
3 Max-slope pivot rule polytopes

J’ai appris que la voie du progrès n’était ni rapide ni facile.
Dans la vie, rien n’est à craindre, tout est à comprendre.

– Marie Curie

3.1 Max-slope pivot rule and max-slope pivot polytope

For a linear program (P, c), the choice of a c-improving neighbor of a vertex v ∈ V (P) is determined
by the pivot rule adopted by the simplex method, see Section 1.3. Beside varying the objective
function of a linear program, one can wonder about the behavior of different pivot rules. Recall that
the pivot rule is called memoryless if the choice is deterministic and based only on the knowledge
of v. Among pivot rules, max-slope pivot rules are of a great theoretical and practical importance.
First observe that linear programming is easy in dimension 2: for a polygon in the plane, the
monotone path chosen by the simplex method is either the upper path of the polygon or its lower
path, see the exterior of Figure 25(Left). Thus, for a linear program (P, c), the idea of a max-slope
pivot rule is to choose a secondary vector ω, linearly independent with c, then to project P onto
the plane defined by (c,ω). The path chosen by the simplex method is defined, by convention, to
be the upper path of this 2-dimensional projection of P.

Thereby, a max-slope pivot rule depends on one parameter ω, but several ω can give the same
monotone path. A monotone path P on P is said to be coherent if there exists ω such that P
is the path followed by the simplex method with the max-slope pivot rule associated to ω, see
Figure 25(Left). The set of coherent paths on P can be seen as the set of vertices of a polytope,
called its monotone path polytope Mc(P), we will discuss this construction in more details in
Section 4.2.1.

When studying the monotone path polytope, one focuses on the behavior of the pivot rule only
on the monotone path that the simplex method walks on when starting from the worst vertex (the
vertex v0 minimizing ⟨v, c⟩), and going towards the optimal vertex (the vertex vopt maximizing
⟨v, c⟩). But besides this, one can also look at all the monotone paths at once, i.e. the combinatorial
behavior the pivot rule has on all the vertices of the polytope, see [BDLLS22]: each vertex points

towards the one of its neighbor improving ⟨v, c⟩ that maximizes the slope ⟨ω,u−v⟩
⟨c,u−v⟩ . As depicted

in Figure 25(Right), for a given linear program (P, c), and a secondary direction ω, the associated
arborescence is a function Aω : V (P)∖ {vopt} → V (P) defined by (where “argmax” designate the
unique maximizer of the studied quantity):

Aω(v) = argmax

{ ⟨ω,u− v⟩
⟨c,u− v⟩ ; u improving neighbor of v

}

Conversely, a function A : V (P) ∖ {vopt} → V (P) is said to be a coherent arborescence or a
max-slope arborescence when there exists ω such that A = Aω. Note that coherent arborescences
are necessary monotone in the sense that ⟨A(v), c⟩ > ⟨v, c⟩ for all v ∈ V (P ) ∖ {vopt}, we call
arborescence a function that satisfies this monotonicity property, and extend A to V (P) by setting
A(vopt) = vopt when convenient. As for coherent monotone paths, the set of coherent arbores-
cences can be embedded as the vertices of a polytope. We give several ways to construct this
polytope. To begin with, one can construct a fan whose maximal cones are CA = {ω ; Aω = A}
for A a (coherent) arborescence on P: Figure 26 shows how to gather all coherent arborescences
for the case of the 3-dimensional simplex, while Figure 27 pictures the resulting fan.

For a fixed linear program (P, c) and an arborescence A : V (P) → V (P) define

Ψ(A) :=
∑

v ̸=vopt

1

⟨c, A(v)− v⟩ (A(v)− v) .

The max-slope pivot rule polytope is defined as

Π(P, c) := conv{Ψ(A) : A arborescence of (P, c)} .
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Figure 25: (Left) In red, the coherent monotone path associated to the parameter ω for the linear
problem (P, c). (Right) In red, the coherent arborescence associated to the same parameter. In
both figures, to each vertex, the pivot rule associates the one of its neighbors that maximizes the
slope in the plane (c,ω).

The following special case of [BDLLS22, Theorem 1.4] states that the pivot rule polytope cap-
tures the combinatorics of max-slope arborescences, as its normal fan is the fan constructed above.
For a polytope Q ⊂ Rd and ω ∈ Rd, we denote as usual (see Section 1.2)
Qω = {x ∈ Q ; ⟨ω, x⟩ ≥ ⟨ω, y⟩ for all y ∈ Q} the face of Q that maximizes ω.

Theorem 3.1 ([BDLLS22]). Let P ⊂ Rd be a polytope of dimension k and c ∈ Rd a generic
objective function. The polytope Π(P, c) is of dimension k − 1 and for any generic ω ∈ Rd:
Π(P, c)ω = {Ψ(Aω)} .

In particular, the vertices of Π(P, c) are in bijection to max-slope arborescences of (P, c). The
faces of Π(P, c) are in correspondence to certain multi-arborescences, that is, maps
A : V (P) → 2V (P) such that for all v ̸= vopt, A(v) is a nonempty subset of c-improving neighbors
of v, see Section 3.3.

The max-slope pivot polytope can also be constructed as a sum of sections of P, see Figure 28:
for each vertex v ∈ V (P), consider the convex hull conv

(
{v} ∪ {u ; u improving neighbor of v}

)

and take a section orthogonal to c close to v (which correspond to the vertex figure at v). The
Minkowski sum of these sections for v ∈ V (P) ∖ {vopt} is (a dilate of) Π(P, c). For instance,
Figure 28 illustrates the fact that the max-slope pivot polytope of any simplex (for any generic
objective function) is an associahedron [BDLLSon], see also Section 3.3.1 for a self-contained
proof of this fact. We give here a first description of this result. Let S be a simplex of di-
mension n − 1. We may assume that the vertices v1,v2, . . . ,vn are labelled in such a way that
⟨c,v1⟩ < ⟨c,v2⟩ < · · · < ⟨c,vn⟩. As V (S) is in bijection with [n], an arborescence of (S, c) is
encoded by a map A : [n] → [n] such that A(n) = n and A(i) > i for i = 1, . . . , n − 1. We
sometimes identify A with the collection of pairs (i, A(i)) and write (i, k) ∈ A if A(i) = k. We
call an arborescence A : [n] → [n] non-crossing if for all i < j if j < A(i), then A(j) ≤ A(i). In
other words, there are no i < a < j < b such that (i, j), (a, b) ∈ A, see Figure 32(Right) for an
example. Non-crossing arborescences form a Catalan family in the sense of Section 1.2.4, we detail
here some of their properties. It is straightforward, that for any polytope P whose graph is the
complete graph, all coherent arborescences on P are non-crossing, see Figure 29 for an illustration.

