Feuille d'exercices 8

Corps

Exercice 1

Soit $\sqrt{2} + \sqrt{3} \in \mathbf{R}$.

- 1. Montrer que c'est un élément algébrique sur $\mathbf{Q}(\sqrt{6})$.
- 2. En déduire que c'est un élément algébrique sur Q.
- 3. Quel est le degré de $\sqrt{2} + \sqrt{3}$ sur **Q**?

Exercice 2

Soit K un corps. Soit L une extension finie de K de degré impair. Soit $\alpha \in L$ tel que $L = K(\alpha)$.

- 1. Notons P le polynôme minimal de α . Montrer que P est de degré impair.
- 2. Montrer qu'il existe Q, $R \in K[X]$ tels que $P = XQ(X^2) + R(X^2)$. En déduire qu'il existe $F \in K(X)$ tel que $\alpha = F(\alpha^2)$.
- 3. Montrer que $K(\alpha) = K(\alpha^2)$.

Exercice 3

Posons $P = X^6 + X^3 + 1 \in \mathbf{Q}[X]$. Soit α une racine de P dans \mathbf{C} . Soit ϕ un plongement $\mathbf{Q}(\alpha)$ dans \mathbf{C} .

- 1. Montrer que P divise $X^9 1$. En déduire que $\phi(\alpha)^9 = 1$ et que $\phi(\alpha)^3 \neq 1$.
- 2. Donner toutes les possibilités pour $\phi(\alpha)$.
- 3. Soient ϕ_1 et ϕ_2 deux plongements de $\mathbf{Q}(\alpha)$ dans \mathbf{C} . Montrer que si $\phi_1(\alpha) = \phi_2(\alpha)$ on a $\phi_1 = \phi_2$.
- 4. Combien y a-t-il de plongements de $\mathbf{Q}(\alpha)$ dans \mathbf{C} .
- 5. Quel est le degré d'un corps de rupture de P sur \mathbf{Q} ?
- 6. Déterminer un corps de décomposition de P. Quel est son degré sur \mathbf{Q} ?

Exercice 4

Soit K un corps. On identifie K à un sous-corps de K(X).

- 1. Montrer que $X \in K(X)$ est transcendant sur K.
- 2. Soient $P, Q \in K[X]$ de degré d > 0 et e > 0 respectivement. Quel est le degré de $P \circ Q$? $P \circ Q$ peut-il être nul ?
- 3. Montrer que les seuls éléments algébriques de K[X] sont les éléments de K.
- 4. Soit L une extension de K. Soit $t \in L$ un élément transcendant sur K. Démontrer que L contient un sous-corps isomorphe à K(X).

Exercice 5

Notons $\mathbf{Q}(i)$ le sous-corps de \mathbf{C} engendré par i. Notons $\bar{\mathbf{Q}}$ la clôture algébrique de \mathbf{Q} dans \mathbf{C} . Notons $\bar{\mathbf{Q}}^r = \bar{\mathbf{Q}} \cap \mathbf{R}$.

- 1. Démontrer que tout élément de C est algébrique sur R.
- 2. Démontrer que tout élément de ${\bf C}$ algébrique sur ${\bf Q}(i)$ est algébrique sur ${\bf Q}$.
- 3. Soit α une racine cubique de 2 dans C qui n'est pas réelle. Quel est le degré de l'extension $\bar{\mathbf{Q}}^r(\alpha)|\bar{\mathbf{Q}}^r|$?
- 4. L'extension $\mathbf{Q}|\mathbf{Q}^r$ est-elle quadratique? Est-elle finie?

Exercice 6

Soit K un corps. On note K[[T]] l'ensemble des suites à valeurs dans K. La suite $(u_n)_{n\geq 0}$ est notée $\sum_{n=0}^{\infty} u_n T^n.$

- 1. Montrer que l'addition et la multiplication des polynômes de K[T] s'étend à K[[T]], faisant ainsi de K[[T]]un anneau intègre.
- 2. Notons K((T)) le corps des fractions de K[[T]]. Montrer que c'est une extension de K(T).
- 3. Montrer qu'on a $\sum_{n=0}^{\infty} T^n = 1/(1-T)$ dans K(T). En déduire que $K(T) \cap K[T] \neq K[T]$. 4. Soit I un idéal de K[T]. En considérant un élément $F \in I$ dont le plus petit terme non nul est de degré minimal parmi les éléments de I, montrer que I est principal et engendré par F. Montrer que tout idéal de K[[T]] est de la forme (T^k) avec k entier ≥ 0 .
- 5. Montrer que (T) est l'unique idéal maximal de K[[T]] et que $K[[T]]^* = K[[T]] (T)$.
- 6. Montrer que le polynôme $X^k (T+1)$ est irréductible sur K(T). Quel est le degré de l'extension $K(T)[X]/(X^k - (T+1))|K(T)|$?
- 7. Supposons dsormais K de caractéristique 0. Considérons $U_k = \sum_{n=0}^{\infty} u_n T^n/n! \in K[[T]]$ tel que $u_0 = 1$, $u_1 = 1/k$, $u_2 = 1/k(1/k 1)$... $u_n = 1/k(1/k 1)$...(1/k n + 1).... Montrer que U_k est une racine de $X^k - (T+1)$. Quel est le degré de l'extensioin $K(T)(U_k)|K(T)$?
- 8. En déduire que l'extension K(T)|K(T) n'est pas finie.

