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Reminders
Definition
Given a graph G = (V ,E ), a dimer configuration on G is a subset C of E such that every
vertex in V is incident to exactly one edge in C .

Remark: the number of vertices must be even for a dimer configuration to exist!

Our purpose is to address the following questions:
given a finite graph G , how many dimer configurations does it admits?
more generally, given edge weights (we)e∈E , can we evaluate the dimer partition function

ZG ,w =
∑
C

∏
e∈C

we

where the sum runs over all dimer configurations on G?

We have seen some specific methods working for specific graphs, and involving bijections with
spanning trees or non intersecting lattice paths. Note that, in both cases, we ended up with the
problem of evaluating the determinant of a certain matrix.
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The Kasteleyn algorithm

We now describe a generic algorithm for counting dimer configurations of plane (and
sometimes non-plane) graphs.

The algorithm relies on Kasteleyn’s observation that, for graphs admitting certain suitable
orientations, counting dimer configurations can be done by evaluating the determinant (or
pfaffian) of a signed adjacency matrix.

For plane graphs, Kasteleyn show that these orientations always exist and can be constructed in
linear time (in the size of the graph).

For a general graph, there may or may not exist such an orientation. This can be tested by a
polynomial-time algorithm for bipartite graphs, but for other graphs the problem is still open to
my knowledge.
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The pfaffian

Let M = (Mij)1≤i ,j≤n be a n × n skew-symmetric matrix: Mij = −Mji .
For n odd, its determinant is zero (why?).
For n even, its determinant is a perfect square in the matrix entries:

n = 2 : detM = (M12)
2,

n = 4 : detM = (M12M34 −M13M24 +M14M23)
2...

Theorem (Cayley, 1852)
Define the pfaffian of a 2m × 2m skew-symmetric matrix by

pfM =
1

2mm!

∑
σ∈S2m

sgn(σ)
m∏
i=1

Mσ(2i−1),σ(2i).

Then, we have
detM = (pfM)2.
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The pfaffian (continued)
An alternate expression for the pfaffian can be obtained as follows: let Πm be the set of
partitions of {1, . . . , 2m} into pairs. An element π ∈ Πm is called pairing and can be written as

π = {{π1, π2}, {π3, π4}, . . . , {π2m−1, π2m}}

with
1 = π1 < π3 < · · · < π2m−1, π2i−1 < π2i , i = 1, . . . ,m.

There are (2m − 1)!! = (2m − 1)(2m − 3) · · · 3 · 1 = (2m)!
2mm! such pairings.

A crossing of π is a pair of indices i , j such that π2i−1 < π2j−1 < π2i < π2j . The sign of π is

sgn(π) = (−1)#{crossings of π}.

It is in fact the same as the signature of the permutation i 7→ πi . Then, we have

pfM =
∑
π∈Πm

sgn(π)
m∏
i=1

Mπ(2i−1),π(2i).
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Proof of Cayley’s theorem

Theorem (Cayley)
For M a 2m × 2m skew-symmetric matrix we have

detM = (pfM)2, pfM :=
∑
π∈Πm

sgn(π)
m∏
i=1

Mπ(2i−1),π(2i).

The idea of the proof is as follows:
expand detM as a sum over all permutations, and show by a sign-reversing involution that
the contribution from permutations containing at least one cycle of odd length is zero,
observe that there is a natural bijection between Πm × Πm and the set E2m ⊂ S2m of
permutations with all cycles of even lengths,
check that this bijection is such that, for (π, π′) 7→ σ,

sgn(π)
m∏
i=1

Mπ(2i−1),π(2i) × sgn(π′)
m∏
i=1

Mπ′(2i−1),π′(2i) = sgn(σ)
2m∏
j=1

Mj ,σ(j).
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Pfaffian and dimer configurations

Now, let us make the connection with the enumeration of dimer configurations.

Let G = (V ,E ) be a simple unoriented graph with vertex set V = {1, 2, . . . , 2m}.
Let (we)e∈E be edge weights and A the corresponding weighted adjacency matrix.
Then, we have

ZG ,w :=
∑

C dimer config on G

(∏
e∈C

we

)
=
∑
π∈Πm

m∏
i=1

Aπ(2i−1)π(2i).

Indeed, a dimer configuration on G can be seen as a pairing π ∈ Πm, with the property that
π(2i − 1) and π(2i) are adjacent in G for all i . Let us denote by ΠG

m the set of such pairings,
and observe that pairings in Πm \ ΠG

m give a zero contribution to the right-hand side.

The quantity
∑

π∈Πm

∏m
i=1 Aπ(2i−1)π(2i) is called the Hafnian of A, it looks very much like the

pfaffian, but unfortunately does not have the same nice linear-algebraic properties.