Theorem 3.2 ([BDLLSon]). Let S be an (n − 1)-simplex and c a generic objective function. An
arborescence A is a max-slope arborescence for (S, c) if and only if A is non-crossing. Moreover,
Π(S, c) is combinatorially isomorphic to Asson−2.

73



Figure 26: Animated construction of the normal fan of the max-slope pivot polytope
of the 3-dimensional simplex. For each ω ∈ R3 orthogonal to c, we project ∆3

onto the plane (c,ω) (Left), and record the corresponding coherent arborescence (Right).
(Animated figures obviously do not display on paper, and some PDF readers do not support the
format: it is advised to use Adobe Acrobat Reader. If no solution is suitable, the animation can be
found on my website or asked by email.)
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Figure 27: Normal fan of Π(∆3, c) where each maximal cone is labelled by the corresponding
coherent arborescence.
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Figure 28: The max-slope pivot rule polytope Π(P, c) can be obtained as (a dilate of) the
Minkowski sum of sections, here illustrated for the tetrahedron P = ∆3. For each vertex v ∈ V (P),
consider the convex hull that v forms with its improving neighbors, and take a section of it or-
thogonal to c (close to v). Their sum is normally equivalent to Π(P, c).

Example 4.3 in [BDLLS22] illustrates the max-slope polytope of a simplex. Theorem 3.2 is
discussed in the more general context of pivot associahedra in [BDLLSon]. Here, we give the main
results and ideas. We will use the following simple decomposition of non-crossing arborescences.

Proposition 3.3. For a non-crossing arborescence A : [n] → [n] define r(A) as the minimal r ≥ 1
such that A(r) = n. Restricting A to [r] and to [r+1, n] := {r+1, . . . , n} yields two non-crossing
arborescences A′ and A′′ and A is uniquely determined by (r,A′, A′′).

Proposition 3.3 immediately gives a recursive way to compute the number of non-crossing
arborescences (identical to the recursive formula of Section 1.2.4), which shows that there are
Catalan-many non-crossing arborescences. To check that Π(P, c) is indeed combinatorially iso-
morphic to the associahedron, it suffices to determine the graph of Π(P, c) and use the fact that
simple polytopes are determined by their graph [BML87]; see also [Zie98, Chapter 3.4]. We call an
i < n forward-sliding if A(i) ̸= n and there is no j < i with A(j) = A(i). We call i backward-sliding
if A(i) ̸= i+ 1. If i is forward-sliding, then define FiA by FiA(i) := A(A(i)) and FiA(k) := A(k)
for all k ̸= i. Likewise, if i is backward-sliding, then define BiA(i) := j where j > i is minimal
with A(j) = A(i) and BiA(k) = A(k) for k ̸= i. A quick scribble reveals that both BiA and FiA
are non-crossing, and that BiFiA = A and FiBiA = A. As for all Catalan families, we say that
BiA and FiA differ from A by a flip. To summarize, non-crossing arborescences form a Catalan
family, and flips in this family are forward- or backward-slide.

The following proposition is adapted from [BDLLSon] or Theorem 3.69.

Proposition 3.4. Let A1, A2 : [n] → [n] be non-crossing arborescences. Then [Ψ(A1),Ψ(A2)] is an
edge of Π(S, c) if and only if A1, A2 differ by a flip.

As for the proof’s strategy of Theorem 3.2, let us first note that up to linear transformation,
we may assume that S = ∆n−1 := conv(e1, . . . , en) ⊂ Rn. For a given ω ∈ Rn, define pi = (ci, ωi)
for i ∈ [n] and the slope τ(i, j) =

ωj−ωi

cj−ci
for all 1 ≤ i < j ≤ n. Then A is a max-slope arborescence

on S if and only if there is ω ∈ Rn such that

τ(i, A(i)) > τ(i, k) for all k > i and k ̸= A(i)

Pictorially, consider the points p1, . . . , pn ∈ R2. Then A(i) = j if all points pk for i < k ̸= j are
strictly below the line pipj , see Figure 32(Left). This perspective yields the following key insight:

Lemma 3.5. For 1 ≤ r < s < t ≤ n

τ(r, t) > τ(r, s) ⇐⇒ τ(s, t) > τ(r, t) and τ(r, t) < τ(r, s) ⇐⇒ τ(s, t) < τ(r, t)

Proof. The following convex combination gives the result: τ(r, t) = cr−cs
ct−cr

τ(r, s)+ ct−cr
ct−cr

τ(s, t).
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Figure 29: Coherent arborescences on a polytope whose graph is complete are non-crossing. For

i < a < j < b with A(i) = j, then Lemma 3.5 ensures that
⟨ω,vj−va⟩
⟨ω,vj−va⟩ > ⟨ω,vb−va⟩

⟨ω,vb−va⟩ , so A(a) = b is

impossible.

P π(P)

[x, y]

Π(P, π∗(c)) Π(π(P), c)

π

⟨ · ,π∗(c)⟩ ⟨ · ,c⟩

π

Figure 30: When the graph of P is isomorphic to the graph of π(P), then the max-slope polytope
of π(P) is a projection of the one of P. We denote x = ⟨v0, c⟩ and y = ⟨vopt, c⟩.

The monotone path polytope construction behaves functorially with respect to linear projec-
tions, see Section 4.1, that is, if π : P → Q is a projection of polytopes, then the monotone path
polytope of Q is a projection of the one of P. This does not hold for max-slope pivot polytopes
in general. However, it does hold in the special case when graphs are retained under projection,
see Figure 30. This first new result will help us link the max-slope pivot rule polytope of cyclic
polytopes with the associahedron (as the max-slope pivot rule polytope of the simplex).

