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1. Introduction

Let us recall the following theorem of J-P. Serre ([20], result (7)).

Theorem 1 (Serre [20]). — Let E be an elliptic curve without complex multiplication
over a number field K. There exists a number B(E,K) such that for any prime number
p > B(E,K), the image GE,p of Gal(K̄/K) in the group Aut(E[p]) ' GL2(Fp) of
automorphisms of the Fp-vector space formed by the p-division points of E is Aut(E[p])
itself.

This is the major step to prove Serre’s open image theorem for elliptic curves ([20],
result (1)). An explicit version of Serre’s theorem is given by D. Masser and G. Wüstholz
[6](see also the work of F. Pellarin [17]).

Theorem 2 (Masser-Wüstholz [6]). — There exist absolute constants c, γ ∈ Z such that
if p does not divide the discriminant of K, and is larger than cmax({d, h})γ , where d is
the absolute degree of K and h is the Weil height of E, then GE,p = Aut(E[p]).

Serre asked in [20], 4.3. and in [21], p. 91 whether the number B(E,K) occuring in
the statement of theorem 1 can be chosen independently of E. As a specific question, does
the statement above hold for K = Q and B(E,Q) = 37?

It was well known in the 1970’s that giving an affirmative answer to Serre’s question
amounts to show that the image of GE,p is not contained in one of the following maximal
subgroups of Aut(E[p]): a Borel subgroup, the normalizer of a split Cartan subgroup, or
the normalizer of a nonsplit Cartan subgroup [20].

We consider only in this paper that K = Q. B. Mazur proved in 1978 that the image
of GE,p is not contained in a Borel subgroup when p > 37 [7]. His techniques formed the
foundation of most of subsequent work on Serre’s problem. For reasons explained in [10],
they are difficult to apply to study normalizers of nonsplit Cartan subgroups.

We will concentrate here on the normalizer of split Cartan subgroup. Mazur proved
in [8], when p = 11 or p ≥ 17, that there are finitely many elliptic curves E (up to Q̄-
isomorphism) over Q such that GE,p is contained the normalizer of a split Cartan subgroup
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of Aut(E[p]). Denote this number by np. Momose, in [14], gave a bound growing linearly
in p for np.

The purpose of the present article is twofold: to report on the recent work of P. Parent
and M. Rebolledo on the study of normalizer of Cartan subgroups and to improve mildly
on this very work.

First, Parent shows that np is bounded sublinearly in p [16], theorem 6.1. We are
more interested in showing that np = 0 for almost all prime numbers p. Parent was the
first to show that np = 0 for infinitely many values of p. More precisely, he established a
density statement, later improved by Rebolledo (in Parent’s version the density is bounded
by 7.2−9).

Theorem 3 (Parent [16], Rebolledo [19]). — The set of prime numbers p such that np 6= 0
is of density < 5.2−9.

As one can imagine, this set is shown by Rebolledo to be contained in a set of prime
numbers given by explicit congruences and of density 5.2−9 [19], theorem 0.12. As a
corollary, Rebolledo shows that if np > 0 then p ≥ 1873 or p ≤ 13.

We would like to bring attention to a certain object emerging from Rebolledo’s proof.
Let p be prime number > 3. Let S be the set of isomorphism classes of supersingular
elliptic curves in characteristic p. It is known to be a finite set of cardinality g + 1, where
g is the genus of the modular curve X0(p). Denote by ws (= 1, 2 or 3) and j(s) ∈ Fp2 half
the number of automorphisms and the j-invariant respectively of a representative of s.

Consider now the q-expansion, with coefficients in Fp2(J), given by

R =
1
2

∑
s∈S

1
ws

1
J − j(s)

+
∞∑

n=1

∑
s∈S

cn(s)
J − j(s)

qn,

where cn(s) is given as follows. If one writes n = n0p
a, with n0 integer prime to p, then

cn(s) is the number of subgroups C of order n0 in a representative E of s such that E/C
is isomophic to E (resp. to the conjugate Ep of E by the Frobenius substitution) when a
is even (resp. odd). Rebolledo (essentially) shows that it is the q-expansion of a modular
form which is of weight 2, for the congruence subgroup Γ0(p) and is over the base Fp(J).
We will denote this modular form by R and call it Rebolledo’s modular form. In fact,
Rebolledo considers only the cuspidal part of R. When j in a non-supersingular invariant
in F̄p, we denote by R(j) the specialization of R at j.

Theorem 4. — If for all ordinary j-invariants in Fp, one has R(j) 6= 0, then np = 0.

Rebolledo’s version of the previous theorem is slightly weaker: her hypothesis consists
in the nonvanishing of the cuspidal part of R(j). She proves theorem 3 by establishing the
nonvanishing of one of the first seven coefficients of the cuspidal part of R(j) for prime
numbers p satisfying certain congruences. It is likely, and perhaps of little interest, that
theorem 3 would be improved (i.e. the density mentioned in the statement of theorem
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3 would be lowered) by studying a few more coefficients of the cuspidal part of R. The
density occuring in the statement of theorem 3 can also be improved by applying theorem
4 and studying to the first seven coefficients of R itself (see section 5). In fact, the
following strengthening of theorem 4 holds (see [16]and adapt the proof of proposition
6)): if for all ordinary j-invariants in Fp, one has R(j) 6= 0, then the modular curve
Y +

0 (pn) = Y0(pn)/W , where W is the Atkin-Lehner involution and n is an integer > 1,
has no non-CM Q-rational point.

