CORRIGÉ de l'EXAMEN du 13 janvier 2006

Ι

- 1. On a $\Phi_3^+(X) = X + 1$ et $\Phi_5^+(X) = X^2 + X 1$.
- **2.** Le polynôme $\Phi_p^+(X)$ est produit de (p-1)/2 facteurs de degré 1. Il est de degré (p-1)/2.
- 3. On a $X^{(p-1)/2} \dot{\Phi}_p^+(X+1/X) = \prod_{\zeta \in \mu_p^+} (X^2+1-\zeta X-\zeta^{-1}X) = \prod_{\zeta \in \mu_p^+} (X-\zeta)(X-\zeta^{-1}) = \Phi_p(X)$. En
- effet, on la réunion disjointe $\mu_p = \mu_p^+ \cup \mu_p^-$, où $\mu_p^- = \{\zeta^{-1}/\zeta \in \mu_p^+\}$ (car $p \neq 2$). **4.** Supposons que $\Phi_p^+(X) = \sum_{n=0}^{(p-1)/2} a_n X^n \notin \mathbf{Z}[X]$. Soit n_0 le plus grand entier tel que $a_{n_0} \notin \mathbf{Z}$. On a $X^{(p-1)/2}a_n(X+1/X)^n \in \mathbf{Z}[X]$ lorsque $n > n_0$ et $\Phi_p(X) = X^{(p-1)/2}\Phi_p^+(X+1/X) \in \mathbf{Z}[X]$. On a donc $\sum_{n=0}^{n_0} a_n(X+1/X)^n \in \mathbf{Z}[X]$. Le terme de plus haut degré de ce dernier polynôme est $a_{n_0}X^{n_0+(p-1)/2}$. On a donc $a_{n_0} \in \mathbf{Z}$. Contradiction.
- 5. Si $\Phi_p^+(X)$ est réductible sur \mathbf{Q} , il existe $A, B \in \mathbf{Z}[X]$ non constants de degrés a et b respectivement tels que $\Phi_p^+ = AB$. On a a+b = (p-1)/2 et $\Phi_p(X) = X^{(p-1)/2}\Phi_p^+(X+1/X) = X^aA(X+1/X)X^bB(X+1/X)$. Or $X^a A(X+1/X)$ et $X^b B(X+1/X)$ sont des polynômes non constants de $\mathbf{Z}[X]$ de produit Φ_p . Cela contredit l'irréductibilité de Φ_p .

II

- 1. Comme le polynôme Φ_p^+ est irréductible sur \mathbf{Q} et de degré (p-1)/2 ses corps de rupture sont tous de degré (p-1)/2 sur **Q**.
- 2. Comme C est algébriquement clos, il y a (p-1)/2 tels plongements.
- **3.** Les valeurs possibles de $\sigma(\zeta_0 + \zeta_0^{-1})$ sont les racines de Φ_p^+ : les nombres de la formes $\zeta + \zeta^{-1}$ $(\zeta \in \mu_p^+)$.
- **4.** Lorsque $\sigma(\zeta_0 + \zeta_0^{-1}) = \zeta + \zeta^{-1}$, avec $\zeta \in \mu_p^+$. L'image de σ est $\mathbf{Q}(\zeta + \zeta^{-1})$. Il suffit de montrer que $\zeta + \zeta^{-1} \in \mathbf{R}$. Cela découle du fait que le conjugué complexe de ζ est ζ^{-1} .
- **5.** Cela résulte du fait que $\zeta_0, \zeta_0^{-1} \in \mathbf{Q}(\mu_p)$.

III

- 1. Le groupe $\{\sigma_1, \sigma_{-1}\}$ est un sous-groupe d'ordre 2 de $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})$, qui est un groupe d'ordre p-1.
- L'extension $\mathbf{Q}(\mu_p)^+|\mathbf{Q}$ est de degré l'indice de $\{\sigma_1,\sigma_{-1}\}$ dans $\mathrm{Gal}(\mathbf{Q}(\mu_p)/\mathbf{Q})$. Cet indice est (p-1)/2. **2.** L'élément σ_{-1} échange ζ_0 et ζ_0^{-1} . On a donc $\sigma_{-1}(\zeta_0+\zeta_0^{-1})=\zeta_0+\zeta_0^{-1}$. C'est pourquois $\zeta_0+\zeta_0^{-1}\in\mathbf{Q}(\mu_p)^+$
- et donc $\mathbf{Q}(\zeta_0 + \zeta_0^{-1}) \subset \mathbf{Q}(\mu_p)^+$. 3. Comme $\mathbf{Q}(\mu_p)^+$ et $\mathbf{Q}(\zeta_0 + \zeta_0^{-1})$ sont de même degré sur \mathbf{Q} , ils sont égaux (compte-tenu de $\mathbf{Q}(\zeta_0 + \zeta_0^{-1}) \subset \mathbf{Q}(\mu_p)^+$). Le corps $\mathbf{Q}(\mu_p)^+$ contient toutes les racines de $\Phi_p^+(X)$. En effet, $\sigma_{-1}(\zeta + \zeta^{-1}) = \zeta + \zeta^{-1}$ pour tout $\zeta \in \mu_p^+$. Donc $\mathbf{Q}(\mu_p)^+$ est bien le sous-corps de \mathbf{C} engendré par toutes les racines de $\Phi_p^+(X)$.
- 4. L'extension $\mathbf{Q}(\mu_p)^+|\mathbf{Q}$ est galoisienne car elle est séparable (les corps sont de caractéristique 0) et normale $(\mathbf{Q}(\mu_p)^+$ est un corps de décomposition sur \mathbf{Q}).
- **5.** Le groupe de Galois s'identifie à $Gal(\mathbf{Q}(\mu_p)/\mathbf{Q})/\{\sigma_1, \sigma_{-1}\}$, qui s'identifie à $(\mathbf{Z}/p\mathbf{Z})^*/\{-1, 1\}$.