Theorem 3.6. Let P ⊂ Rd be a polytope and π : Rd → Re a linear projection. If π(P) has the same
graph as P, then for every linear function c that is generic for π(P), denoting π∗ the adjoint of π:

Π(π(P), c) = π(Π(P, π∗(c)))

Proof. Let P′ = π(P). If P and P′ have the same graph, then π : V (P) → V (P′) is a bijection and
we write π(v) = v′. In particular, A is an arborescence of P if and only if A′ := π ◦ A ◦ π−1 is an
arborescence of P′. For an arborescence A on P we compute

π(Ψ(A)) =
∑

v∈V (P)

⟨π∗(c), A(v)− v⟩−1
π(A(v)−v) =

∑

v∈V (P)

⟨c, A′(v′)− v′⟩−1
(A′(v′)−v′) = Ψ(A′)

and hence π(Π(P, π∗(c))) = conv(Ψ(A′) : A) = Π(P′, c).

A polytope P is called 2-neighborly if any two vertices of P share an edge, that is to say when
the graph of P is the complete graph.

Corollary 3.7. Let P be a 2-neighborly polytope. Then, for any generic linear function c, Π(P, c)
is the projection of an associahedron.

Proof. Every polytope P = conv(v1, . . . ,vn) ⊂ Rd is the projection of ∆n−1 under the linear map
π : Rn → Rd with π(ei) = vi for i ∈ [n]. Since P is 2-neighborly, the projection π retains the
graph of ∆n−1 and the result follows from Theorem 3.6 and Theorem 3.2.

This result motivates the next section. We will study the max-slope pivot polytopes of a
well-known family of 2-neighborly polytopes: cyclic polytopes.
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3.2 Max-slope pivot polytope of cyclic polytopes

This section is a joint work with Aenne Benjes and Raman Sanyal. An article is in preparation,
containing this section together with Section 4.3.

For a linear program (P, c), we have seen that when the graph of P is the complete graph
on n nodes, that is, if P is 2-neighborly, then its max-lope pivot polytope is a projection of
the associahedron Asson−2. This implies that the arborescences corresponding to the vertices of
Π(P, c) will be non-crossing, meaning that there are no i < j < k < l such that A(i) = k and
A(j) = l. Note that not all non-crossing arborescences will show up as a vertex of Π(P, c), but
only a sub-family of them. Stronger even, Corollary 3.7 shows that when the vertices of P are
sufficiently generic, then the faces of Π(P, c) are products of associahedra.

For n > d ≥ 4 and t = (t1 < t2 < · · · < tn) ∈ Rn, the d-dimensional cyclic polytope is
Cycd(t) := conv{(ti, t2i , . . . , tdi ) : i = 1, . . . , n}, see Figure 31. Cyclic polytopes play the main role
in the Upper Bound Theorem for polytopes [McM70] and they exhibit a number of remarkable
properties. In particular, for d ≥ 4, Cycd(t) is 2-neighborly and simplicial. Moreover, its vertices
are in general position: no d + 1 of them belong to the same hyperplane. The linear function
x 7→ ⟨e1,x⟩ = x1 is generic with respect to Cycd(t). Corollary 3.7 yields that Π(Cycd(t), e1) is
a projection of Asson−2 defined in terms of t. Thus, for generic t, its combinatorial structure
corresponds to a subposet of the lattice of faces of Asson−2, and justifies the following definition.

Definition 3.8. For n > d ≥ 4 and t = (t1 < t2 < · · · < tn), the (d − 1)-dimensional cyclic
associahedron Assod−1(t) is the max-slope pivot polytope Π(Cycd(t), e1).

The following section is devoted to the study of cyclic associahedra. In particular, a quick
numerical implementation reveals that the combinatorics of Assod−1(t) depends on t, whereas
Athanasiadis, De Loera, Reiner and Santos have shown in [ALRS00] that the combinatorics of the
monotone path polytope of the cyclic polytope does not depend on t. A first result (Corollary 3.13)
determines the vertices of Assod−1(t) as if it were not depending on t, that is we indicate which
non-crossing arborescence appears as a vertex of Assod−1(t) for at least a t. Then, in Theorem 3.16,
we give a general but complex criterion for a non-crossing arborescence to appear as a vertex of
Assod−1(t) for a given t. These two theorems allow a full description of the case d = 3: intriguingly,
the number of vertices of Asso2(t) does not depend on t, see Corollaries 3.37 and 3.49.

To determine which non-crossing arborescences correspond to a vertex of Assod−1(t), we pro-
pose a general perspective in elementary geometric terms: For a univariate polynomial
P (t) = w1t + w2t

2 + · · · + wdt
d, consider the n points pi = (ti, P (ti)) ∈ R2. Define A : [n] → [n]

by the property that A(i) = j if j > i and all points pk for i < k ̸= j are below the line pipj ; see
Figure 32 for an illustration. This defines a non-crossing arborescence, and we say that P captures
A on t. Thus, if d ≥ 4, a non-crossing arborescence A correspond to a vertex of Assod−1(t) if and
only if it can be captured on t by a polynomial of degree at most d.

Since Cycn(t) is a (n− 1)-simplex, every non-crossing arborescence is captured by some poly-
nomial on t. We define the degree µ(A, t) of a non-crossing arborescence A as the minimal degree
of a polynomial P that captures A on t. In general, the degree of A depends on the choice of
t = (t1 < · · · < tn). We define the intrinsic degree of A as µ(A) := mint µ(A, t). The intrinsic
degree defines a natural complexity measure on non-crossing arborescences and hence on Cata-
lan families. We show that µ(A) can be determined directly from the combinatorics of A, see
Corollary 3.13.

Even though our motivation originally comes from the study of the geometry of pivot rules,
it also advocates for new ways to think about the associahedron. In fact, (combinatorial) un-
derstandings and realizations of the associahedron already naturally arise in a wide variety of
domains: the associahedron occurs as a secondary polytope [Lee89], as a generalized permutahe-
dron [Lod04, Pos09], or as a polytope of expansive motions [RSS03]. In this section, the realizations
of the associahedron we introduce are parametrized by t ∈ Rn, and generalized to more convoluted
structures whose genesis prompts a natural complexity parameter on Catalan families (parenthe-
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Figure 31: The cyclic polytope Cyc3(t) for n = 9. Note that its graph is not complete (the graph
of Cycd(t) is complete for d ≥ 4).

sations, binary search trees, triangulations of polygons...). Moreover, the tools developed here will
be of prime importance for the study of fiber polytopes in Section 4.3.