The minor improvements of the work of Rebolledo and Parent we propose in this
article rely on two technicalities: the consideration of the generalized (with respect to the
set of cusps) jacobians of modular curves and an improvement of an integrality statement
of Mazur and Momose for the j-invariants of elliptic curves E over Q for which there exists
a prime number p > 13 such that GE,p is contained in the normalizer of a split Cartan
subgroup of Aut(E[p]).

We fix a prime number p > 13 in what follows.
I would like to thank Marusia Rebolledo for her attentive reading of this article.

2. The generalized jacobian of the modular curve X0(p)

Let X0(p) be the modular curve which classifies coarsely generalized elliptic curves
with a cyclic subgoup of order p. It possesses two cusps denoted by 0 and ∞. Let J0(p)
be the jacobian variety of X0(p). It is endowed with the action of the Hecke algebra T
(generated by the Hecke operators Tl, for l prime number 6= p and the involution Wp).

Let J#
0 (p) be the generalized jacobian of X0(p) with respect to the set of cusps. It is

a semi-abelian variety over Q which fits into the following exact sequence of semi-abelian
varieties:

0 −→ T −→ J#
0 (p) −→ J0(p) −→ 0,

where T is a torus isomorphic to the multiplicative group. Since the Hecke correspondences
Tl (l prime number 6= p) and the involution Wp on X0(p) leave stable the set of cusps,
they define endomorphisms T#

l and W#
p of J#

0 (p). They generate a ring T# (which
is isomorphic to the ring generated by Hecke operators acting on holomorphic modular
forms of weight 2 for Γ0(p), and to the rings generated by Hecke operators acting on
H1(X0(p), cusps;Z)). One has a canonical ring homomorphism T# → T. Let I# be the
Eisenstein ideal of T#. It is defined, for instance, as the annihilator of the Eisenstein series
of weight 2 for Γ0(p) or equivalently as the annihilator of the class of the cuspidal divisor
(0) − (∞). Alternately, it is generated by the operators T#

l − (l + 1) (l prime number)
and Wp + 1. The kernel of the morphism J#

0 (p) → J0(p) is the identity component of
J0(p)#[I#].

When I is an ideal of T#, one gets a quotient semi-abelian variety J0(p)#/IJ0(p)#.
Denote by IJ0(p) the image in J0(p) of IJ0(p)#.

Consider the modular symbol {0,∞} ∈ H1(X0(p)(C), cusps;Z). It is the wind-
ing element of H1(X0(p)(C), cusps;Z). (Its image e in H1(X0(p)(C);R) is in fact in
H1(X0(p)(C);Q), by the Manin-Drinfeld theorem, and is the winding element introduced
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by Mazur in [7].) Denote by I#
e the annihilator in T# of {0,∞}. Call the semi-abelian

variety J#
e = J0(p)#/I#

e J0(p)# the winding quotient of J0(p)#.
Recall that the winding quotient Je of J0(p) is by definition the quotient abelian variety

J0(p)/IeJ0(p), where Ie is the annihilator in T of the winding element e ∈ H1(X0(p)(C);Q)
[9].

Proposition 1. — 1) The ideal I#
e is contained in I#.

2) The image by the canonical surjective ring homomorphism T# → T of I#
e is Ie.

Proof. — Let us write, as in [9], the modular symbol {0,∞} as e+b, where e is the winding
element e ∈ H1(X0(p)(C);Q) and b ∈ H1(X0(p), cusps;Q) is a nonzero rational multiple
of the Eisenstein element. The action of T# on H1(X0(p);Q) factorizes through T. Let
t# ∈ T#. Denote by t the image of t# in T. One has t#{0,∞} = 0 if and only if t#e = 0
and t#b = 0. Those two conditions are equivalent to te = 0 and t# ∈ I# respectively.

Proposition 2. — The kernel of the composed morphism T → J0(p)# → J#
e is a finite

group scheme.
Proof. — It suffices to show that I#

e J0(p)#∩J0(p)#[I#] is finite or, since I#
e is contained in

I# by proposition 1, that the group scheme I#J0(p)#∩J0(p)#[I#] is finite. This is indeed
the case since T# acts faithfully on J0(p)# and is, after ⊗Q, a semi-simple Q-algebra.

Denote by J#
e the Néron model (locally of finite type) over Z of J#

e , whose existence
is established, for instance by [1]chapter 10, proposition 7 and corollary 10. Let Te be
the image of T in J#

e . It is isomorphic to the multiplicative group by proposition 2.
Its Néron model Te over Z has identity component T 0

e isomorphic to the multiplicative
group. Consider now the identity component J#

e
0 of J#

e and the canonical morphism
T 0

e → J#
e

0. (Remarks of B. Poonen and K. Ribet have helped correcting an earlier
version of the following proposition.)

