Feuille 2 — Quelques espaces topologiques

Topologie initiale, topologie finale

- 1.a. Montrer qu'on peut munir \mathbf{R} de la topologie dont les ouverts sont : \emptyset , \mathbf{R} et les demi-droites de la forme $[a, +\infty[$ avec $a \in \mathbf{R}$.
- 1.b. Pour cette topologie, pour quelles valeurs de $a, b \in \mathbf{R}$ l'application $x \mapsto ax + b$ est-elle continue?
- 1.c. Pour cette topologie, décrire les topologies initiales et finales associées aux applications $\mathbf{R} \to \mathbf{R}$ données par $x \mapsto x$ et $x \mapsto -x$.
- 2. Montrer que la topologie produit (sur un produit d'espaces topologiques) est la topologie initiale pour les projections sur les coordonnées.
- 3. Soit E un ensemble non vide muni de la topologie discrète. Posons $X = \mathbf{R} \times E$, que l'on munit de la topologie produit. Soit \mathcal{R} la relation d'équivalence sur X donnée par le fait que deux élément sont en relation si et seulement si ils sont égaux ou si leurs premières coordonnées sont toutes deux nulles. On munit X/\mathcal{R} de la topologie quotient. Pour $p_1 = (x_1, e_1)$, $p_2 = (x_2, e_2) \in X/\mathcal{R}$ on pose $d(p_1, p_2) = |x_2 x_1|$ si $e_1 = e_2$ et $d(p_1, p_2) = |x_2| + |x_1|$ si $e_1 \neq e_2$.
- 3.a. Indiquer une base de voisinages d'un point de X/\mathcal{R} .
- 3.b. Montrer que d'éfinit une distance sur X/\mathcal{R} .
- 3.c. À quelle condition sur E, l'espace X/\mathcal{R} est-il homémorphe à X/\mathcal{R} muni de la topologie définie par d?
- 3.d. Pour $a, b \in \mathbf{R}$, notons $f_{a,b}$ l'application affine $x \mapsto ax + b$. Notons π_1 la projection $X \mapsto \mathbf{R}$ sur la première coordonnée. Montrer que $f_{a,b} \circ \pi_1$ définit une application continue $F_{a,b} : X/\mathcal{R} \to \mathbf{R}$.
- 3.e. On munit \mathbf{R} de la topologie initiale associée aux applications $f_{a,b}$, pour $a, b \in \mathbf{R}$. Montrer que \mathbf{R} muni de cette topologie est homéomorphe à \mathbf{R} muni de la topologie usuelle.
- 3.f. On munit X/\mathcal{R} de la topologie initiale associée aux applications $F_{a,b}$ pour $a, b \in \mathbf{R}$. Obtient-on un espace homéomorphe à X/\mathcal{R} muni de la topologie quotient de X?
- 4. Soit X un espace topologique. Soit $A \subset X$ une partie ouverte ou fermée.
- 4.a. Montrer que la sujection canonique $\pi: X-A \to X/A$ induit un homéomorphisme sur son image.
- 4.b. Montrer que ce n'est nécessairement le cas si A n'est pas ouverte, ou pas fermée.
- 4.c. Soit i l'injection canonique $A \to X$. Soit s une application constante $A \to \{0\}$. Soit l'espace topologique $X \cup_A \{0\}$ obtenu par recollemement par rapport à i et s. Montrer qu'il est homéomorphe à X/A.
- 4.d. Soit Y un espace topologique. Soit $B \subset Y$. Soit $f: X \to Y$ un homéomorphisme qui induit un homéomorphisme $A \to B$. Montrer que X/A et Y/B sont homéomorphes.
- 5. Soient X et Y des espaces topologiques. Soit $f: X \to Y$. Posons I = [0,1]. Soit $A \subset X$.
- 5.a. Montrer que Y est muni de la topologie finale pour f si et seulement si, pour tout espace topologique Z, les applications continues $g:Y\to Z$ sont précisément celles pour lesquelles $g\circ f$ est continue.
- 5.b. Soit Q un ensemble. Soit π une application surjective $X \to Q$. On muni Q de la topologie finale pour π . Soit L un espace topologique localement compact. Montrer que $Q \times L$ est muni de la topologie finale pour $\pi \times \mathrm{id}_L : X \times L \to Q \times L$.
- 5.c. On muni $X \times I$ de la relation d'équivalence \mathcal{R} engendrée par $(a,t)\mathcal{R}(a',t')$ si et seulement si $a, a' \in A$ et $t, t' \in I$. Montrer que les espaces $(X \times I)/\mathcal{R}$ et $X/A \times I$ sont homéomorphes.