If A is a max-slope arborescence of (P, c), then the leading path from the minimal to the maxi-
mal vertex of c over P is a coherent c-monotone path in the sense of Billera–Sturmfels [BS92]. The
monotone path polytope Mc(P) gives a geometric model for coherent monotone paths, and one can
prove it captures the homotopy type of the Baues poset [BKS94]. It was shown in [BDLLS22] that
Mc(P) is a weak Minkowski summand of Π(P, c) : the monotone path polytope is a deformation
of the max-slope pivot polytope, see Section 4.2.1 for the details. On the combinatorial level,
this implies that Assod−1(t) refines the combinatorics of Me1

(Cycd(t)). The latter was studied by
Athanasiadis, De Loera, Reiner and Santos in [ALRS00]: the proof of Corollary 3.13 is related to
the relative locations of roots of P ′′(t) induced by the combinatorics of A and is inspired by their
work. There, the authors show that the combinatorics of Me1

(Cycd(t)) is that of cyclic zonotopes
and, in particular, independent of t. In our case, the combinatorics of the polytope Assod−1(t)
will depend on t. This motivates the notion of universal non-crossing arborescences.

A non-crossing arborescence A is universal if for any t = (t1 < t2 < · · · < tn) there is a
polynomial of degree µ(A) that captures A on t (that is µ(A, t) = µ(A) for all t). For d ≥
max(4, µ(A)) this implies that A is always a vertex of Assod−1(t) whatever t. In Section 3.2.2
we completely classify universal arborescences of intrinsic degree 3 and smaller. To that end,
we study realization sets of A, that is, the set of t = (t1 < · · · < tn) such that A is captured
by a polynomial of a given degree. Moreover, we prove in Corollary 3.37 that the number of
non-crossing arborescence A captured on t in degree 3 or smaller is

(
n
2

)
− 1, independently of t.

Note however that when d ≤ 3, the max-slope pivot polytope Assod−1(t) is not a projection
of the associahedron, the special cases Asso1(t) and Asso2(t) will be studied in Section 3.2.3. We
prove there that the number of vertices of Asso1(t) and Asso2(t) are independent from t: they are
respectively 2 and 3n− 7, see Theorem 3.39 and Corollary 3.49.

3.2.1 Cyclic associahedra and the intrinsic degree

We start by fixing the notations of what we have swiftly introduced above.
For d ≥ 2 and t = (t1, t2, . . . , tn) ∈ Rn with t1 < t2 < · · · < tn, the d-dimensional cyclic

polytope Cycd(t) is defined as the convex hull of γd(t1), . . . ,γd(tn) where γd(t) := (t, t2, . . . , td).
It is well-known that for d ≥ 4, the cyclic polytope Cycd(t) is 2-neighborly [Zie98, Cor. 0.8]. For
c = e1 = (1, 0, . . . , 0), we have ⟨e1,γd(t)⟩ = t for all t ∈ R and hence e1 is a generic linear function
for Cycd(t). For d ≥ 4, we call Assod−1(t) := Π(Cycd(t), e1) a cyclic associahedron.

Proposition 3.9. For any d ≥ 4, if t is sufficiently generic, then the faces of Assod−1(t) are
combinatorially isomorphic to products of associahedra.

Proof. When d ≥ 4, Cycd(t) is 2-neighborly for any t. By Corollary 3.7, Assod−1(t) is the image of
Π(∆n−1, t) = Asson−2 under the projection π(ei) = γd(ti) for i = 1, . . . , n. For every (d− 2)-face
G ⊂ Asson−2 let UG be the (d − 2)-dimensional linear subspace parallel to G. This gives a finite
collection of (d− 2)-linear subspaces. The collection of t such that π is not injective on the union
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Figure 32: (Left) A 5-degree polynomial with the points pi in red and the (pieces of) lines pipA(i)

in blue; (Right) the non-crossing arborescence A captured by P on t.

of these subspaces is Zariski closed. For any t in the complement, for any facet F ⊂ Assod−1(t),
the face π−1(F ) ⊂ Asson−2 is linearly isomorphic to F . This proves the claim.

Proposition 3.9 also implies that for generic t and d ≥ 4, the vertices of Assod−1(t) correspond
to certain non-crossing arborescences A : [n] → [n] that depend on t and d. For a given (generic)
w = (w1, . . . , wd), there is a simple way to determine the associated non-crossing arborescence.
We note that ⟨w,γd(t)⟩ = w1t+w2t

2+ · · ·+wdt
d =: Pw(t) is a univariate polynomial in t of degree

at most d. Consider the graph of the function Pw(t) with the marked points pi(t) = (ti, P (ti)) for
i = 1, . . . , n. As in the previous section, we note that A(i) = j if and only if pk(t) is below the
line pi(t)pj(t) for all k > i with k ̸= j. Figure 32 illustrates the construction. We say that the
non-crossing arborescence A is captured by the polynomial Pw on t. For d ≥ 4, A is captured by
a polynomial of degree d on t if and only if Ψ(A) appears as a vertex of Assod−1(t). The following
fact is immediate from this geometric perspective, as ‘being below’ a line is an open condition.

Corollary 3.10. Let A be a non-crossing arborescence that is captured by P on t. Then there is an
ε > 0 such that A is captured by P on t′ for all t′ with ∥t− t′∥∞ < ε.

Recall that the degree of a non-crossing arborescence A with respect to t is

µ(A, t) := min{degP ; A is captured by P on t} .

For fixed t, the degree defines a filtration on non-crossing arborescences. However, as we will
see in the next section, the degree of A depends on t. This motivates the definition of the intrinsic
degree of A as

µ(A) := min{µ(A, t) ; t = (t1 < t2 < · · · < tn) ∈ Rn} .
In the remainder of this section, we prove that the intrinsic degree can be computed efficiently

and easily from the non-crossing arborescence, see Corollary 3.13. A j ∈ [n − 1] is a leaf of A if
there is no i with A(i) = j. We call j an immediate leaf if, additionally, A(j) = j + 1 and denote
by L(A) the set of immediate leaves. An immediate leaf j ∈ L(A) is interior if 1 < j < n− 1, and
we write L◦(A) for the interior leafs. We first prove that a lower bound on the degree µ(A):

Theorem 3.11. Let A be a non-crossing arborescence. Then

µ(A) ≥ |L(A)|+ |L◦(A)|+ 1 .

