Corrigé de l'EXAMEN du 21 octobre 2025

Ι

Soit $P \in \mathbf{Z}[X]$ un polynôme irréductible de degré premier p. Notons L un corps de décomposition de P. Notons G le groupe de Galois de $L|\mathbf{Q}$.

1. Montrer que G agit transitivement sur les racines de P.

C'est le cas, car P est irréductible.

2. En déduire que G contient un p-cycle.

L'orbite sous G de n'importe quelle racine est d'ordre p. Donc p divise l'ordre de G, qui contient donc un élément d'ordre p. Comme G s'identifie un sous-groupe du groupe symétrique S_p , il contient un p-cycle.

3. Montrer qu'il y a une infinité de nombres premiers q tels que le groupe de décomposition en tout idéal premier de L au dessus de q soit cyclique d'ordre p.

D'après Chebotarev, il existe une infinité de nombre premiers q tel que la classe de conjugaison de Frobenius en q soit la classe de conjugaison du cycle d'ordre p. Pour presque tout nombre premier q, tout groupe de décomposition en q est cyclique engendr par le Frobenius correspondant. Il est donc cyclique d'ordre p.

4. En déduire que, pour ces nombres premiers q, la réduction de P modulo q est irréductible sur le corps fini \mathbf{F}_q .

Le groupe de décomposition agit fidèlement sur les racines de la réduction de P modulo q. Comme il est cyclique d'ordre p, il agit transitivement, si bien que la réduction modulo q est irréductible.

II

Soit $P(X)=X^5-2\in \mathbf{Z}[X]$. Soit $K=\mathbf{Q}(\alpha)$ où α est une racine de P. On précise $\frac{5!}{5^5}(\frac{4}{\pi})^2\sqrt{50000}=13,919...$.

1. Montrer que P est irréductible sur \mathbf{Q} .

Critère d'Eisenstein en le nombre premier 2.

2. Quel est le degré de l'extension $K|\bar{\mathbf{Q}}|$?

Puisque P est irréductible, c'est le degré de P, c'est-à-dire 5.

- 3. Quels sont les nombres r_1 et $2r_2$ de plongements réels et complexes non réels de K? Le polynôme P admet une racine réelle et 4 racines non réelles. On a donc $r_1 = 1$ et $2r_2 = 4$.
- 4. Quel est le nombre de racines de l'unité de K?

Comme K admet un plongement réel, il n'y a que 2 racines de l'unité.

- 5. Montrer que le discriminant de ${\cal P}$ est 50000.
 - Calcul direct.
- 6. Quels sont les nombres premiers ramifiés dans l'extension $K|\mathbf{Q}|$?

Comme le discriminant de P a pour seuls diviseurs premiers 2 et 5, seuls 2 et 5 sont ramifiés.

7. Montrer que 2 et 5 sont totalement ramifiés dans l'extension $K|\mathbf{Q}$. (On pourra considérer le polynôme $(X+2)^5-2$.)

Comme 2 est une puissance 5-ème dans K, l'indice de ramification de $K|\mathbf{Q}$ vaut au moins 5. Comme l'indice de ramification est $\leq [K:\mathbf{Q}]$, l'extension est totalement ramifiée en 2. Le polynôme $(X-2)^5-2$ est d'Eisenstein en 5, si bien que pour les mêmes raisons l'extension est totalement ramifiée en 5.

8. Montrer que l'anneau des entiers de K est $\mathbf{Z}[\alpha]$.

Il contient $\mathbf{Z}[\alpha]$. L'indice de l'anneau des entiers \mathcal{O}_K dans $\mathbf{Z}[\alpha]$ divise le discriminant de P. D'après le critère d'Eisenstein pour la p-maximalité, 2 et 5 ne divisent pas cet indice. Donc l'indice vaut 1 et $\mathcal{O}_K = \mathbf{Z}[\alpha]$.

9. Quel est le discriminant de K?

C'est le discriminant de P puisque l'anneau des entiers de K est $\mathbf{Z}[\alpha]$ et α est une racine de P.

10. Montrer que pour p nombre premier ≤ 13 , il existe un unique premier non nul \mathcal{P}_p de \mathcal{O}_K de norme absolue p si et seulement si $p \neq 11$.

