L. Merel

Feuille 2

Sous-groupes normaux, groupes quotients

- 1. Soit G un groupe opérant sur un ensemble X. Pour $x \in X$, on note G_x le stabilisateur de x dans G. Pour $g \in G$, on pose $X^g = \{x \in X/g.x = x\}$.
- 1.a. Soit $h \in G$. Montrer que $G_{h.x} = hG_xh^{-1}$.
- 1.b. Montrer qu'on a $X^{hgh^{-1}} = h.X^g$.
- 2. Soit G un groupe. Soient $x, y \in G$ d'ordres finis n et m respectivement.
- 2.a. Supposons n et m premiers entre eux, et que x et y commutent. Montrer que xy est d'ordre nm.
- 2.b. Supposons seulement que x et y commutent. Montrer que xy est d'ordre divisant le ppcm μ de n et m.
- 2.c. Supposons encore que x et y commutent. Le produit xy peut-il être d'ordre strictement inférieur à μ ?
- 2.d. Supposons $G = S_3$. Montrer qu'il existe x, y dans G d'ordres 2 et 3 respectivement, avec xy d'ordre 2.
- 3. Montrer que tout groupe d'ordre premier p est cyclique d'ordre p.
- 4. Soit H_1 et H_2 deux groupes. Posons $G = H_1 \times H_2$.
- 4.a. Montrer qu'on a des morphismes de groupes injectifs $H_1 \to G$ et $H_2 \to G$ donnés par $h_1 \mapsto (h_1, 1)$ et $h_2 \mapsto (1, h_2)$ respectivement. Notons G_1 et G_2 les images de ces morphismes.
- 4.b. Montrer que G_1 et G_2 sont distingués dans G.
- 4.c. Montrer qu'on a des morphismes surjectifs de groupes $G \to G_1$ et $G \to G_2$ donnés par $(h_1, h_2) \mapsto h_1$ et $(h_1, h_2) \mapsto h_2$ respectivement. Quels sont leurs noyaux?
- 4.d. En déduire que G/G_1 et G/G_2 sont isomorphes à G_2 et G_1 respectivement.
- 5. Soit G un groupe. Soit H un sous-groupe de G. Soit N un sous-groupe distingué de G.
- 5.a. Montrer que $HN = \{hn \in G/h \in H, n \in N\}$ est un sous-groupe de G.
- 5.b. Montrer que $N \cap H$ est distingué dans H.
- 5.c. Établir qu'on a un morphisme de groupes $H/(H \cap N) \to HN/N$ déduit de $h(H \cap N) \mapsto hN$.
- 5.d. Montrer que c'est un isomorphisme de groupes.
- 6. Soit G un groupe fini. Soit H_1 et H_2 des sous-groupes de G. On pose $H_1H_2 = \{h_1h_2/h_1 \in H_1, h_2 \in H_2\}$.
- 6.a. Considérons $H_1 \times H_2 \to G$, qui à (h_1, h_2) associe $h_1 h_2$. Est-ce un morphisme de groupes ? Montrer qu'elle est injective si et seulement si $H_1 \cap H_2$ est réduit à l'élément neutre.
- 6.b. Établir la formule $|H_1H_2| = |H_1||H_2|/|H_1 \cap H_2|$.
- 6.c. L'ensemble H_1H_2 est-il un sous-groupe de G?
- 6.d. Montrer que si H_1 ou H_2 est normal dans G, H_1H_2 est un sous-groupe de G.
- 6.e. Supposons que $H_1 \cap H_2 = \{1\}$ et que H_1 et H_2 sont normaux dans G. Montrer que les groupes $H_1 \times H_2$ et H_1H_2 sont isomorphes.
- 6.f. Soit G_1 et G_2 deux groupes. Montrer que G est isomorphe à $G_1 \times G_2$ si et seulement si les quatre conditions suivantes sont réunies : (i) G contient deux sous-groupes H_1 et H_2 isomorphes à G_1 et G_2 respectivement, (ii) H_1 et H_2 sont normals dans G, (iii) on a $H_1 \cap H_2 = \{e\}$, (iv) on a $|G| = |G_1||G_2|$.
- 6.g. Lesquelles de ces conditions sont vérifiées lorsque $G = S_3$, G_1 est d'ordre 2 et G_2 est d'ordre 3 ?
- 7. On a vu que $T = \{id, (12)(34), (13)(24), (14)(23)\}$ est un sous-groupe normal de \mathcal{S}_4 (et donc de \mathcal{A}_4).
- 7.a. Montrer que le groupe quotient A_4/T est cyclique d'ordre 3.
- 7.b. Montrer que \mathcal{S}_4 opère par conjugaison sur T privé de l'identité.
- 7.c. Cette action est-elle transitive?
- 7.d. En déduire un morphisme de groupes $S_4 \to S_3$.
- 7.e. Est-il surjectif? Quel est son noyau?
- 7.f. Montrer que le groupe quotient S_4/T est isomorphe au groupe symétrique S_3 .
- 7.g. Le groupe S_4 possède-t-il un sous-groupe isomorphe à S_3 ?