Proof. Let P be a polynomial and t = (t1 < t2 < · · · < tn) so that P captures A on t. Recall that

for i < j, τ(i, j) =
P (tj)−P (ti)

tj−ti
is the slope of the line connecting (ti, P (ti)) to (tj , P (tj)). Applying

the mean-value theorem to t 7→ P (t), we get that for every i = 1, . . . , n− 1, there is ti < θi < ti+1

with P ′(θi) = τ(i, i+ 1).
Let i ∈ L(A) with i > 1 and set j = A(i − 1). Since i is a leaf, we know that j ≥ i + 1 and

τ(i − 1, j) > τ(i − 1, i). From Lemma 3.5 we obtain τ(i, j) > τ(i − 1, j). From A(i) = i + 1, we
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Figure 33: Decomposition of a D(A)-clip into D(A′)-clip and D(A′′)-clip for r + 1 ∈ L(A).

deduce that τ(i, i + 1) ≥ τ(i, j) and therefore τ(i, i + 1) > τ(i − 1, i). Applying the mean-value

theorem to t 7→ P ′(t), we find θi−1 < αi < θi with P ′′(αi) =
P ′(θi)−P ′(θi−1)

θi−θi−1
= τ(i,i+1)−τ(i−1,i)

θi−θi−1
> 0.

On the other hand, for every i < n− 1, if A(i) = i+1, then τ(i, i+1) > τ(i, i+2). Lemma 3.5
yields τ(i, i+ 1) > τ(i, i+ 2) > τ(i+ 1, i+ 2) and there is θi < βi < θi+1 such that P ′′(βi) < 0.

If i, j ∈ L(A) with i < j, then P ′′(βi) < 0 < P ′′(αj) and, since i ≤ j − 2, we have βi < θj−1 <
αj . If there is no immediate leaf between i and j, then there is a root in the open interval (βi, αj).
So far, this gives |L(A)| − 1 roots of P ′′.

For every interior immediate leaf 1 < j < n−1, we have P ′′(βj) < 0 < P ′′(αj) and αj < θj < βj

and P ′′ has a root in (αj , βj). This gives an additional |L◦(A)| roots of P ′′. To finish the proof,
we compute degP = degP ′′ + 2 ≥ |roots(P ′′)|+ 2 ≥ |L(A)|+ |L◦(A)|+ 1.

The idea for the proof was inspired by the proof of Theorem 3.1 in [ALRS00], where the
authors study monotone path polytopes of cyclic polytopes. The coherence of a e1-monotone
path of Cycd(t) depends on the degree, but it was shown that it does not depend on the choice
of t. Unfortunately, the degree of A depends on the choice of t, and in order to prove µ(A) ≤
|L(A)|+ |L◦(A)|+ 1 we need to exhibit a concrete polynomial P and t to capture A.

For d ≥ 1, the Chebychev polynomial Td of the first kind is the polynomial of degree d with the
property that Td(cos(α)) = cos(dα) for all α ∈ [0, π]. It follows that all d roots of Td are distinct
and real, and lie in the open interval (−1, 1). Moreover, Td has d+1 extrema in the interval [−1, 1]
and the extrema alternate between −1 and 1. In particular, Td(1) = 1 and Td(−1) = (−1)d. We
also note that T ′′

d (1) > 0 and (−1)dT ′′
d (−1) > 0. Hence (−1)dTd(t) and Td(t) are convex in a

neighborhood of t = −1 and t = 1, respectively.
For D ≥ 0, a D-clip of Td is an interval [m,M ] ⊆ [−1, 1] that contains D+1 extrema including

m and M and M is a maximum (Td(M) = 1). We call the D-clip concave if Td is concave on
[M − ε,M ] for some ε > 0. Any D-clip with M < 1 is concave.

For a non-crossing arborescence on n ≥ 1 nodes we define D(A) := 2|L(A)| if 1 ̸∈ L(A) and
D(A) := 2|L(A)| − 1 if 1 ∈ L(A). If n = 1, then set D(A) := 0.

Proposition 3.12. Let A be a non-crossing arborescence on n nodes. For any concave D(A)-clip
[m,M ] of Td there are m ≤ t1 < t2 < · · · < tn = M such that A is captured by Td on t = (t1, . . . , tn)
and Td(ti) < 1 = Td(tn) for i = 1, . . . , n− 1.

Proof. We prove the claim by induction on n. Let [m,M ] be a fixed concave D(A)-clip of Td.
For n ≤ 2, this is clearly true. Let n ≥ 3 and consider the decomposition of A into (r,A′, A′′) of
Proposition 3.3. We distinguish three cases.

If r = 1, then A′ has a single node. Moreover, D(A) = 2|L(A)| is even and thus m is a
maximum. If 2 ∈ L(A), then D(A′′) = D(A) − 1 is odd. Let m′′ be the first minimum of the
concaveD(A)-clip [m,M ]. By induction, A′′ can be captured on [m′′,M ]. The condition Td(ti) < 1
for i < n ensures that for t1 = m + ε with ε > 0 sufficiently small, the points pi(t) = (ti, Td(ti))
for 1 < i < n are below the line p1(t)pn(t). If 2 ̸∈ L(A), then D(A′′) = D(A) and A′′ can be
captured on [m,M ]. Since D(A) is even, m is a maximum and m < t2. The same argument as
before shows that choosing t1 ∈ (m, t2) close enough to m suffices.

80



If r = n − 1, then D(A′) = D(A) and A′ can be captured on the concave D(A)-clip [m,M ]
with m ≤ t1 < t2 < · · · < tn−1 = M . By Corollary 3.10, we can change tn−1 to tn−1 − ε for some
small ε > 0. For tn = M , the line pn−1(t)pn(t) is close to the tangent of Td at tn and by the
concavity of the maximum, pn(t) is below all lines pi(t)pn−1(t) for i < n− 1.

