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Dimers on the honeycomb lattice, lozenge tilings and other avatars
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The MacMahon formula

Let us show how to enumerate dimer configurations on a hexagon-shaped portion of the
honeycomb lattice, or equivalently the number of lozenge tilings of an hexagon.

Let us call a× b× c hexagon a hexagon with angles 120◦ and integer side lengths a, b, c, a, b, c
(when turning clockwise, note opposite sides have equal lengths).

c=3
b=2

a=3

a

c b

Theorem (MacMahon, 1896)
The number of lozenge tilings of the a× b × c hexagon is equal to

M(a, b, c) =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

.

Riddle: how about hexagons whose opposite sides have unequal lengths?
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The LGV lemma
Let G = (V ,E ) be a directed acyclic graph and let (we)e∈E be weights for the edges.
To an oriented path P on G , consisting of the edges e1, . . . , ek , we associate a weight

w(P) = we1 · · ·wek .

Fix n ≥ 1 and two collections of vertices u1, . . . , un (sources) and v1, . . . , vn (sinks).
For any i , j = 1, . . . , n, let Mij be the sum of the weights of all paths from ui to vj .

For any permutation σ of size n, denote by Nσ the set of all n-tuples of non-intersecting paths
(P1, . . . ,Pn) such that, for all i = 1, . . . , n, Pi is a path from ui to vσ(i). By non intersecting,
we mean that Pi and Pj have no common vertex for any i ̸= j .

Lemma (Lindström-Gessel-Viennot)
We have ∑

σ∈Sn

sgn(σ)
∑

(P1,...,Pn)∈Nσ

w(P1) · · ·w(Pn) = det(Mij)1≤i ,j≤n.

We often apply this lemma in the situation where, for planarity reasons, Nσ is empty unless σ is
the identity permutation. Then the left-hand side reduces to a sum without signs.
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Proof of the LGV lemma

Lemma (Lindström-Gessel-Viennot)
We have ∑

σ∈Sn

sgn(σ)
∑

(P1,...,Pn)∈Nσ

w(P1) · · ·w(Pn) = det(Mij)1≤i ,j≤n.

Proof: from the definition
Mij :=

∑
P:ui→vj

w(P)

an expansion of the determinant as a sum over permutations yields

det(Mij)1≤i ,j≤n =
∑
σ∈Sn

sgn(σ)
∑

(P1,...,Pn)∈Pσ

w(P1) · · ·w(Pn)

where Pσ is the set of all n-tuples of all (possibly intersecting) paths (P1, . . . ,Pn) such that,
for all i = 1, . . . , n, Pi is a path from ui to vσ(i). Thus, we need that intersecting tuples of
paths give a zero total contribution to the sum.

Jérémie Bouttier (IMJ-PRG, Sorbonne Université) Dimers and related models 8 November 2024 7 / 20



Proof of the LGV lemma (continued)
Setting Iσ := Pσ \ Nσ, we claim that∑

σ∈Sn

sgn(σ)
∑

(P1,...,Pn)∈Iσ

w(P1) · · ·w(Pn) = 0.

We define a sign-reversing involution on
⋃

σ∈Sn Iσ as follows: given paths (P1, . . . ,Pn) ∈ Iσ,
we consider the smallest i such that Pi intersects another path, and then we consider the first
intersection vertex along Pi , and the smallest j > i such that Pj passes through that vertex.
Doing a “switch” like this:

vσ(i)ui

vσ(j)uj vσ(j) = vσ′(i)

ui vσ(i) = vσ′(j)

uj

Pi

Pj

P ′
i

P ′
j

and leaving the other paths unchanged, we construct a n-tuple of paths in Iσ′ with
σ′ = σ ◦ (ij). The edge weights are unchanged, but we have sgn(σ′) = − sgn(σ).
We may check that the construction is involutive, and the claim follows.
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Application to lozenge tilings
Lozenge tilings of the a× b × c hexagon are in bijection with a-tuples of non-intersecting paths
on the square lattice Z2 (with edges oriented up-right), going from the sources ui = (−i , i) to
the sinks vj = (b − j , c + j), i , j = 1, . . . , a.