Sphères et espaces projectifs

- 6. On rappelle que pour n entier ≥ 0 , la n-sphère est le sous espace topologique de \mathbf{R}^{n+1} formée par les points $(x_0, x_1, ..., x_n)$ tels que $x_0^2 + x_1^2 + ... + x_n^2 = 1$. Elle est notée \mathbf{S}^n . On note \mathbf{B}^n la boule unité dans \mathbf{R}^n .
- 6.a. Montrer que $(\mathbf{S}^1)^n$ est homéomorphe à $\mathbf{R}^n/\mathbf{Z}^n$ où ce groupe quotient est muni de la topologie quotient.
- 6.b. Montrer que \mathbf{S}^n est compacte, connexe par arcs, et séparée.
- 6.c. Montrer que \mathbf{S}^{n-1} est la frontière de \mathbf{B}^n dans \mathbf{R}^n . Montrer que $\mathbf{B}^n/\mathbf{S}^{n-1}$ est isomorphe à \mathbf{S}^n .
- 6.d. Montrer que \mathbf{B}^n est convexe. En déduire qu'elle est connexe.

- 7. Soit X un espace topologique. Soient $S(X) = X \times [-1,1]/(X \times \{-1\}, X \times \{1\})$ la suspension sur X et $C(X) = X \times [0,1]/X \times \{1\}$ le cône sur X. Soit Y un espace topologique homéomorphe à X.
- 7.a. Montrer que C(X) (resp. S(X)) et C(Y) (resp. S(Y)) sont homéomorphes.
- 7.b. Montrer que S(X) est homéomorphe à $C(X)/X \times \{0\}$.
- 7.c. Soit n un entier ≥ 0 . Montrer que $S(\mathbf{S}^n)$ est homéomorphe à \mathbf{S}^{n+1} .
- 7.d. On note \mathbf{B}^n la boule unité dans \mathbf{R}^n . Montrer que les espaces \mathbf{B}^{n+1} , $C(\mathbf{B}^n)$ et $S(\mathbf{B}^n)$ sont isomorphes.
- 8. Soit K un corps. Soit n un entier ≥ 0 . L'espace projectif de dimension n sur K est l'ensemble quotient $K^{n+1} - \{0\}/R$ où R est la relation d'équivalence donnée par xRy si et seulement x et y sont colinéaires. Il est noté $\mathbf{P}^n(K)$. Lorsque K est muni d'une topologie, on en déduit une topologie sur K^{n+1} , et donc sur $K^{n+1}-\{0\}$. L'espace $\mathbf{P}^n(K)$ est muni de la topologie quotient. C'est en particulier le cas si $K=\mathbf{R}$ ou $K = \mathbf{C}$. Montrer que les espaces $\mathbf{P}^n(\mathbf{R})$ et $\mathbf{P}^n(\mathbf{C})$ sont connexes, compacts et séparés.
- 9. Considérons la sphère unité \mathbf{S}^2 dans \mathbf{R}^3 . Notons N=(0,0,1) son pôle nord. Considérons le plan P de \mathbf{R}^3 noyau de la forme linéaire $(x, y, z) \mapsto z$. La projection stéréographique est l'application bijective $S^2 - N \to P$ qui à $M \in \mathbf{S}^2$, $M \neq N$, associe le point d'intersection entre la droite MN et P. Notons f sa réciproque. On identifie P à \mathbf{C} , et donc à $\mathbf{C} \times \{1\}$.
- 9.a. Construire une application $\mathbb{C}^2 \{(0,0)\} \to \mathbb{S}^2$ dont la restriction à $\mathbb{C} \times \{1\}$ coïncide avec f.
- 9.b. En déduire que $\mathbf{P}^1(\mathbf{C})$ est homéomorphe à \mathbf{S}^2 .