Thus, we can assume 1 < r < n−1. If r+1 ̸∈ L(A), then D(A) = D(A′)+D(A′′) and D(A′′) is
even. Let y ∈ [m,M ] such that [m, y] is a concave D(A′)-clip and [y,M ] is a concave D(A′′)-clip.
By induction there are m ≤ t1 < · · · < tr = y < · · · < tn = M that capture A′ and A′′ on their
clips. Again by Corollary 3.10, t1 < · · · < tr = y − ε still captures A′ for ε > 0 sufficiently small.
Since Td(tj) < 1 for all j < r, the points pi(t) for i > r are all below the lines pj(t)pr(t) as well

as below the line pr(t)pn(t). If r+1 ∈ L(A), then D(A) = D(A′) +D(A′′) + 1 and D(A′′) is odd,
see Figure 33. Choose y ∈ [m,M ] so that [y,M ] is a concave D(A′′)-clip. Since D(A′′) is odd, y is
a minimum and let x be the maximum before y. We can capture A′ on [m,x] and again changing
tr to tr = x− ε, the resulting t1 < · · · < tn capture A on the concave D(A)-clip [m,M ].

Corollary 3.13. Let A : [n] → [n] be a non-crossing arborescence. Then

µ(A) = |L(A)|+ |L◦(A)|+ 1 .

Proof. Let A : [n] → [n] be a non-crossing arborescence. By Theorem 3.11 it suffices to prove that
A is captured by a polynomial P of degree d = |L(A)|+ |L◦(A)|+1 on some t = (t1 < · · · < tn). If
n− 1 is not an immediate leaf of A, then D(A) = |L(A)|+ |L◦(A)| = d− 1 and −Td has a concave
D(A)-clip. If n − 1 ∈ L(A), then D(A) = |L(A)| + |L◦(A)| + 1 = d. We note that if n − 1 is an
immediate leaf, then in a D(A)-clip [m,M ] the maximum M does not have to be concave and we
can choose M = 1 to capture A on Td.

3.2.2 Realization sets and universal arborescence

In this section, we now investigate the collection of vectors t = (t1 < t2 < · · · < tn) for which a
non-crossing arborescence A can be captured on t by a polynomial P of degree at most d. We use
these realization sets to characterize universal non-crossing arborescences A (i.e. µ(A, t) = µ(A)
for all t) of intrinsic degree µ(A) ≤ 3. These universal arborescences will correspond to vertices
of the cyclic associahedron Assod−1(t) for every d ≥ max(µ(A), 4).

Realization sets

Definition 3.14. For a non-crossing arborescence A : [n] → [n] and any d, we define the realization
set T ◦

d (A) of A as the collection of t = (t1 < t2 < · · · < tn) ∈ Rn such that A can be captured on
t by some polynomial P of degree at most d.

If A is captured on t by P , then for λ > 0, A is captured on λt by P ( t
λ ). Likewise, A is captured

on (c, . . . , c) + t by P (t − c). With Corollary 3.10, this shows the closure Td(A) of T ◦
d (A) is a

(generally non-convex) full-dimensional subcone of the order cone On = {t ∈ Rn : t1 ≤ · · · ≤ tn}.
In particular, when convenient, we can assume t1 = 0 and tn = 1. By definition, remark that

T1(A) ⊆ T2(A) ⊆ · · · ⊆ Tn(A) = On.

In order to give a description of Td(A), let Ib
A, If

A ⊆ [n − 2] be the sets of backward-sliding
and forward-sliding nodes of A. We start with a description of the collection of polynomials P
that capture A on a given t. If i ∈ If

A is forward-sliding, we write i∗ := A(i). If i ∈ Ib
A is

backward-sliding, we write i∗ for minimal j > i with A(j) = A(i). See Figure 34.

Lemma 3.15. Let A : [n] → [n] be a non-crossing arborescence and t ∈ O◦
n. A polynomial P

captures A on t if and only if for all forward-sliding i ∈ If
A

(tA(i∗) − ti)(P (ti∗)− P (ti))− (ti∗ − ti)(P (tA(i∗))− P (ti)) > 0

and for all backward-sliding i ∈ Ib
A

(tA(i∗) − ti)(P (ti∗)− P (ti))− (ti∗ − ti)(P (tA(i∗))− P (ti)) < 0 ,
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Figure 34: Here, If
A = {1, 2, 3, 5} is the set of forward-sliding nodes, and Ib

A = {3, 4, 5} is the set
of backward-sliding nodes.

Proof. Let P (t) = wdt
d +wd−1t

d−1 + · · ·+w1t = ⟨w,γd(t)⟩. Then P captures A on t if and only
if ⟨w,Ψ(A)⟩ > ⟨w,Ψ(A′)⟩ for all non-crossing arborescences A′ ̸= A. By convexity, it suffices to
consider only those A′ such that [Ψ(A),Ψ(A′)] is an edge. By Proposition 3.4 this boils down to

⟨w,Ψ(A)⟩ − ⟨w,Ψ(FiA)⟩ =
P (ti∗)− P (ti)

ti∗ − ti
− P (tA(i∗))− P (ti)

tA(i∗) − ti
> 0 ,

when i ∈ If
A; and when i ∈ Ib

A to

⟨w,Ψ(A)⟩ − ⟨w,Ψ(BiA)⟩ =
P (tA(i))− P (ti)

tA(i) − ti
− P (ti∗)− P (ti)

ti∗ − ti
> 0

We can write Lemma 3.15 as follows. Define the complete symmetric polynomial of degree s:

hs(x1, x2, x3) :=
∑

a+b+c=s

xa
1x

b
2x

c
3

For i ∈ Ib
A ∪ If

A, we construct Φd
i (t) ∈ Rd with Φd

i (t)j = hj−2

(
ti, ti∗ , tA(i∗)

)
.

Observe that Φd
i (t)1 = 0 and Φd

i (t)2 = 1. We set Φ
d

i (t) :=
(
hj(ti, ti∗ , tA(i∗))

)
j=1,...,d−2

∈ Rd−2.

Theorem 3.16. Let A : [n] → [n] be a non-crossing arborescence. For t ∈ O◦
n and d ≥ 2, define the

polytopes

Pf
d (A, t) := conv

{
Φ

d

i (t) : i ∈ If
A

}
and Pb

d (A, t) := conv
{
Φ

d

i (t) : i ∈ Ib
A

}
.

Then A is captured on t by some P of degree at most d if and only if Pf
d (A, t) ∩ Pb

d (A, t) = ∅.