By the LGV lemma their number is equal to det1≤i ,j≤a

( b+c
c+j−i

)
.

Actually, the number is unchanged if we make the paths start from the modified sources
u′i = (−i , 1), i = 1, . . . , a. The determinant det1≤i ,j≤a

(b+c+i−1
c+j−1

)
is easier to evaluate.
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Application to lozenge tilings (continued)
Indeed, we have

M(a, b, c) = det
1≤i ,j≤a

(b + c + i − 1)!
(c + j − 1)!(b + i − j)!

= det
1≤i ,j≤a

(b + c + i − 1)!
(b + i − 1)!(c + j − 1)!

(b + i − 1)!
(b + i − j)!

=
a∏

i=1

(b + c + i − 1)!
(b + i − 1)!(c + i − 1)!

det
1≤i ,j≤a

(b + i − 1)(b + i − 2) · · · (b + i − j + 1).

Note that (b + i − 1)(b + i − 2) · · · (b + i − j + 1) is a monic polynomial of degree j − 1 in i .

Proposition (Vandermonde determinant)
Let, for each j = 1, . . . , a, qj(X ) be a monic polynomial of degree j − 1 in the variable X .
Then, given variables X1, . . . ,Xa, we have

det
1≤i ,j≤a

qj(Xi ) =
∏

1≤i<j≤a

(Xj − Xi ).

Proof: by columns manipulations, we can reduce to the case qj(X ) =
∏j−1

i=1(X − Xi ) and the
determinant is triangular.
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Application to lozenge tilings (continued)

By the Vandermonde determinant identity, we have

det
1≤i ,j≤a

(b + i − 1)(b + i − 2) · · · (b + i − j + 1) =
∏

1≤i<j≤a

(j − i) =
a∏

i=1

(i − 1)!.

And hence, we have

M(a, b, c) =
a∏

i=1

(b + c + i − 1)!(i − 1)!
(b + i − 1)!(c + i − 1)!

=
a∏

i=1

b∏
j=1

c + i + j − 1
i + j − 1

=
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

which is the MacMahon formula announced before.
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Bonus

The MacMahon formula admits a “q-analogue”. By this, we mean a formula depending on an
extra variable q, recovering the previous formula for q → 1. Usually, such formula involve the
“q-integers”

[n]q :=
1 − qn

1 − q
= 1 + q + q2 + · · ·+ qn−1.

The volume is here 12.

To each lozenge tiling of the a× b × c hexagon we may associate
its “volume” (number of boxes when viewed in 3D).

Theorem (MacMahon, 1896)

The qvolume generating function of lozenge tilings of the a× b × c
hexagon is equal to

Mq(a, b, c) =
a∏

i=1

b∏
j=1

c∏
k=1

1 − qi+j+k−1

1 − qi+j+k−2 .
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Bonus (continued)
This result may be again proved using the LGV lemma. In fact, inside the determinants to
evaluate we just need to replace the binomial coefficients by their q-analogues:(

n

k

)
q

=
(1 − qn)(1 − qn−1) · · · (1 − qn−k+1)

(1 − qk)(1 − qk−1) · · · (1 − q)
.

Such q-binomial coefficients are actually polynomials in q, they satisfy the q-Pascal identity(
n

k

)
q

= qk
(
n − 1
k

)
q

+

(
n − 1
k − 1

)
q

which shows that
(n
k

)
q

is the generating function of up-right paths on Z2 from (0, 0) to
(n − k , k) with a weight qarea. (Area is that of the region between the path and the x-axis.)