Examinons la rduction de P modulo p. Si p=2 ou p=5, comme l'extension $K|\mathbf{Q}$ est totalement ramifiée, on a la propriété voulue. Si p=5, 7 ou 13, 2 est une puissance 5-ème modulo p (en effet $x \mapsto x^5$ est surjective sur les entiers modulo p, pour p congru à 2 ou 3 modulo 5) \mathbf{F}_p est un corps résiduel de K. L'idéal premier \mathcal{P}_p correspondant est de norme absolue p. Comme $\mathbf{Z}[\alpha] \simeq \mathbf{Z}[X]/(P(X))$, les corps résiduels en les premiers au-dessus de p sont les $\mathbf{F}_p[X](Q(X))$ où Q est un facteur irréductible de la réduction modulo p de P. De façon équivalente, ces facteurs irréductibles correspondent à la décomposition de p comme produit d'idéaux premiers de $\mathbf{Z}[\alpha]$. Comme 2 admet une unique racine 5-ème dans \mathbf{F}_p , un seul de ces facteurs irréductible est de degr'e 1. Ainsi, il n'y a qu'un seul idéal au-dessus de p de norme absolue égale à p.

Si $p=11,\ 2$ n'est pas une puissance 5-ème modulo 11, si bien qu'il n'y a pas de morphisme d'anneaux $\mathbf{Z}[\alpha] \to \mathbf{F}_p$, et donc pas d'idéal au dessus de 11 de norme absolue égale à 11.

11. Montrer que le groupe des classes de K est engendré par $\{\mathcal{P}_2, \mathcal{P}_3, \mathcal{P}_5, \mathcal{P}_7, \mathcal{P}_{13}\}$.

D'après Minkowski, toute classe d'idéaux de K admet un représentant dans $\mathbf{Z}[\alpha]$ de norme inférieure à $\frac{5!}{5^5}(\frac{4}{\pi})^2\sqrt{50000} < 14$. Le groupe des classes est donc engendré par les idéaux premiers de norme ≤ 13 , c'est-à-dire par $\{\mathcal{P}_2,\mathcal{P}_3,\mathcal{P}_5,\mathcal{P}_7,\mathcal{P}_{13}\}$.

12. Notons les relations $N_{K/\mathbf{Q}}(1+2\alpha)=65$, $N_{K/\mathbf{Q}}(1-2\alpha)=-63$, $N_{K/\mathbf{Q}}(\alpha)=-2$, $N_{K/\mathbf{Q}}(2-\alpha)=-30$, $N_{K/\mathbf{Q}}(1+\alpha)=-3$. En déduire que le groupe des classes de K est trivial.

Comme $N_{K/\mathbf{Q}}(\alpha) = -2$, l'idéal \mathcal{P}_2 est principal. De même, comme $N_{K/\mathbf{Q}}(1+\alpha) = -3$, l'idéal \mathcal{P}_3 est principal. Comme $N_{K/\mathbf{Q}}(2-\alpha) = -30 = -2.3.5$, l'idéal \mathcal{P}_5 est principal. Comme $N_{K/\mathbf{Q}}(1+2\alpha) = 65 = 13.5$, l'idéal $\mathcal{P}_5\mathcal{P}_{13}$ est principal, donc \mathcal{P}_{13} est principal. Comme $N_{K/\mathbf{Q}}(1-2\alpha) = -63 = -3^2.7$, l'idéal \mathcal{P}_7 est principal. Donc le groupe des classes est trivial.

Soit $F \in \mathbf{Z}[X]$ unitaire, irréductible de degré d. Soit α un entier algébrique racine de F. Notons $\alpha_1, \alpha_2, ..., \alpha_d$ les conjugués de α dans \mathbf{C} . On pose $M(\alpha) = M(F) = \prod_{i=1}^d \operatorname{Max}(1, |\alpha_i|)$. C'est la mesure de Mahler de F (et de α). On pose $\overline{|\alpha|} = \operatorname{Max}(|\alpha_1|, |\alpha_2|, ..., |\alpha_d|)$. Supposons que α n'est pas une racine de l'unité et $\alpha \neq 0$. La conjecture de Lehmer affirme qu'il existe $c_L > 1$ (indépendant de F et d) tel que $M(\alpha) > c_L$. La conjecture de Schinzel-Zassenhaus affirme qu'il existe $c_{SZ} > 0$ (indépendant de F et d) avec $\overline{|\alpha|} > 1 + c_{SZ}/d$.