Proposition 3. — Any section s : Spec(Z) → J#
e

0 of the structural morphism is of
finite order.
Proof. — By a theorem of Kolyvagin and Logachev, the winding quotient Je of J0(p) has
finitely many Q-rational points [5], [9]. After multiplication by a suitable integer n, the
image of s vanishes in the generic fiber of Je. Therefore ns is a section SpecZ → Te. The
semi-abelian scheme J#

e
0 meets finitely many, say m, components of Te, whose component

group is torsion free. Therefore nms is a section SpecZ → T 0
e Since T 0

e is isomorphic to
the multiplicative group over Z, it possesses at most 2 such sections. Therefore 2nms is
the 0-section.

Recall that S is the set of isomorphism classes of supersingular elliptic curves in
characteristic p. The group Z[S] is called the supersingular module in [19]. It is endowed
with an action of T# as follows. Let m be a positive integer not in pZ. Set T#

m [s] =∑
C [s/C] (where C runs through the finite group subscheme of order m of a representative

E of s and s/C is the class of E/C) and W#
p [s] = −[s(p)], where s(p) is the conjugate of

s by the Frobenius substitution in Gal(Fp2/Fp). The formula Tmpa = Tm(−Wp)a gives
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the action of the operator Tmpa for a integer > 0. The subgroup Z[S]0 of Z[S] formed by
elements of degree 0 is a T-module compatible with the canonical map T# → T.

Let X0(p) be the normalization over the j-line of the ring of rational functions of
X0(p). It is a scheme over Spec(Z) whose generic fiber is X0(p). Accordingly, the open
affine subscheme obtained by deleting the cusps is denoted by Y0(p). Let Y0(p)smooth be
the smooth locus of Y0(p) (obtained by deleting the supersingular points in the special
fiber at p).

Denote by X0(p)Fp
the special fiber at p of X0(p). It consists in two irreducible

components Γ0 (which contains the cusp 0) and Γ∞ (which contains the cusp ∞) which
intersect at the supersingular points, which are in one to one correspondence with S, and
are both isomorphic to the projective line.

Let us recall the description of the Néron model J#
0 (p)Zp over Zp of J#

0 (p). Its
special fiber is the generalized jacobian of X0(p)Fp , with respect to the cusps. The identity
component (J#

0 (p)/Fp
)0 of its fiber at p is a torus whose character group is canonically

isomorphic, as a T#-module, to Z[S] [2], 2.3. The corresponding isomorphism associates
to λ =

∑
s∈S ns[s] ∈ Z[S] the character χλ given by the following formula. Let D̃ in

(J#
0 (p)/Fp

)0 be the class of a divisor D = D0 +D∞ =
∑

P cP [P ], where D0 and D∞ are of
degree 0 and supported on Γ0 and Γ∞ respectively but away from S and the cusps. Then
one has

χλ(D̃) =

∏
P∈Γ∞

∏
s∈S(j(P )− j(s))cP ns∏

P∈Γ0

∏
s∈S(j(P )− j(s))cP ns

.

We take note of the structure of the cotangent space of J#
0 (p)/Fp

derived from this descrip-
tion. Denote by χs the character associated to s ∈ S. The map Fp[S] → Cot0(J#

0 (p)/Fp
)

which to [s] associates dχs/χs is an isomorphism of T#-modules.

Let s0 be a section Spec(Zp) → Y0(p)smooth. Denote by P0 the Qp-rational point
obtained by restriction to the generic fiber and P0/Fp

the Fp-rational point obtained by
restriction to the special fiber. Denote by j0 the (necessarily ordinary and p-adically
integral) j-invariant of P0/Fp

. Consider the morphism, over Qp, of algebraic varieties φ0

: Y0(p) → J#
0 (p) which to P associates the class of the divisor P − P0. It extends to a

morphism over Spec(Zp), still denoted by φ: Y0(p)smooth → J#
0 (p). The modular function

j provides a local parameter in the neighborhood of P0/Fp
. Therefore dj is a basis of the

cotangent space at P0/Fp
of Y0/Fp.

Proposition 4. — Let λ =
∑

s∈S ns[s] ∈ Z[S]. Let x = dχλ/χλ ∈ Cot0(J#
0 (p)/Fp

). If
P0/Fp

belongs to Γ∞, one has

Cot(φ)(x) =
∑
s∈S

ns

j0 − j(s)
dj.

The opposite of this formula holds when P0/Fp
belongs to Γ0.

Proof. — Assume that P0/Fp
belongs to Γ∞. Let P/Fp

be a F̄p-rational point of Γ∞ of
j-invariant j. The following formula follows from the description of χλ:

χλ((P0/Fp
)− (P/Fp

)) =
∏

s∈S(j − j(s))cP ns∏
s∈S(j0 − j(s))cP ns

,
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which has to be inverted if P0/Fp
and P/Fp

belong to Γ0. By differentiating logarithmically,
one gets the desired formula.

We study now the restriction to the special fiber of the morphism φe, over Zp obtained
by composing φ with the canonical morphism J#

0 (p)/Zp
→ J#

e /Zp
.

Corollary . — If there exists λ =
∑

s∈S ns[s] ∈ Z[S] such that (in Z[S])

I#
e λ = 0

and (in F̄p[S]) ∑
s∈S

ns

j0 − j(s)
6= 0,

then φe is a formal immersion at P0/Fp
.