Exercice 7

Notons Q le sous-corps de C formé par les éléments algébriques sur Q.

- 1. Montrer qu'il existe une application $\bar{\mathbf{Q}} \to \mathbf{Z}[X]$ telle que l'image réciproque de tout élément soit finie.
- 2. On dit qu'un ensemble E est dénombrable s'il existe une application injective $E \to \mathbf{N}$. On pourra essayer de montrer qu'il existe des nombres transcendants dans \mathbf{R} en utilisant les faits suivants : (i) $\mathbf{Z}[X]$ est dénombrable, (ii) R n'est pas dénombrable et (iii) si E est un ensemble dénombrable et s'il existe une application $F \to E$ telle que l'image réciproque de tout élément de E est finie, l'ensemble F est dénombrable.

Exercice 8

Considérons le polynômes $X^4 - 3 \in \mathbf{Q}[X]$.

- 1. Ce polynôme est-il irréductible sur **Q**?
- 2. En déterminer un corps de rupture dans ${\bf R}$. Quel est son degré ?
- 3. Ce polynôme admet-il un corps de décomposition dans ${f R}$?

Exercice 9

Soit \mathbf{F}_q un corps fini à q éléments, où q est impair.

- 1. Montrer que l'application $\mathbf{F}_q^* \to \mathbf{F}_q^*$ qui à x assoxie x^2 est un homomorphisme de groupes dont le noyau a
- 2 éléments. En déduire qu'il y a (q-1)/2 carrés parfaits dans \mathbf{F}_q^* . 2. Soit $a \in \mathbf{F}_q$. Montrer que les ensembles $\{x^2/x \in \mathbf{F}_q\}$ et $\{a-y^2/y \in \mathbf{F}_q\}$ ont chacun (q+1)/2 éléments.
- 3. En déduire que tout élément de \mathbf{F}_q est somme de deux carrés.

Exercice 10

Soit \mathbf{F}_q un corps fini à q éléments. Soit $P \in \mathbf{F}_q[X]$ un polynôme irréductible de degré d distinct de X.

- 1. Montrer que P est sans racine multiple dans une clôture algébrique \mathbf{F}_q de \mathbf{F}_q .
- 2. Montrer que les racines de P dans $\bar{\mathbf{F}}_q$ sont des racines de l'unité. Plus précisément que P divise $X^{q^d-1}-1$ dans $\mathbf{F}_q[X]$.
- 3. Montrer que tout corps de rupture de P est un corps de décomposition.
- 4. Montrer que tout polynôme irréductible de $\mathbf{F}_q[X]$ et de degré divisant d divise $X^{q^d} X$.
- 5. Montrer que le polynôme $X^{q^d}-X$ est sans racine multiple. En déduire la formule

$$\prod_{Q} Q = X^{q^d} - X,$$

- où Q parcourt les polynômes unitaires, irréductibles de $\mathbf{F}_q[X]$ et de degré divisant d.
- 6. Notons i_n le nombre de polynômes irréductibles de degré n de $\mathbf{F}_q[X]$. Établir la formule

$$\sum_{d|n} di_d = q^n.$$

Exercice 11

Soit n un entier ≥ 1 . Posons $P_n = X^{2^n} + X + 1 \in \mathbf{F}_2[X]$. Fixons $\bar{\mathbf{F}}_2$ une clôture algébrique de $\bar{\mathbf{F}}_2$. Pour tentier ≥ 1 , on note \mathbf{F}_{2^t} le sous-corps à 2^t éléments de $\bar{\mathbf{F}}_2$. Soit k_n un sous-corps de $\bar{\mathbf{F}}_2$ qui est un corps de décomposition de P_n sur \mathbf{F}_2 . Notons E_n l'ensemble des racines de P_n dans k_n .

- 1. Démontrer que P_n n'a pas de racine multiple. Quel est le cardinal de E_n ?
- 2. Soient α_n , $\alpha'_n \in E_n$. Démontrer que $x = \alpha_n \alpha'_n$ vérifie $x^{2^n} + x = 0$. En déduire que $x \in \mathbf{F}_{2^n}$.
- Démontrer que α_nⁿ + α_n ≠ 0. En déduire que α_n n'appartient pas à F_{2ⁿ}.
 Démontrer que α_n^{2ⁿ} + α_n = 0. En déduire que α_n appartient à F_{2ⁿ}.
 En déduire que E_n = {α_n + x/x ∈ F_{2ⁿ}}, puis que k_n = F_{2²ⁿ}.