Rappelons que le résultant $\mathcal{R}(P,Q)$ de deux polynômes unitaires P et Q est $\prod_y Q(y)$ où y parcourt les racines de P, comptées avec multiplicité. Le discriminant $\mathcal{D}(P)$ de P est le résultant de P et P'. Si $P = \prod_{i=1}^n (X - \beta_i)$ est sans racine multiple, $\mathcal{D}(P)$ est, au signe près, $\prod_{i,j,i\neq j} (\beta_i - \beta_j)$, ce qui est, au signe près, le carré du déterminant de Vandermonde $\det(\beta_i^j)_{1\leq i\leq n,0\leq j\leq n-1}$.

- 1. Montrer que la conjecture de Lehmer entraı̂ne la conjecture de Schinzel–Zassenhaus. On a $\overline{|\alpha|} \ge M(\alpha)^{1/d} \ge c_L^{1/d} \ge 1 + \log(c_L)/d$.
- 2. Quels sont les entiers algébriques α tels que $M(\alpha) = 1$?

Ce sont les entiers α tel que $|\alpha_i| = 1$ pour tout i. Alors α est un entier algébrique de norme absolue 1 ou -1, c'est donc une unité. Par le théorème des unités, c'est une racine de l'unité.

3. Montrer que si α n'est pas une unité, on a $M(\alpha) \geq 2$. En déduire que ces conjectures sont vraies si on se restreint au cas où α n'est pas une unité.

On a alors $M(\alpha) \geq N_{K/\mathbb{Q}}(\alpha) \geq 2$, puisque α n'est pas une unité.

4. Soit p un nombre premier. Posons $F_p(X) = (X - \alpha_1^p)(X - \alpha_2^p)...(X - \alpha_d^p)$. Montrer que $F_p \in \mathbf{Z}[X]$ et que $F_p \equiv F \pmod{p}$.

Les racines de F_p sont des entiers algébriques permutés par le groupe de Galois, si bien que F_p est à coefficients rationnels et entiers algébriques, et donc à coefficients entiers.

Soit \tilde{K} un corps de décomposition de F. Soit \mathcal{P} un idéal premier de \mathcal{O}_K au dessus de p. La substitution de Frobenius en \mathcal{P} , donnée par $x \mapsto x^p$ permute les racines de la réduction \tilde{F} modulo p de F. Elle transforme les racines de \tilde{F} en les racines de la réduction \tilde{F}_p modulo p de F_p , qui a donc les mêmes racines que \tilde{F} . On a donc $\tilde{F} = \tilde{F}_p$.

5. En déduire que p^d divise $\mathcal{R}(F, F_p)$, puis que p^{2d} divise le discriminant Δ_p^F de FF_p .

Posons $F = F_p - pG$ dans $\mathbf{Z}[X]$. On a $\mathcal{R}(F, F_p) = \prod_{i=1}^d F_p(\alpha_i) = \prod_{i=1}^d (F(\alpha_i) + pG(\alpha_i)) = p^d \prod_{i=1}^d G(\alpha_i)$. D'où la divisibilité cherchée. On a $\Delta_p = \mathcal{R}(FF_p, (FF_p)') = \mathcal{R}(FF_p, FF'_p + F'F_p) = \mathcal{D}_F \mathcal{R}(F, F_p)^2 \mathcal{D}_{F_p}$, d'où p^{2d} divise Δ_p .

6. Montrer par ailleurs que $|\Delta_p| \leq (2d)^{2d} M(\alpha)^{4d(p+1)}$. On pourra utiliser l'inégalité d'Hadamard : le déterminant d'une matrice complexe est borné par le produit des normes hermitiennes de ses vecteurs lignes (ou colonnes).