Proof. — One simply needs to identify Cot0(J#
e /Fp

), by functoriality of the cotangent

space, with the subspace of Cot0(J#
0 (p)/Fp

) annihilated by I#
e , i.e. with Fp[S][I#

e ]. For
this, it is sufficient to establish that the exact sequence of semi-abelian varieties over Qp

0 → I#
e J0(p)# → J0(p)# → J#

0 → 0

extended to the following sequence of Néron models over Zp

I#
e J0(p)

#
/Zp

→ J0(p)
#
/Zp

→ J#
e /Zp

gives then rise, by passing to the cotangent spaces along the zero-section, to the following
exact sequence of free Zp-modules:

0 → Cot0(Je
#
/Zp

) → Cot0(J0(p)
#
/Zp

) → Cot0(I#
e J0(p)

#
/Zp

) → 0.

Noting that the semi-abelian varieties involved are semi-stable, we could proceed in a
general way like the proof of Corollary 1.1 of proposition 1.3 in [8](which is based on
proposition 1.1 of Raynaud which applies to semi-abelian varieties). We will content
ourselves with arguments appropriate to our specific situation. It is enough to show that
we have an exact sequence of finite flat group schemes over Zp

0 → (I#
e J

#
0 (p))/Zp

[pn]0 → J#
0 (p)/Zp

[pn]0 → J#
e /Zp

[pn]0 → 0,

where n is any integer > 0 and the superscript 0 indicates the identity component. By
[8], proof of proposition 1.3 and application of proposition 1.1, if suffices to show that,
for any integer n ≥ 0 one has J0(p)#[pn]0 ∩ (I#

e J0(p)#)[pn] ⊂ (I#
e J0(p)#)[pn]0. To show

this, one notes that T [pn] is a direct factor as a group scheme in J0(p)#[pn]: since p is
not an Eisenstein prime, one has J0(p)#[pn] = T [pn]⊕ (I#J0(p)#)[pn]. Since I#

e J0(p)# is
an abelian subvariety of the abelian variety I#J0(p)# (proposition 1), proposition 1.3 of
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[8]applies and (I#J0(p)#)[pn]0∩(I#
e J0(p)#)[pn] = (I#

e J0(p)#)[pn]0. It remains to establish
the inclusion

(T [pn]0 ⊕ (I#J0(p)#)[pn]0) ∩ (I#
e J0(p)#)[pn] ⊂ (I#J0(p)#)[pn]0 ∩ (I#

e J0(p)#)[pn].

Write a ∈ (T [pn]0 ⊕ (I#J0(p)#)[pn]0) ∩ (I#
e J0(p)#)[pn] as b + c where b ∈ T [pn]0

and c ∈ (I#J0(p)#)[pn]0. Since (I#
e J0(p)#)[pn] ⊂ (I#J0(p)#)[pn], b = a − c be-

longs to (I#J0(p)#)[pn] whose intersection with T [pn] is trivial. Therefore b = 0 and
a ∈ (I#J0(p)#)[pn]0, which implies the desired inclusion.

The Eisenstein E element of Q[S] is given by the formula

E =
∑
s∈S

1
ws

[s].

It is of degree (p− 1)/12 by Eichler’s mass formula [3]and generate the Q-line formed by
the annihilator of I# in Q[S]. For x ∈ Z[S] call x0 = x − 12deg(x)

p−1 E ∈ Q[S] the cuspidal
projection of x.

Proposition 5. — One has I#
e x = 0 if and only if Iex0 = 0.

Proof. — Since I#
e ⊂ I# and I#E = 0, one has I#

e x = I#
e x

0 = Iex
0.

3. Integrality of the j-invariant

As an easy application of the techniques he invented to study the rational points
of X0(p), Mazur proved in [8], corollary 4.8 the integrality away from 2, p and primes
congruent to ±1 (mod p) in theorem 5 below. This was extended to the integrality away
from 2 by Momose in [14], proposition 3.1. Moreover Momose, relying on [7]has proved
theorem 5 when p ≡ 1 (mod 8) [14], corollary (3.6). We slightly improve on their work
(without making any use of the generalized jacobian).

Theorem 5. — Let E be an elliptic curve over Q without complex multiplication Suppose
that GE,p is contained the normalizer of a split Cartan subgroup of Aut(E[p]). Then
j(E) ∈ Z.
Proof. — We follow a standard approach. After Momose’s work, it remains to establish the
integrality of j(E) at the prime 2. Suppose j(E) /∈ Z. Then E does not have potentially
good reduction at 2. It does possess a Q-rational pair {A,B} of cyclic subgroups of order
p.