The q-binomial coefficients appear in the q-binomial theorem:

n−1∏
i=0

(1 + qiz) =
n∑

k=0

qk(k−1)/2
(
n

k

)
q

zk .
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Other applications

The method of counting lozenge tilings of a domain in the plane via the LGV lemma applies to
many domain shapes other than the a× b × c hexagon.

It is also possible to enumerate domino tilings of certain planar domains using a bijection with
families of non-intersecting Schröder paths. Maybe we’ll see some examples as an exercise.

An advantage of the LGV method is that the determinants to evaluate are smaller than those
obtained via the Temperley/matrix-tree theorem approach or the generic Kasteleyn algorithm
which we describe next.

Let us mention that there are many methods to evaluate the determinants that are encountered
by the LGV approach, see e.g. the paper Advanced determinant calculus by C. Krattenthaler
(1999), and more recent developments (Koutschan, Zeilberger...) using computer algebra.
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The Kasteleyn algorithm

We now describe a generic algorithm for counting dimer configurations of plane (and
sometimes non-plane) graphs.

The algorithm relies on Kasteleyn’s observation that, for graphs admitting certain suitable
orientations, counting dimer configurations can be done by evaluating the determinant (or
pfaffian) of a signed adjacency matrix.

For plane graphs, Kasteleyn show that these orientations always exist and can be constructed in
linear time (in the size of the graph).

For a general graph, there may or may not exist such an orientation. This can be tested by a
polynomial-time algorithm for bipartite graphs, but for other graphs the problem is still open to
my knowledge.
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The pfaffian

Let M = (Mij)1≤i ,j≤n be a n × n skew-symmetric matrix: Mij = −Mji .
For n odd, its determinant is zero (why?).
For n even, its determinant is a perfect square in the matrix entries:

n = 2 : detM = (M12)
2,

n = 4 : detM = (M12M34 −M13M24 +M14M23)
2...

Theorem (Cayley, 1852)
Define the pfaffian of a 2m × 2m skew-symmetric matrix by

pfM =
1

2mm!

∑
σ∈S2m

sgn(σ)
m∏
i=1

Mσ(2i−1),σ(2i).

Then, we have
detM = (pfM)2.
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The pfaffian (continued)
An alternate expression for the pfaffian can be obtained as follows: let Πm be the set of
partitions of {1, . . . , 2m} into pairs. An element π ∈ Πm is called pairing and can be written as

π = {{π1, π2}, {π3, π4}, . . . , {π2m−1, π2m}}

with
1 = π1 < π3 < · · · < π2m−1, π2i−1 < π2i , i = 1, . . . ,m.

There are (2m − 1)!! = (2m − 1)(2m − 3) · · · 3 · 1 = (2m)!
2mm! such pairings.

A crossing of π is a pair of indices i , j such that π2i−1 < π2j−1 < π2i < π2j . The sign of π is

sgn(π) = (−1)#{crossings of π}.

It is in fact the same as the signature of the permutation i 7→ πi . Then, we have

pfM =
∑
π∈Πm

sgn(π)
m∏
i=1

Mπ(2i−1),π(2i).
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Proof of Cayley’s theorem

Theorem (Cayley)
For M a 2m × 2m skew-symmetric matrix we have

detM = (pfM)2, pfM :=
∑
π∈Πm

sgn(π)
m∏
i=1

Mπ(2i−1),π(2i).

The idea of the proof is as follows:
expand detM as a sum over all permutations, and show by a sign-reversing involution that
the contribution from permutations containing at least one cycle of odd length is zero,
observe that there is a natural bijection between Πm × Πm and the set E2m ⊂ S2m of
permutations with all cycles of even lengths,
check that this bijection is such that, for (π, π′) 7→ σ,

sgn(π)
m∏
i=1

Mπ(2i−1),π(2i) × sgn(π′)
m∏
i=1

Mπ′(2i−1),π′(2i) = sgn(σ)
2m∏
j=1

Mj ,σ(j).
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To be continued...

Next time we will see the connection with between these considerations and the dimer model.
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