1. Posons $P(X) = \prod_{i=1}^r (X - \alpha_i) = \prod_{n=0}^r a_n X^n$ et $Q(X) = \prod_{j=1}^s (X - \beta_j) = \prod_{m=0}^s b_m X^m$. On a $R(P,Q) = \prod_{i,j} (\alpha_i - \beta_j)$. Ce produit comporte rs facteurs. Si on échange les α_i et les β_j , il est modifié par un facteur $(-1)^{rs}$.

Par ailleurs, R(P,Q) est un polynôme à coefficients dans \mathbf{Z} en les a_n et les b_m . Par conséquent la réduction modulo q de R(P,Q) est la valeur de la réduction modulo q de ce polynôme. Cette valeur est le résultant de P et Q.

- **2.** On a $\tilde{\Phi}_q(X) = (X^q 1)/(X 1) = (X 1)^q/(X 1) = (X 1)^{q-1}$. Par conséquent, on a $\tilde{\Phi}_q^+(X) = (X 2)^{(q-1)/2}$. On a donc $R(\tilde{\Phi}_q^+, \tilde{\Phi}_p^+) = R((X 2)^{(q-1)/2}, (\tilde{\Phi}_p^+) = \prod_{i=1}^{(q-1)/2} \tilde{\Phi}_p^+(2) = \prod_{i=1}^{(q-1)/2} \tilde{\Phi}_p^+(1 + 1) = \prod_{i=1}^{(q-1)/2} \tilde{\Phi}_p(1) = \tilde{p}^{(q-1)/2}$.
- 3. Considérons l'homomorphisme de groupe $\phi: (\mathbf{Z}/q\mathbf{Z})^* \to (\mathbf{Z}/q\mathbf{Z})^*$ qui à a associe $a^{(q-1)/2}$. Comme $a^{q-1}=1$, on a $a^{(q-1)/2}=\pm 1$ ($a\in (\mathbf{Z}/q\mathbf{Z})^*$). L'homomorphisme ϕ est donc à valeurs dans $\{-1,1\}$. Il y a (q-1)/2 éléments d'ordre (q-1)/2 dans le groupe cyclique $(\mathbf{Z}/q\mathbf{Z})^*$ d'ordre q-1. Par conséquent, le noyau de ϕ est un sous-groupe d'ordre (q-1)/2. Par ailleurs, tout élément a qui est un carré, i.e. qui s'écrit $a=b^2$ avec $b\in (\mathbf{Z}/q\mathbf{Z})^*$) est dans le noyau de ϕ , car $\phi(a)=a^{(p-1)/2}=b^{p-1}=1$. Or il y a (p-1)/2 tels carrés, donc $\{a/\phi(a)=1\}$ est l'ensemble des carrés de $(\mathbf{Z}/q\mathbf{Z})^*$.
- 4. On utilise d'abord la formule $R(\Phi_q^+, \Phi_p^+) = \prod_{\lambda \in \mu_q^+} \Phi_p^+(\lambda + \lambda^{-1})$. Utilisons ensuite la formule reliant Φ_p^+ à Φ_p : on a $\Phi_p^+(\lambda + \lambda^{-1}) = \lambda^{-(p-1)/2}\Phi_p(\lambda) = \lambda^{(p-1)/2}\Phi_p(\lambda^{-1})$. En utilisant ces deux expressions, on obtient $R(\Phi_q^+, \Phi_p^+)^2 = \prod_{\lambda \in \mu_q^+} \lambda^{-(p-1)/2}\Phi_p(\lambda)\lambda^{(p-1)/2}\Phi_p(\lambda^{-1}) = \prod_{\lambda \in \mu_q} \lambda^{-(p-1)/2}\Phi_p(\lambda)$. On a $\prod_{\lambda \in \mu_q} \lambda^{-(p-1)/2}\Phi_p(\lambda) = (\prod_{\lambda \in \mu_q} \lambda)^{-(p-1)/2}(\prod_{\lambda \in \mu_q} (\lambda^p 1)/(\lambda 1))$. Le premier facteur est égal

On a $\prod_{\lambda \in \mu_q} \lambda^{-(p-1)/2} \Phi_p(\lambda) = (\prod_{\lambda \in \mu_q} \lambda)^{-(p-1)/2} (\prod_{\lambda \in \mu_q} (\lambda^p - 1)/(\lambda - 1))$. Le premier facteur est égal à 1 (on regroupe λ avec λ^{-1}). Lorsque λ parcourt μ_q , λ^p parcourt encore μ_q , si bien que le second facteur vaut aussi 1. On a donc $R(\Phi_q^+, \Phi_p^+)^2 = 1$ et donc $R(\Phi_q^+, \Phi_p^+)^2 \in \{-1, 1\}$.

5. Deux entiers distincts qui sont congrus modulo q différent d'au moins q. Or les questions précédentes entraı̂nent que les entiers $R(\Phi_q^+, \Phi_p^+)$ et $\binom{p}{q}$ sont congrus modulo q et sont contenus dans $\{-1, 1\}$. Comme q > 2, ces entiers sont égaux.

On a, puisque les polynômes Φ_p^+ et Φ_q^+ sont de degrés (p-1)/2 et (q-1)/2 respectivement, $\left(\frac{p}{q}\right) = \mathrm{R}(\Phi_q^+,\Phi_p^+) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\mathrm{R}(\Phi_p^+,\Phi_q^+) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}\left(\frac{q}{p}\right)$.