- 6. Démontrer que le polynôme P_n divise le polynôme $X^{2^{2n}} + X$ dans $\mathbf{F}_2[X]$.
- 7. Quels sont les degrés des extensions $\mathbf{F}_{2^{2n}}|\mathbf{F}_{2^n}$ et $\mathbf{F}_{2^{2n}}|\mathbf{F}_2$?
- 8. Démontrer que tout polynôme irréductible divisant P_n est de degré divisant 2n mais ne divisant pas n.
- 9. Supposons que $n=2^k$ avec k entier ≥ 0 . Montrer que tous les facteurs irréductibles de P_n sont de degré 2^{k+1} . Combien y en a-t-il?
- 10. Démontrer que le polynôme P_{2^k} admet $\mathbf{F}_{2^{2^{k+1}}}$ comme corps de rupture et de décomposition (autrement dit $\mathbf{F}_{2^{2^{k+1}}}$ est engendré par l'une quelconque des racines de P_{2^k}).

Exercice 12

Soit K un corps de caractéristique $\neq 2$. Soit \bar{K} une clôture algébrique de K. Posons $K_0 = K, K_1$ le sous-corps de \bar{K} engendré par les éléments de degré 2 sur $K_0, ..., K_n$ le sous-corps de \bar{K} engendré par les éléments de degré 2 sur K_{n-1} Posons $\bar{K}^{(2)} = \bigcup_{n \geq 0} K_n$.

- 1. Soit L|K une extension de corps de degré 2 (on parle d'extension quadratique). Démontrer qu'il existe $a \in L$ tel que $A = a^2 \in K$ et K(a) = L. On écrit alors $L = K(\sqrt{A})$.
- 2. Démontrer que si K est un corps fini, on a $K(\sqrt{A}) = K(\sqrt{B})$ $(A, B \in K)$.
- 3. Démontrer que l'extension $K_n|K$ est algébrique.
- 4. Démontrer que $\bar{K}^{(2)}$ est un corps. On l'appelle la clôture quadratique de K dans \bar{K} .
- 5. Démontrer qu'il n'existe pas d'extension de degré 2 de $\bar{K}^{(2)}$.
- 6. Lorsque K est le corps fini \mathbf{F}_p , montrer que les éléments non nuls de $\bar{K}^{(2)}$ sont les racines $p^{2^n}-1$ -èmes de l'unité lorsque n varie parmi les entiers ≥ 0 .
- 7. La clôture quadratique de **Q** coïncide-t-elle avec sa clôture algébrique ?

Exercice 13

Soit $\bar{\mathbf{Q}}$ l'ensemble des nombres algébriques dans \mathbf{C} . Soit $\alpha \in \bar{\mathbf{Q}}$. On dit que α est totalement réel (resp. totalement imaginaire) si pour tout plongement ϕ de $\mathbf{Q}(\alpha)$ dans \mathbf{C} , on a $\phi(\alpha) \in \mathbf{R}$ (resp. $\phi(\alpha) \notin \mathbf{R}$). On dit que α est totalement positif si de plus $\phi(\alpha) \geq 0$ pour tout ϕ .

- 1. Montrer que l'ensemble des nombres algébriques totalement réels est un sous-corps $\bar{\mathbf{Q}}^{\mathbf{R}}$ de $\bar{\mathbf{Q}}$.
- 2. Démontrer que les nombres rationnels sont totalement réels. Lesquels des nombres suivants sont totalement réels : $\sqrt{2}$, $\sqrt[3]{2}$, $\sqrt{2}$ + $\sqrt{2}$, $\sqrt{2}$ + $\sqrt{2}$. Lesquels sont totalement positifs?
- 3. Soit $L = \bar{\mathbf{Q}}^{\mathbf{R}}(\sqrt{A})$ un sous-corps de \mathbf{C} qui est une extension quadratique de $\bar{\mathbf{Q}}^{\mathbf{R}}$, avec $A \in \mathbf{R}$. Montrer que si A est totalement positif L est totalement réel. En déduire que A n'est pas totalement positif.
- 4. Un sous-corps de $\bar{\mathbf{Q}}$ est dit totalement réel si tous ses éléments sont totalement réels. Indiquer des corps quadratique et cubique (i.e. des extensions de Q de degré 2 et 3 respectivement) qui sont totalement réels, puis de tels corps qui ne sont pas totalement réels.
- 5. Un sous-corps L de $\bar{\mathbf{Q}}$ est dit CM si $L = K(\alpha)$ avec K totalement réel, L|K quadratique et α totalement imaginaire. Lesquels des corps suivants sont $CM: \mathbf{Q}(i), \mathbf{Q}(i, \sqrt{2}), \mathbf{Q}(\sqrt{1+\sqrt{2}})$?