Produits et projections

- 10. On considère $\{0,1\}$ muni de la topologie discrète et $X = \mathbf{R} \times \{0,1\}$ muni de la topologie produit. On munit X de la relation d'équivalence \mathcal{R} qui met en relation deux éléments si et seulement si ils sont égaux ou si leur premières coordonnées sont égales et non nulles. On munit X/\mathcal{R} de la topologie quotient.
- 10.a. Faire un dessin. Donner une base de voisinages de (0,0)
- 10.b. Quels axiomes de séparabilité sont satisfaits par X/\mathbb{R} ?
- 11. Soient X et L deux espaces topologiques. Notons $\pi: X \times L \to X$ la projection sur la première coordonnée.
- 11.a. Montrer que π est une application ouverte.
- 11.b. Supposons L compact. Montrer que π est une application fermée.
- 11.c. Donner un exemple où π n'est pas une application fermée.
- 12. Soient X et Y deux espaces topologiques. Considérons $X \times Y$ muni de la topologie produit.
- 12.a. Montrer que $X \times Y$ est connexe (resp. connexe par arcs, resp. localement connexe, resp. localement connexe par arcs) si et seulement si X et Y sont connexes (resp. connexes par arcs, resp. localement connexes, resp. localement connexes par arcs)).
- 12.b. Montrer que les composantes connexes (resp. connexes par arc) de $X \times Y$ sont les produits des composantes connexes (resp. connexes par arc) de X et Y.
- 12.c Montrer que $X \times Y$ est compact (resp. séquentiellement compact, resp. localement compact) si et seulement si X et Y sont compacts (resp. séquentiellement compacts, resp. localement compacts).
- 12.d. Montrer que $X \times Y$ est T_n si et seulement si X et Y sont T_n , pour n = 0, 1 ou 2.
- 12.e. Montrer que $X \times Y$ est séparable si et seulement si X et Y sont séparables.
- 12.f. Montrer que $X \times Y$ est à base dénombrable si et seulement si X et Y sont à base dénombrable.
- 13. Soit l'espace topologique produit $H = \prod_{n=1}^{\infty} [0, 1/n]$. C'est le *cube de Hilbert*. 13.a. Montrer qu'il est homéomorphe à $\prod_{n=1}^{\infty} [0, 1]$.
- 13.b. Montrer que d donnée par $d((x_n)_{n\geq 1}, (y_n)_{n\geq 1}) = (\sum_{n=1}^{\infty} (x_n y_n)^2)^{1/2}$ est une distance sur H.
- 13.c. En déduire que c'est un espace topologique métrique (on dit qu'il est muni de la métrique l^2).
- 13.d. Montrer qu'il est convexe (et donc connexe par arcs) compact et séquentiellement compact (sans Tychonoff).
- 13.e. Montrer que H, muni de la topologie des boîtes (i.e. la topologie engendrée par les produits d'ouverts de chacun des facteurs), n'est pas compact.
- 13.f. Montrer que H, en tant que sous-espace de $\prod_{n=1}^{\infty} [0,1]$ muni de la topologie produit, est d'intérieur vide.
- 13.g. La topologie du cube de Hilbert est-elle induite par la topologie produit de $\prod_{n=1}^{\infty} [0,1]$?