Proof. Let P (t) = w1t + · · · + wdt
d = ⟨w,γd(t)⟩, and t ∈ O◦

n. By Lemma 3.15, A is captured on

t by some polynomial P of degree at most d if and only if ⟨w,Ψ(A)−Ψ(FiA)⟩ > 0 for all i ∈ If
A

and ⟨w,Ψ(A)−Ψ(BiA)⟩ > 0 for all i ∈ Ib
A. For i ∈ If

A, let j = A(i) and k = A(j). We compute

Ψ(FiA)r+1−Ψ(A)r+1 =
tr+1
k − tr+1

i

tk − ti
−
tr+1
j − tr+1

i

tj − ti
=

r∑

s=0

tskt
r−s
i −

r∑

s=0

tsjt
r−s
i =

r∑

s=0

(tsk−tsj)t
r−s
i .

This implies that Φd
i (t) =

1
tk−tj

(Ψ(FiA)−Ψ(A)), and as tj < tk, the inequality ⟨w,Ψ(A)−Ψ(FiA)⟩ >
0 is equivalent to

〈
w,Φd

i (t)
〉
< 0. For i ∈ Ib

A we can prove analogously, that ⟨w,Ψ(A)−Ψ(BiA)⟩ >
0 is equivalent to

〈
w,Φd

i (t)
〉
> 0. This gives us a system of strict linear inequalities that by Gor-

dan’s lemma, a variant of Farkas’ lemma (cf. [Sch98, Sect. 7.8]), has a solution if and only if there

are λi ≥ 0 for i ∈ If
A and µj ≥ 0 for j ∈ Ib

A not identically zero and
∑

i∈If
A

λiΦ
d
i (t) =

∑

i∈Ib
A

µiΦ
d
i (t) .

Since Φd
i (t)2 = 1, it follows that Λ :=

∑
i∈If

A
λi =

∑
i∈Ib

A
µi > 0. Dividing both sides of the above

equality by Λ yields a point in Pf
d (A, t) ∩ Pb

d (A, t).
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Example 3.17. For n = 5, one can consider t = (1, 2, 3, 4, 5). In Figure 35 are drawn Pb
d (A, t) and

Pf
d (A, t) for d = 3 and d = 4 for the two given non-crossing arborescences. None of the polytopes

intersects for d = 4, indicating that both arborescences are captured in degree 4 (what was already
known, as d = 4 = n − 1, and all non-crossing arborescences on n nodes are captured in degree
d). However, for d = 3, the left arborescence is not captured while the right one is.

The situation is inverted for t = (−1, 2, 3, 4, 5), as shown in Figure 36.

Non-crossing arborescences with µ(A) ≤ 3 In this section, we will characterize realization sets
of non-crossing arborescences of intrinsic degree at most 3. We call a non-crossing arborescence A
quadratic if µ(A) = 2, and cubic if µ(A) = 3. We start with a classification of quadratic and cubic
arborescences, obtained from Corollary 3.13. Quadratic non-crossing arborescences have exactly
1 exterior immediate leave (and no interior one), while cubic ones have either 1 interior and no
exterior, or 2 exterior ones. Consequently, their non-crossing property gives:

Corollary 3.18. The two non-crossing arborescences of intrinsic degree 2 on n ≥ 3 nodes are Am

and AM , defined by Am(i) = i + 1 for 1 ≤ i ≤ n − 1 and AM (i) = n for 1 ≤ i ≤ n − 1. See
Figure 37.

Corollary 3.19. For n ≥ 4, there are precisely 2n−2 + n − 5 non-crossing arborescences A on n
nodes with µ(A) = 3. They come in two types:
(i) For 1 < k < n− 1, define A(i) = i+ 1 for 1 ≤ i < k and A(i) = n for k ≤ i < n. These are

n− 3 non-crossing arborescences with L(A) = {1, n− 1}.
(ii) For 1 < k < n − 1 and n ≥ j1 ≥ j2 ≥ · · · ≥ jk−1 > k, define A(i) = ji for 1 ≤ i < k and

A(i) = i+1 for k ≤ i < n. These are 2n−2 − 2 non-crossing arborescences with L(A) = {k}.
We call a non-crossing arborescence A : [n] → [n] universal if A can be captured by a polynomial

of degree µ(A) on all t ∈ O◦
n, that is: Tµ(A)(A) = On. Note that this implies that Td(A) = On for

all d ≥ µ(A). We next determine all universal arborescences A with µ(A) ≤ 3, giving a description
of the realization set of any non-crossing arborescence A with µ(A) ≤ 3.

Lemma 3.20. Let A : [n] → [n] be a non-crossing arborescence with µ(A) = 3 and L(A) = {k},
1 < k < n− 1. Then for all t ∈ O◦

n,

min{ti + ti∗ + tA(i∗) : i ∈ Ib
A} < max{ti + ti∗ + tA(i∗) : i ∈ If

A} .

Proof. As k ̸= n − 1 there is an i ∈ If
A ∩ [n − 2] with i∗ = n − 1. Recall that A is of the form

Corollary 3.19(ii). If j1 ≤ n − 2, then for all j ∈ Ib
A we have A(j∗) ≤ n − 2 and the statement

follows. Otherwise, either j ∈ Ib
A exists with j∗ = n−1 and j < i, or j∗ = n−2 and i ≤ j. In both

cases, for all t ∈ O◦
n, we have min{ti + ti∗ + tA(i∗) : i ∈ Ib

A} ≤ tj + tj∗ + tA(j∗) < ti + ti∗ + tA(i∗) ≤
max{ti + ti∗ + tA(i∗) : i ∈ If

A}.

Theorem 3.21. Let A : [n] → [n] be a non-crossing arborescence with µ(A) ≤ 3. Then A is
universal if and only if µ(A) = 2, or if µ(A) = 3 and
(a) L(A) = {1, n− 1}, or
(b) L(A) = {n− 2}, A(i) = n for i = 1, . . . , n− 4, and A(n− 3) ∈ {n− 1, n}, or
(c) L(A) = {2} and A(1) ∈ {3, 4}.

Proof. Using Theorem 3.16 it suffices to show that Pf
d (A, t) ∩ Pb

d (A, t) = ∅ for all choices of t
holds in precisely the situations stipulated above.

When µ(A) = 2, Pf
d (A, t) and Pb

d (A, t) are polytopes in R0. Hence, the claim holds if and

only if Ib
A = ∅ or If

A = ∅. By Corollary 3.18 this is the case for both Am and AM .