A is symmetric and not skew-symmetric, so it does not make sense to talk about its pfaffian.
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Pfaffian and dimer configurations (continued)

Given an orientation of the edges of G , let us define the signed adjacency matrix K by

Kij =


we if there is an oriented edge e from i to j ,
−we if there is an oriented edge e from j to i ,
0 otherwise.

The signed adjacency matrix is skew-symmetric and its pfaffian is

pf K :=
∑
π∈Πm

sgn(π)
m∏
i=1

Kπ(2i−1)π(2i).
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Pfaffian orientations
Note that we have

sgn(π)
m∏
i=1

Kπ(2i−1)π(2i) = ±
m∏
i=1

Aπ(2i−1)π(2i).

Indeed, the two quantities are either both equal to zero (if π does not correspond to a dimer
configuration on G ), or both nonzero. In this latter case, the sign on the right-hand side
incorporates both sgn(π) and the sign involved when passing from K to A:

Kπ(2i−1)π(2i)

Aπ(2i−1)π(2i)
=

{
+1 if the orientation goes from π(2i − 1) to π(2i),
−1 if the orientation goes from π(2i) to π(2i − 1).

We may rewrite this as sgn(π)
∏m

i=1 Kπ(2i−1)π(2i) = ksgn(π)
∏m

i=1 Aπ(2i−1)π(2i) where

ksgn(π) = (−1)#{crossings of π}+#{i such that there is an edge oriented from π(2i) to π(2i − 1)}.

This quantity depends implicitly on the orientation of the graph.
An orientation is said pfaffian if ksgn(π) is the same for all pairings π ∈ ΠG

m (i.e. the pairings
corresponding to dimer configurations on G ).
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Pfaffian orientations
Let us compare the two expressions obtained so far

ZG ,w =
∑
π∈ΠG

m

m∏
i=1

Aπ(2i−1)π(2i),

pf K =
∑
π∈ΠG

m

ksgn(π)
m∏
i=1

Aπ(2i−1)π(2i).

When the orientation of the graph is pfaffian, that is when ksgn(π) is the same for all π ∈ ΠG
m,

we have
ZG ,w = ± pf K .

This is very interesting since the pfaffian, being the square root of the determinant, can be
computed efficiently via linear algebra techniques.

But does such a “miraculous” pfaffian orientation exist? In the following we will see a more
graph-theoretical characterization of pfaffian orientations, and then show that every plane
graph admits at least one.
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A characterization of Pfaffian orientations

Recall from the proof of Cayley’s theorem that we have

sgn(π)
m∏
i=1

Kπ(2i−1),π(2i) × sgn(π′)
m∏
i=1

Kπ′(2i−1),π′(2i) = sgn(σ)
2m∏
j=1

Kj ,σ(j)

where σ ∈ E2m is the permutation with cycles of even length corresponding to (π, π′) ∈ Π2
m.

For π, π′ ∈ ΠG
m, taking the sign of the above relation, we get

ksgn(π)ksgn(π′) = (−1)#{cycles of σ}+#{j = 1, . . . , 2m such that there is an oriented edge from σ(j) to j}.

For a pfaffian orientation, we want this to be always equal to +1. A sufficient condition is that
every cycle of σ is oddly-oriented, in the sense that it has an odd number of edges oriented in
both directions. In fact, this is necessary if we want the relation to hold for any π, π′ ∈ ΠG

m.
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A characterization of Pfaffian orientations
We arrive at the following characterization of pfaffian orientations:

Definition (graph-theoretical version)
An orientation of a graph G is said pfaffian if every even central cycle is oddly oriented. Here:

a cycle C is said even if it has an even number of edges,
a cycle C is said central if the graph obtained from G by removing the vertices of C
admits a dimer configuration,
a cycle C is oddly oriented if it has an odd number of edges oriented in both directions.

(The even central cycles are precisely those arising as cycles of permutations σ obtained by
superimposing two dimer configurations π, π′.)

Theorem
Let G = (V ,E ) be a graph endowed with a pfaffian orientation. Let w = (we)e∈E be edge
weights, and let K be the corresponding signed weighted adjacency matrix. Then, we have

ZG ,w = ± pf K = ±
√
detK .
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Constructing a pfaffian orientation of a plane graph

Definition
An orientation of a plane graph G is said clockwise-odd if, around each bounded face of G , the
number of edges oriented clockwise is odd.

It is straightforward to construct a clockwise-odd orientation: orient the edges of a spanning
tree arbitrarily, then the other edges can be oriented in a unique manner.

Lemma
Let G be a plane graph endowed with a clockwise-odd orientation. Then, along each simple
cycle C of G , the number of edges oriented clockwise has parity opposite to the number of
vertices strictly in the interior of C .

The proof is based on Euler’s relation.

Corollary
Every clockwise-odd orientation of a plane graph is pfaffian.
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