire que p^d divise $\mathcal{R}(F, F_p)$, puis que p^{2d} divise le discriminant Δ_p de FF_p . 6. Montrer par ailleurs que $|\Delta_p| \leq (2d)^{2d} M(\alpha)^{4d(p+1)}$. On pourra utiliser l'inégalité d'Hadamard : le déterminant d'une matrice complexe est borné par le produit des normes hermitiennes de ses vecteurs lignes (ou colonnes).
- 7. Montrer que F et F_p n'ont pas de racine commune. 8. Montrer que $M(\alpha) \geq (\frac{p}{2d})^{1/(2p+2)}$ pour p assez grand.
- 9. En déduire qu'il existe $c_D > 1$ (indépendant de d et F) tel que $M(\alpha) > c_D^{1/d}$. (On pourra utiliser le postulat de Bertrand : il existe un nombre premier entre x et 2x, pour tout entier $x \geq 2$ ou le théorème des nombres premiers dont le postulat de Bertrand découle.)