Let us recapitulate the situation from the modular point of view (see [14], section
1 for details). Consider the modular curve Ys(p) (resp. Ys(p)+) over Q which classifies
coarsely elliptic curves with an ordered pair (resp. a pair) (A,B) of cyclic subgroups of
order p and Xs(p) (resp. X+

s (p)) the compactification of Ys(p) (resp. Ys(p)+)obtained by
adding two (resp. one) Q-rational cusps 0 and ∞ (resp. ∞) and p − 1 (resp. (p − 1)/2)
cusps which are rational over the cyclotomic field Q(µp) (resp. Q(µp)+). The curve Xs(p)
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is a covering of degree 2 of X+
s (p). The triple (E,A,B) defines a Q-rational point P+

0 of
X+

s (p) and therefore a K-rational point P0 of Ys(p), where K is a quadratic extension of
Q. The curve Xs(p) is isomorphic to X0(p2); since Y0(p2)(Q) consists of CM points for
p > 7 [8], the point P0 is not Q-rational.

Let Xs(p) (resp. Xs(p)+) be the normalization over the projective j-line of Xs(p) (resp.
X+

s (p)). It is a scheme over Spec (Z) whose generic fiber is Xs(p) (resp. X+
s (p)). The

point P+
0 extends to a section s+0 : Spec (Z) → X+

s (p). The specialisation at 2 of s+0 is
one of the cusps of X+

s (p), since j(E) is not 2-integral. It is the cusp ∞ (since the residue
field at any prime above 2 of Q(µp)+ is of degree > 2 over F2).

Let W be the involution of Xs(p) defined by exchanging subgroups of order p. (It
coincides with the Fricke involution when one identifies Xs(p) with X0(p2).)

Consider now the morphism g : Xs(p) → J0(p) which to P = (E,A,B) associates the
class of the divisor (E,A) − (E/B,E[p]/B). One has g ◦W = −Wpg. By the universal
property of the Néron model, g extends to a morphism over Spec (OK) : X smooth

s (p) →
J0(p), which we still denote by g, where X smooth

s (p) is the smooth locus of Xs(p), which
is obtained again by deleting the supersingular points in the special fiber at p [14]. The
point P0 extends to X smooth

s (p) [14], (i.e. the elliptic curve E is not supersingular at p).
One get a K-rational point g(P )−Wpg(P ) of J0(p), which is in fact Q-rational, since

P0 is not Q-rational.
Our method diverges from from the ones employed by Mazur and Momose here.

Instead of considering a quotient of J0(p), we consider an abelian subvariety.
In [7], theorem (2), Mazur has shown that the abelian variety J0(p) contains a

subgroup isomorphic to µ2 if and only if p ≡ 1 (mod 8). This observation has enabled
Momose to prove theorem 5, when p ≡ 1 (mod 8). Curiously, in the case when p is not
≡ 1 (mod 8), it provides also the key argument to prove the theorem.

Let t ∈ T such that tIe = 0. Then the abelian variety tJ0(p) is isogenous to an abelian
subvariety of the winding quotient of J0(p), therefore it has finitely many rational points
(by a theorem of Kolyvagin and Logachev [5], more details can be found in [15]and [11]).
Moreover, since 1+Wp ∈ Ie, the point tg(P ) is Q-rational. Consequently, the point tg(P0)
of J0(p) has finite order. When p > 13, one has Ie 6= T (see for instance [11], proposition
8) therefore one can find t 6= 0 such that tIe = 0. Moreover t can be taken as 2-adically
maximal, i.e. such that t /∈ 2T. Therefore, there exists t ∈ T− 2T such that tIe = 0.

Since g ◦W = Wp ◦ g, the morphism gt obtained by composing g with multiplication
by t in J0(p) factorises through X+

s (p). Denote by g+
t the morphism X+

s → J0(p) thus
obtained. It satisfies gt(P0) = g+

t (P+
0 ) = tg(P0). By universal property of the Néron

model, one gets a morphism over Spec (Z) : X+smooth
s (p) → J0(p), which we still denote

by g, where X+smooth
s (p) is the smooth locus of X+

s (p).
Since s+0 and the ∞-section coincide in the fiber at 2 of X+

s (p), the points tg(P0) and
tg(∞) extend to points in the Néron model J0(N) of J0(N), which coincide in the fiber
at 2. Therefore the point tg(P0) − tg(∞) is of finite order in the generic fiber of J0(p)
and vanishes in the fiber at 2. By a theorem of Raynaud [18], since the ramification index
of Q2 over Q2 is 1 = 2 − 1, the point tg(P0) is 0 in the generic fiber or is of order 2
and belongs to a subgroup isomorphic to µ2. Our hypothesis that p ≡ 1 (mod 8) makes
the existence of such a subgroup impossible, as noted above. Hence, we have shown that
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g+
t (P+

0 ) = g+
t (∞). Since P+

0 and ∞ coincide in the fiber at 2 of X+
s (p), we derive that

g+
t is not a formal immersion at the point ∞ in the fiber at 2 of X+

s (p), i.e the cotangent
map Cot(g+

t ) deduced from g+
t is not surjective.

This cotangent map has been described by Mazur [8], Lemma 2.1: using the theory
of the Tate curve, one identifies, as a T-module, Cot0F2

(J0(p)) with Hom(T,F2) and
Cot∞F2

(Xs(p)) with F2 in such a way that Cot(g)(ψ) = ψ(T1). Therefore one has
Cot(gt)(ψ) = ψ(t). Since t /∈ 2T, there exists ψ ∈ Hom(T,F2) such that ψ(t) 6= 0.
This establishes the surjectivity of Cot(gt).