On écrit Δ_p comme le carré du Vandermonde $2d \times 2d$ associé aux racines de FF_p . Les colonnes de cette matrice sont de la forme $(\alpha_i^j)_{0 \le j \le 2d-1}$ (cas 1) ou $(\alpha_i^{pj})_{0 \le j \le 2d-1}$ (cas p). Dans le cas 1, la norme hermitienne d'une telle colonne est $\le (2d)^{1/2}$ si $|\alpha_i| \le 1$ et $\le (2d|\alpha_i|^{4d})^{1/2}$ sinon. Dans le cas p, elle $\le (2d)^{1/2}$ si $|\alpha_i| \le 1$ et $\le (2d|\alpha_i|^{4dp})^{1/2}$ sinon. Ainsi, par l'inégalité d'Hadamard, on en déduit le résultat.

7. Montrer que F et F_p n'ont pas de racine commune.

Si F et F_p ont une racine commune α_i , il existe j tel que $\alpha_i = \alpha_j^p$. Il existe σ dans le groupe de Galois G d'un corps de décomposition de F tel que $\sigma(\alpha_j) = \alpha_i$. On a alors

 $\sigma(\alpha_j) = \alpha_j^p$. Soit k l'ordre de σ dans G. On a $\alpha_j = \sigma^k(\alpha_j) = \alpha_j^{p^k}$. Donc α_j est une racine de l'unité. Donc α est une racine de l'unité, ce qui est absurde.

8. Montrer que $M(\alpha) \ge (\frac{p}{2d})^{1/(2p+2)}$ pour p assez grand.

Supposons F_p sans racines multiples. Comme F et F_p n'ont pas de racine commune, le discriminant Δ_p est non nul. Comme p^{2d} divise Δ_p , on a $|\Delta_p| \geq p^{2d}$. On a donc $p^{2d} \leq (2d)^{2d} M(\alpha)^{4d(p+1)}$ (voir ci-dessus). Il suffit d'élever à la puissance $\frac{1}{2d}$.

Si F_p a des racines multiples, il existe i, j tels que $\alpha_i^p = \alpha_j^p$. Donc le corps $K(\alpha_i, \alpha_j)$ contient une racine p-ème de l'unité. Comme il est de degré $\leq d(d-1)$ sur \mathbf{Q} , et qu'une racine p-ème de l'unité est de degré p-1, on a $p-1 \leq d(d-1)$.

9. En déduire qu'il existe $c_D > 1$ (indépendant de d et F) tel que $M(\alpha) > c_D^{1/d}$. (On pourra utiliser le postulat de Bertrand : il existe un nombre premier entre x et 2x, pour tout entier $x \geq 2$ ou le théorème des nombres premiers dont le postulat de Bertrand découle.)

Par le postulat de Bertrand, il existe des nombres premiers distincts p et p' dans l'intervalle]3d,12d[. Si F_p et F_p ont des racines multiples, il existe i,j et k, avec $i \neq j$ et $i \neq k$ tels que $\alpha_i^p = \alpha_j^p$ et $\alpha_i^{p'} = \alpha_k^{p'}$. Alors α_j/α_k est une racine primitive pp'-ème de l'unité contenue dans le corps $K(\alpha_k,\alpha_j)$. Une telle racine est de degré (p-1)(p'-1) sur \mathbf{Q} . On a donc $d(d-1) \geq (p-1)(p'-1)$, ce qui est absurde, puisque p et p' sont p and p on peut donc appliquer la minoration de p ou p', disons p.

On a alors $M(\alpha) > (\frac{3d}{2d})^{1/(26d)} > ((3/2)^{1/26})^{1/d}$, c'est l'inégalité cherchée avec $c_D = (3/2)^{1/26}$.

Remarques : L'argument donné ici est dû à Dobrowolski. On peut le raffiner en utilisant plusieurs nombres premiers p et obtenir $M(\alpha) \ge 1 + \frac{1}{1200} (\frac{\log\log(d)}{\log(d)})^3$.

La mesure de Mahler de P peut encore s'écrire

$$M(P) = \exp(\int_0^1 \log(P(e^{2i\pi\theta})) d\theta).$$

En dehors des polynômes cyclotomiques, la plus petite mesure de Mahler connue est celle du polynôme de Lehmer $X^{10} + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1$. La conjecture de Lehmer est encore ouverte. La conjecture de Schinzel–Zassenhaus a été démontrée par V. Dimitrov en 2019, avec $c_{SZ} = \log 2/4$.