- 7.h. Est-il isomorphe à $S_3 \times T$?
- 8. Soit G un groupe fini. Soit p le plus petit nombre premier divisant |G|. Soit H un sous-groupe de G d'indice p.
- 8.a. Supposons que p=2. Montrer que $H\setminus G=\{H,G-H\}$. Quelles sont les classes de G/H?
- 8.b. Supposons encore que p=2. En déduire que H est distingué dans G.
- 8.c. Montrer que l'action de G sur G/H définit un morphisme de groupe $f: G \to \mathcal{S}_p$.
- 8.d. En déduire que le noyau de f est $\bigcap_{x \in G} xHx^{-1}$.
- 8.e. En déduire que le noyau de f est un sous-groupe de H.
- 8.f. Considérons l'action de H sur G/H. Quel est le stabilisateur dans H de $H \in G/H$?
- 8.g. Écrire la formule des classes. En déduire que tout stabilisateur dans H d'un élément de G/H vaut H.
- 8.h. En déduire que le noyau de f est H, puis que H est un sous-groupe distingué de G.
- 9. Soit H un sous-groupe distingué du groupe alterné A_5 . On suppose que H ne se réduit pas à l'identié.
- 9.a. Montrer que A_5 est composé des éléments suivant de S_5 : l'identité, des doubles transpositions (à supports disjoints), des 3-cycles et des 5-cycles.
- 9.b. Montrer que tous les 3-cycles sont conjugués dans A_5 .
- 9.c. En déduire que si H contient un 3-cycle, on a $H = A_5$.
- 9.d. Les 5-cycles sont-ils tous conjugués dans S_5 ? dans A_5 ?
- 9.e. Montrer que si H contient une double transposition, il contient toutes les doubles transpositions.
- 9.f. Montrer que le produit des doubles transpositions (1,2)(3,4) et (1,2)(4,5) est un 3-cycle.
- 9.g. Montrer que les 5-cycles (1,2,3,4,5) et (1,3,2,5,4) sont conjugués dans A_5 .
- 9.h. Montrer que le produit (1, 2, 3, 4, 5)(1, 3, 2, 5, 4) est un 3-cycle.
- 9.i. En déduire que $H = A_5$. On dit que A_5 est un groupe simple.
- 9.j. Montrer que tout sous-groupe de A_5 d'ordre 30 est normal dans A_5 .
- 9.k. En déduire que A_5 n'a pas de sous-groupe d'ordre 30.
- 10. Soit G un groupe. Notons $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G (i.e. des morphismes bijectifs $G \to G$).
- 10.a. Montrer que Aut(G), muni de la composition des applications, est un groupe.
- 10.b. Montrer que $\phi: G \to \operatorname{Aut}(G)$ donné par $g \mapsto (h \mapsto ghg^{-1})$ est un morphisme de groupes.
- 10.c. Montrer que le noyau de ϕ est le centre Z(G) de G, puis que Z(G) est un sous-groupe normal de G.
- 10.d. On note Int(G) l'image de ϕ . C'est le groupe des *automorphismes intérieurs* de G. Montrer que c'est un sous-groupe normal de Aut(G).
- 10.e. Que valent Int(G), Aut(G) et Aut(G)/Int(G) lorsque $G = S_3$?
- 10.f. Que valent Int(G), Aut(G) et Aut(G)/Int(G) lorsque G est cyclique d'ordre n?
- 10.g. Que valent Int(G), Aut(G) et Aut(G)/Int(G) lorsque G est le groupe diédral D_n ?
- 11. Soit G un groupe. Soit N et K deux sous-groupes distingués de G, avec $N \subset K$.
- 11.a. Montrer que K/N est distingué dans G/N.
- 11.b. Montrer qu'on a morphisme de groupes $G/K \to (G/N)/(K/N)$ déduit de $g \mapsto gN$.
- 11.c. Montrer que c'est un isomorphisme.
- 12. Soit G un groupe. Pour $g, h \in G$, un élément de la forme $ghg^{-1}h^{-1}$ est appelé un commutateur. Notons D(G) le sous-groupe de G engendré par les commutateurs de G. C'est le sous-groupe dérivé de G.
- 12.a. Si G est abélien, que vaut D(G)?
- 12.b. Si $G = \mathcal{S}_n$, montrer que $D(G) \subset \mathcal{A}_n$. Que vaut $D(\mathcal{S}_3)$?
- 12.c. Montrer que D(G) est un sous-groupe normal de G.
- 12.d. Montrer que $D(S_5) = A_5$. On pourra utiliser la simplicité de A_5 .
- 12.e. Montrer que $D(D_n) = C_n$, où D_n est le groupe diédral et C_n est son sous groupe cyclique d'ordre n.
- 12.f. Montrer que le quotient G/D(G) est abélien. C'est l'abélianisé de G.
- 12.g. Soit G' un groupe abélien. Soit $f: G \mapsto G'$ un morphisme de groupes. Notons $s: G \mapsto G/D(G)$ la surjection canonique. Montrer qu'il existe $\phi: G/D(G) \to G'$ un morphisme de groupes tel que $f = \phi \circ s$. Autrement dit, f se factorise par s.
- 12.h. Soit H un sous-groupe normal de G tel que G/H est un groupe abélien. Montrer que H contient D(G). Autrement dit G/D(G) est le plus grand quotient abélien de G.