To obtain the surjectivity of Cot(g+
t ), one simply remarks that the cotangent map of

the canonical morphism π : Xs(p) → X+
s (p) is an isomorphism of F2-vector spaces at the

point ∞ in the fiber at 2 [14], proof of proposition 2.5. Therefore, since gt = g+
t ◦ π, one

gets the surjectivity of Cot(g+
t ).

Remarks. 1) Take note of the complementarity between the techniques of Mazur, which
tend to show that GE,p is large when j(E) is not integral and those of diophantine
approximation, like those who give rise to the theorem of Masser-Wüstolz above, which
deal typically with elliptic curves with integral j invariant.

2) It seems possible to treat the cases where p ≡ 1 (mod 8) by the above method
as well, without resorting to Momose’s trick. One has to show that the point tP does
not belong to a subgroup isomorphic to µ2. For that one can make use of [7], chapter 3,
proposition 4.2, to show that tP does not belong to such a group in the fiber at p of J0(p)
and therefore in the generic fiber.

4. Proof of theorem 3

The proofs of the theorems of Parent and Rebolledo use a slightly weaker form (which
requires the element x below to belong to Z[S]0) of the following statement (which is
similar to conditions expressed and used in [11]and [12]).

Proposition 6. — Suppose that, for any ordinary j-invariant in Fp, there exists x =∑
s∈S ns[s] ∈ Z[S] such that, in Z[S],

I#
e x = 0

and, in Fp2 [S], ∑
s∈S

ns

j − j(s)
6= 0,

then np = 0.
Proof. — Let E be an elliptic curve over Q without complex multiplication. Suppose
that GE,p is contained in the normalizer of a split Cartan subgroup of Aut(E[p]). Then
E possesses a Q-rational pair {A,B} of cyclic subgroup of order p. By theorem 5, E has
potentially good reduction everywhere, in particular at p. We know also, since p > 7, that
the the groups A and B are K-rational, where K is a quadratic extension of Q, without
being Q-rational. Let OK be the ring of integers of K.
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We use the basic setup of the proof of theorem 5, and proceed in a similar way, with
a few differences: a) the fiber at p, and not the fiber at 2, of the modular curve will be the
subject of our attention, b) the only modular curve that we will consider is X0(p) and c)
we will make use of the generalized jacobian J#

0 (p) of X0(p).
The pairs (E,A) and (E/B,E[p]/B) give rise to two K-rational points P1 and P2 of

the modular curve Y0(p). Since j(E) ∈ Z (theorem 5), those points extend to sections
Spec(OK) → Y0(p). If P1 = P2, E has an endomorphism of degree p which necessarily
comes from complex multiplication and a contradiction has been reached.

Momose provides the following informations: E has potentially good reduction at p,
p splits in K and the the Néron models of the elliptic curves E and E/B, as well as the
subgroups A et E[p]/B coincide in the fibers at p [14], Lemma 1.3. Therefore the points
P1 and P2 coincide in the special fiber at (a prime of K above) p of Y0(p).

Consider the morphism φ#: Y0(p) → J#
0 (p) which to P associates the class of

the divisor (P ) − (P1) and the canonical morphism J#
0 (p) → J#

e . Denote by φ#
e the

composition of these morphisms. It extends to a morphism over Spec(OK), still denoted
by φ#

e : Y0(p) → J#
e , where J#

e is the Néron model of J#
e over Z.

The class of the divisor (P1)−(P2) is a prioriK-rational in J#
e . Since the involutionWp

acts as −1 on J#
e and exchanges P1 and P2 and since the nontrivial element of Gal(K/Q)

exchanges P1 and P2, the image in J#
e of the class of (P1) − (P2) is Q-rational, i.e. the

image in J#
e of φ#(P1)− φ#(P2) is Q-rational.

As noted above, the points P1 and P2 extend to sections Spec(OK) → Y0(p). Therefore
the class of the divisor (P1) − (P2), as well as its image φ#

e (P1) − φ#
e (P2) in J#

e
0 extend

to sections Spec(OK) → J0
#(p) belonging to the identity component (over OK). Since

φ#
e (P1) − φ#

e (P2) is Q-rational and J#
e is a semi-stable semi-abelian variety, φ#

e (P1) −
φ#

e (P2) extends to a section Spec(Z) → J#
e

0. By application of proposition 3, it is of
finite order in the generic fiber . In the special fiber at p, this section vanishes, therefore,
since p > 2, it vanishes also in the generic fiber of J#

e .
We have obtained the following two assertions: the element φe(P1) − φe(P2) is zero

and the points P1 and P2 coincide in the fiber at p of Y0(p). By the argument of [8],
corollary 4.3, at least one of the following two statements is true: (a) the morphism φ#

e is
not a formal immersion at π = P1/Fp

= P2/Fp
or (b) one has P1 = P2.

By the corollary of proposition 4, (which we apply after embedding the ring OK in
Zp) the hypotheses of the proposition imply that φ#

e is a formal immersion at π. We have
to conclude that P1 = P2, a contradiction.