If µ(A) = 3, then Pf
d (A, t) = [xf , yf ], P

b
d (A, t) = [xb, yb] ⊂ R with (xf , yf ) the minimum and

maximum of {ti + ti∗ + tA(i∗) : i ∈ If
A} and likewise for (xb, yb).

Let A an arborescence with µ(A) = 3. If L(A) = {1, n − 1}, then A satisfies Corollary 3.19

(i) for some 1 < k < n− 1. Thus If
A = {1, 2, . . . , k − 1} and Ib

A = {k, . . . , n− 2}. It follows that
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Figure 35: The polytopes Pb
d (A, t) and Pf

d (A, t) with t = (1, 2, 3, 4, 5), for d = 3 (Bottom, 1-
dimensional drawing) and d = 4 (Top, 2-dimensional drawing), for the two non-crossing arbores-
cences drawn (Left and Right).
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yf = tk−1+ tk + tn+1 < tk + tk+1+ tn = xb. This proves (a). Otherwise, A satisfies Corollary 3.19
(ii) for some 1 < k < n − 1 and n ≥ j1 ≥ j2 ≥ · · · ≥ jk−1 > k. Note that Ib

A ⊆ [k − 1] and they
are all leaves. For (b), k = n − 2 and j1 = · · · = jn−4 = n. If jn−3 = n, then n − 2 is the only
forward-sliding node and xf = yf = tn−2 + tn−1 + tn > tn−3 + tn−1 + tn = yb. If jn−3 = n − 1,
then xf = yf = tn−3 + tn−1 + tn > max(tn−3 + tn−1 + tn−2, tn−4 + tn−1 + tn) = yf . Likewise, for
(c) we have k = 2. If A(1) = 3, then xb = yb = t1 + t2 + t3 < t1 + t3 + t4 = xf . If A(1) = 4, then
xb = yb = t1 + t3 + t4 < min(t2 + t3 + t4, t1 + t4 + t5) = xf .

Assume A satisfies Corollary 3.19 (ii) with L(A) = {k}, but neither (b) nor (c). In this case,

we will find t with Pf
d (A, t) ∩ Pb

d (A, t) ̸= ∅, which proves A is not universal. By Lemma 3.20,

Pf
d (A, t) ∩ Pb

d (A, t) = ∅ if and only if yb < xf .
If k is forward-sliding, then k∗ = k + 1 and either there is i < k with ji > A(k∗) = k + 2, or

j1 = · · · = jk−1 = k + 2 < n and 1 < k − 1. In the first case, choose the maximal i < k with
ji > k + 2: i is backward-sliding and i∗ = A(i∗) − 1 = ji − 1 > k + 1. For any t ∈ O◦

n with
ti∗ > tk + tk+1 it follows xf ≤ tk + tk+1 + tk+2 < ti + ti∗ + tA(i∗) ≤ yb. In the second case, i = 1
is forward-sliding with i∗ = k + 2, and k − 1 is backward-sliding with (k − 1)∗ = k + 1. Choosing
t ∈ O◦

n with t1 small enough, ensures xf ≤ t1 + t1∗ + tA(1∗) < tk−1 + tk−1∗ + tA(k−1∗) ≤ yb.
If k is not forward-sliding, then k − 1 is backward-sliding with (k − 1)∗ = k and there is a

minimal forward-sliding i < k with i∗ = k + 1. If i < k − 1 then we can find t ∈ O◦
n with ti small

enough so that xf ≤ ti + tk+1 + tk+2 < tk−1 + tk + tk+1 ≤ yb. If i = k − 1, then 1 < k − 1 and
we can choose j < k − 1 forward-sliding. Similarly, we can find t ∈ O◦

n, with tj small enough and
thus xf ≤ tj + tj∗ + tA(j∗) < tk−1 + tk + tk+1 ≤ yb.

Corollary 3.22. The number of universal non-crossing arborescences A : [n] → [n] with µ(A) ≤ 3
is n+ 3.

Proof. The universal non-crossing arborescences on [n] are characterized by Theorem 3.21. There
are exactly two non-crossing arborescences with µ(A) = 2. Moreover, there are n−3 arborescences
of the form (a), 2 of the form (b) and 2 of the form (c).

Example 3.23. In Figure 38(Left), you can see all non-crossing arborescences A : [5] → [5] with
µ(A) ≤ 3. Two arborescences A,A′ are connected by an edge if and only if they differ by a flip.
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Figure 38: All non-crossing arborescences A on n = 5 (Left) and n = 6 (Right) nodes with
µ(A) ≤ 3. Green and blue dots represent universal arborescences, red dots non-universal ones.

The arborescences at the green dots are the two universal arborescences of intrinsic degree 2, the
ones at the blue dots are the universal arborescences of intrinsic degree 3. The two remaining
arborescences at the red dots are the two non-universal arborescences of intrinsic degree 3, see
Example 3.17.

One can construct the same graph for n = 6, see Figure 38(Right), and n = 7, see Figure 39.
Note that these graphs are oriented from top to bottom by the Tamari orientation of flips. For
d ≥ 4 and fixed t, one can consider the graph Gt whose set of vertices is the set of A with
µ(A, t) ≤ 3, and the edges are the flips between them. This forms a sub-graph of the graph of
Assod−1(t), and hence a sub-graph of the graph of the associahedron. The projection principle of
Proposition 3.9 ensures that Gt is the graph of a polygon, thus Gt is a cycle. The idea behind
the rest of this section will be to prove that Gt is a great cycle in Figures 38 and 39 (and of
the corresponding graph for greater n), meaning that Gt is composed by two paths from AM to
Am: the left path of universal arborescences, and a right path that is increasing for the Tamari
orientation. Not all increasing right paths will correspond to a Gt for some t, but this will allow
us to prove that the number of vertices of Gt is independent from t.

Remark 3.24. Applying the bijection between non-crossing arborescences and triangulations to
Figure 38 we obtain the graph of the fiber polytope for the canonical projection from Cyc4(t) to
Cyc2(t) for t ∈ O◦

n as pictured in Figure [ALRS00, Figure 1]. The study of this phenomenon will
be at the heart of Section 4.3.

In the remaining of the section, we are going to use the properties of cubic arborescences and
the first property we have given of their realization set in order to count the number of cubic
arborescences that can be captured for a given t ∈ O◦

n. