EXAMEN du 12 mai 2024

Durée: 3h

Les notes de cours sont autorisées. Les parties sont indépendantes.

Ι

Soit A un anneau commutatif. Soit M un A-module libre de rang fini. On pose $\Lambda^0 M = A$. Soit k un entier ≥ 1 . On note $\Lambda^k M$ le quotient de $M^{\otimes_A k}$ par le sous-A-module engendré par $\{e_1 \otimes_A e_2 ... \otimes_A e_k$, avec $e_1, e_2, ..., e_k \in M$ et $e_i = e_j$ pour au moins un couple $(i,j)\}$. On note $e_1 \wedge e_2 ... \wedge e_k$ l'image de $e_1 \otimes_A e_2 ... \otimes_A e_k$ dans $\Lambda^k M$. On pose $\Lambda^* M = \bigoplus_{i=0}^{\infty} \Lambda^i M$, munie de la loi \wedge , c'est l'algèbre extérieure de M. C'est une algèbre graduée.

Soit $s: M \to A$ un morphisme de A-modules.

- 1. Montrer que $\Lambda^k M$ est un A-module libre.
- 2. Montrer qu'on a les relations $x \wedge y = (-1)^{kl} y \wedge x$, pour $x \in \Lambda^k M$ et $y \in \Lambda^l M$.
- 3. Montrer qu'il existe un unique morphisme de A-modules gradués $d: \Lambda^*M \to \Lambda^*M$ de degré -1 tel que $d_1 = s$ (où on note $d_k = d_{|\Lambda^k M}$) et $d(x \wedge y) = x \wedge dy + (-1)^k dx \wedge y$, pour $x \in \Lambda^k M$ et $y \in \Lambda^l M$.
- 4. Montrer qu'on a $d_k(v_1 \wedge v_2 \dots \wedge v_k) = \sum_{i=1}^k (-1)^i s(v_i) v_1 \wedge v_2 \dots \wedge \widehat{v}_i \wedge \dots \wedge v_k$.
- 5. Supposons que M soit libre de rang n sur A. Montrer que d définit un complexe $K_{\bullet}(s)$ (le $complexe\ de\ Koszul$) : $0 \to \Lambda^n M \to ... \to \Lambda^2 M \to \Lambda^1 M = M \to A \to 0$.
- 6. Soit K un corps. Posons $A = K[X_1, X_2]$, $M = A^2$. Considérons $s: A^2 \to A$ donné par $s(P_1, P_2) = X_1P_1 + X_2P_2$. Déterminer l'homologie du complexe $K_{\bullet}(s)$.
- 7. On munit K d'une structure de $K[X_1, X_2]$ -module ainsi : $P(X_1, X_2) \in A$ agit sur $a \in K$ par $(P, a) \mapsto P(0, 0)a$. Donner une résolution libre de K comme $K[X_1, X_2]$ -module.

\mathbf{II}

Soit K un corps. Soit n un entier ≥ 1 . Soit G un groupe. On pose $\operatorname{PGL}_n(K) = \operatorname{PGL}(K^n)$ le groupe projectif linéaire. Soit $\bar{\rho}: G \to \operatorname{PGL}_n(K)$ un morphisme de groupe (une représentation projective). On dit que $\bar{\rho}$ admet un relèvement à $\operatorname{GL}_n(K)$ s'il existe un morphisme de groupe $\rho: G \to \operatorname{GL}_n(K)$ qui se factorise par $\bar{\rho}$.

- 1. Montrer que la suite exacte $1 \to K^{\times} \to \operatorname{GL}_n(K) \to \operatorname{PGL}_n(K) \to 1$ donne lieu à une classe γ dans le groupe $\operatorname{H}^2(\operatorname{PGL}_n(K), K^{\times})$, pour l'action triviale de $\operatorname{PGL}_n(K)$ sur K^{\times} .
- 2. Donner un exemple pour n et K avec γ non nul.
- 3. En déduire qu'il existe une classe $\bar{\rho}^*(\gamma) \in H^2(G, K^{\times})$.
- 4. Quelle est l'extension de G par K^{\times} associée à $\bar{\rho}^*(\gamma)$?
- 5. Montrer que $\bar{\rho}^*(\gamma) = 0$ si et seulement s'il existe un relèvement de $\bar{\rho}$ à $\mathrm{GL}_n(K)$.