5. The formulas of Gross-Zhang and Gross-Kudla

Let us return to the first condition imposed on x in proposition 6. To maximize the
odds that the second condition is satisfied, one would like to choose x ∈ Z[S] such that x
is an annihilator of I#

e (and p-adically maximal). In the terminology used for elements in
the homology group H1(X0(p)(C), cusps,Z), such an x could be called a winding element.
In H1(X0(p)(C), cusps,Z), a winding element is given quite explicitly by the modular
symbol {0,∞}. This is why it seems natural to ask whether an element in Z[S] whose
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annihilator in T# is I#
e can be explicitly expressed. I do not know any such expression for

a winding element. The formulas of Gross-Zhang and Gross-Kudla provide infinite families
of elements which satisfy the first condition of proposition 6, i.e. whose annihilator in T#

contains I#
e .

Let us begin with the formula of Gross-Zhang. Let D be an integer > 0. Denote by
h(−D) the class number of the quadratic field Q(

√
−D) and by u(−D) half the number

of units of the ring of integers O−D of Q(
√
−D). The maximal orders of the quaternion

algebra ramified at∞ and p coincide with the elements of S: Rs contains the endomorphism
ring (over F̄p) of a representant of s. Denote them by (Rs)s∈S . For s ∈ S, let hs(−D) be
the number of embeddings of the ring O−D in Rs.

eD =
1

2u(−D)

∑
s∈S

hs(−D)[s] ∈ Z[
1
6
][S].

Recall that Z[S] is endowed with a pairing < ., . > given by < s, s′ >= 0 except when
s = s′, then < s, s >= ws (s, s′ ∈ S). The Hecke algebra is symmetric for this pairing.

Theorem 6 (Gross [3], Zhang [22][23]). — Let f be a newform of weight 2 for Γ0(p). Let
χD be the quadratic character modulo D. One has

L(f, 1)L(f, χD, 1) =
(f, f)√
D

< 1feD,1feD >

where (., .) is the Petersson scalar product, and where 1f is the idempotent of T⊗C such
that 1ff = f .

Denote by e0D ∈ Q[S] the cuspidal projection of eD.

Corollary (Parent [16]). — One has Iee0D = 0 (and therefore I#
e eD = 0 in Z[S]).

Parent proves his version of theorem 3 by studying ιj(e0D) for a few values of D and
showing that those values can not all be zero for p belonging to a set of prime numbers of
density 1− 7.2−9.

Let m be an integer > 0. Consider

ym =
∑
s∈S

cm(s)[s] ∈ Z[S]

where cm(s) is defined in the introduction.
Rebolledo observes L(f, 1) is a factor of L(f ⊗ h⊗ h, 2) when f and h are newforms.

A precise expression due to Gross and Kudla relates the L-function of such triple product
of newforms to Z[S] [4].

Let
∆3 =

∑
s∈S

1
ws

[s]⊗3 ∈ Q[S]⊗3.
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Theorem 7 (Gross-Kudla [4]). — Let f and h be newforms of weight 2 for Γ0(p). One
has

L(f, 1)L(f⊗Sym2h, 2) =
(f ⊗ h⊗ h, f ⊗ h⊗ h)⊗3

4πp
< 1f ⊗1h⊗1h∆3,1f ⊗1h⊗1h∆3 >

⊗3

where (., .)⊗3 is the tensor cube of the Petersson scalar product, and where < ., . >⊗3 is
the tensor cube of the pairing of Z[S].

We remarked already that the pairing < ., . > is a linear map on Z[S]⊗2 which
factorizes through Z[S]⊗T2. Therefore it makes sense to compose a Hecke operator T#

m

with < ., . > on Z[S]⊗2. Rebolledo observes that

ym = (1⊗ < ., . > ◦T#
m )(∆3)

and deduce the following from the formula of Gross and Kudla (where y0
m ∈ Q[S] is the

cuspidal part of ym).

Corollary (Rebolledo [19]). — One has Iey0
m = 0 (and therefore I#

e ym = 0 in Z[S]).

In fact the elements considered by Parent and Rebolledo are related by a simple linear
formula, which provides a second proof of the corollary of theorem 7 as a consequence of
the corollary of theorem 6.

Proposition 7 (Rebolledo [19]). — One has

ym = εmE +
∑

s,d,4m−s2=dr2

ed,

where s and d run through the integers and where εm = 1 if m is a square and εm = 0
otherwise.

Let ιJ be the group homomorphism Z[S] → Fp2(J) given by the formula

ιJ(
∑
s∈S

ns[s]) =
∑
s∈S

ns

J − j(s)
.

For j ∈ F̄p distinct from all supersingular j-invariant, denote by ιj(
∑

s∈S ns[s]) the
specialization at j of ιJ(

∑
s∈S ns[s]).

Since ιj(ym) is the m-th coefficient of the series R(j), theorem 4 follows from propo-
sition 6, corollary of theorem 7 and proposition 5. Let us give an idea of the proof of
theorem 3, and a bit more. In particular, one has np = 0 as soon as ιj(y2) 6= 0.