- 6. Supposons G cyclique d'ordre d et que K^{\times} est un corps fini à q éléments. Décrire explicitement $\mathrm{H}^2(G,K^{\times})$.
- 7. Montrer que si d et q-1 sont premiers entre eux, $\bar{\rho}$ admet un relèvement à $\mathrm{GL}_n(K)$.
- 8. Donner un exemple, avec G cyclique, où $\bar{\rho}$ n'admet pas de relèvement.

TTT

Soit X une variété algébrique affine. Notons \mathcal{O}_X le faisceau structural de X.

Un \mathcal{O}_X -module est un faisceau de groupes abéliens \mathcal{F} sur X tel que pour tout ouvert U de X, $\mathcal{F}(U)$ soit un module sur l'anneau $\mathcal{O}_X(U)$, avec compatibilité avec les applications de restriction $\mathcal{F}(U) \to \mathcal{F}(V)$, si V est un ouvert contenu dans U.

Un morphisme de \mathcal{O}_X -modules est un morphisme de faisceaux $\mathcal{F} \to \mathcal{G}$ tel que pour tout ouvert U de X, le morphisme de groupes $\mathcal{F}(U) \to \mathcal{G}(U)$ soit un morphisme de $\mathcal{O}_X(U)$ -modules.

On dit qu'un \mathcal{O}_X -module \mathcal{F} est quasi-cohérent si X peut être recouvert par une famille d'ouverts $(U_i)_{i\in I}$ telle que $\mathcal{F}(U_i)$ est isomorphe à \tilde{M}_i (voir question 1.), pour M_i un $\mathcal{O}_X(U_i)$ -module.

Pour $f \in \Gamma(X, \mathcal{O}_X)$, et M un $\Gamma(X, \mathcal{O}_X)$ -module, on note M_f le localisé en f de M (c'est le quotient de M par l'ensemble multiplicatif $\{f^n/n \in \mathbf{N}\}$). On note $D(f) = \{x \in X/f(x) \neq 0\}$ l'ouvert standard.

- 1. Soit M un $\Gamma(X, \mathcal{O}_X)$ -module. Montrer qu'il existe un unique \mathcal{O}_X -module, noté \widetilde{M} , sur X tel que $\widetilde{M}(D(f)) = M_f$, pour tout $f \in \Gamma(X, \mathcal{O}_X)$.
- 2. Montrer que le noyau d'un morphisme f de \mathcal{O}_X -modules est un \mathcal{O}_X -module. Il est noté Ker(f).
- 3. Montrer que l'image d'un morphisme f de \mathcal{O}_X -modules est un préfaisceau, et que le faisceau associé est un \mathcal{O}_X -module, noté Im(f).
- 4. Montrer que $M \mapsto \widetilde{M}$ est un foncteur de la catégorie des $\Gamma(X, \mathcal{O}_X)$ -modules vers la catégorie des \mathcal{O}_X -modules.
- 5. Montrer qu'une suite de $\mathcal{O}_X(X)$ -module $L \to M \to N$ est exacte si et seulement si la suite $\tilde{L} \to \tilde{M} \to \tilde{N}$ est exacte (ici exacte signifie que l'image du premier morphisme est le noyau du second morphisme, avec les notions de noyau et d'image ci-dessus).
- 6. Soit \mathcal{F} un \mathcal{O}_X -module quasi-cohérent. Soit $f \in \Gamma(X, \mathcal{O}_X)$. Montrer que l'application canonique $\Gamma(X, \mathcal{F})_f \to \mathcal{F}(D(f))$ est un isomorphisme.
- 7. En déduire qu'il existe un $\Gamma(X, \mathcal{O}_X)$ -module M tel que \mathcal{F} est isomorphe à \tilde{M} .
- 8. Quelle équivalence de catégories a été établie?