A calculation of Mestre and Oesterlé gives

ιj(y2) =
a

j − 1728
+

2b
j + 3375

+
c

j − 8000
,
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where a, b, c ∈ {0, 1} and a = 1 (resp. b = 1, resp. c = 1) if and only if the prime number
p is inert of ramified in the quadratic field Q(

√
−1) (resp. Q(

√
−7), resp. Q(

√
−2)) i.e.

if and only if p ≡ 3 (mod 4) (resp. p ≡ 3, 5 ou 6 (mod 7), resp. p ≡ 5 ou 7 (mod 8))
[13], [19]. Moreover, by studying the image by ιj of a few elements of Z[S]0 obtained as
linear combinations of the eD’s, Parent shows that when p is not a square modulo 7 or 4
then the hypotheses of proposition 6 are satisfies [16]. The study of ιj(y2) improves this
slightly by establishing that these hypotheses are satisfied when p is not congruent to 1
modulo 8. (This congruence is not in the list of congruences for p which imply that np = 0
obtained by Parent and Rebolledo, and therefore yields an improvement of theorem 3: for
instance n10333 = 0.)

6. Rebolledo’s modular form

We make first more precise a statement contained in Rebolledo’s thesis.

Proposition 8 (Rebolledo [19]). — The q-expansion

∞∑
m=1

ιJ(ym)qm

is, except for the constant term, the q-expansion of a modular form of weight two for Γ0(p)
over Fp(J), which we call Rebolledo’s modular form and denote by R.
Proof. — The element ym is given as follows:

ym =
∑
s∈S

1
ws

< s, T#
ms > [s] ∈ Z[

1
6
][S].

We adopt here the most naive definition for modular form (of weight 2 for Γ0(p)) over a
ring A: it is an element of the A-module obtained by extending the scalar to A from the
Z-module formed by holomorphic modular forms having integral q-expansion. Up to the
constant term, the q-expansion

∑∞
m=1 amq

m are preciseley those for which there is a group
homomorphisms ψ: T# → A satisfying ψ(T#

m ) = am (m integer > 0).
There is a group homomorphism : T# → Fp2(J) given by ψj(t) = ιJ(

∑
s∈S < s, ts >

[s]). We observe that (
∑

s∈S < s, ts > [s]) is anti-invariant by Wp, which implies that
ιJ(

∑
s∈S < s, ts > [s]) is Fp-rational. Therefore the q-expansion

∑∞
m=1 ψJ(T#

m )qm is,
except for the constant term, the q-expansion of a modular form of weight two for Γ0(p)
over Fp(J).

It is interesting to look at the constant term of the modular form R. It is given by
the following formula. I am indebted to M. Rebolledo for having corrected me on the
constant term of the formula. Note that she has established the formula independently by
a different argument.
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Proposition 9. — The constant term of the q-expansion of R is equal to

1
2
ιJ(E) =

1
2

∑
s∈S

1
ws

1
J − j(s)

∈ Fp(J).

Proof. — One has ym = y0
m + dmE in Q[S], where dm is the ratio of the degree of ym by

the degree of E . By Eichler’s mass formula [3], the degree of E is (p− 1)/12.
Let R0 (denoted by gj in [19]) be the cusp form of weight 2 for Γ0(p) over Fp2(J)

given by the q-expansion

R0 =
∞∑

m=1

ιj(y0
m)qm.

Therefore one has
R = R0 + ιJ(E)T,

where T is the modular form whose m-th coefficient of the q-expansion is dm. Since the
degree of ym is the trace of the Hecke operator T#

m (operating on Z[S]), and since T#
m acts

as σ(p)
1 (m) on Z[S]/Z[S]0, one has

dm = d0
m +

12
p− 1

σ
(p)
1 (m)

where σ(p)
1 (m) is the sum of the divisors of m which are prime to p and where d0

m is the
trace of Tm (operating on Z[S]0) divided by the degree of E .

Consider the Eisenstein series E of weight 2 for Γ0(p) given by the q-expansion

E =
p− 1
24

+
∞∑

m=1

σ
(p)
1 (m)qm

and the modular form

T 0 =
∞∑

m=1

d0
mq

m.

Indeed T 0 is a cusp form since the trace is a linear form on T. One has

R = R0 + ιJ(E)T 0 +
12
p− 1

ιJ(E)E.

Since R0 and T 0 are cusp forms, the constant coefficient of R is equal to 12
p−1 ιJ(E) times

the constant coefficient of E, i.e.

1
2
ιJ(E) =

1
2
ιJ(

∑
s∈S

1
ws

[s]) =
1
2

∑
s∈S

1
ws

1
J − j(s)

.

One derives a weak, but non-trivial, criterion for the nonvanishing of R, which is, as
far as I know, of little use.
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Corollary . — If the rational function

F (J) =
∑
s∈S

1
ws

1
J − j(s)

∈ Fp(J)

does not vanish, one has R 6= 0. Therefore, if F (j) 6= 0 (j ∈ Fp and j /∈ S), one has
np = 0.

The preceding corollary tells us that the singular locus of the supersingular polynomial∏
s∈S

(J − j(s))6/ws ∈ Fp(J)

(the derivative of this polynomial is equal to six times the numerator of F (j)) is the locus
of cuspidality of R. This observation motivates us to ask whether Rebolledo’s modular
can be defined by purely geometric means (i.e. without mentioning any q-expansion).
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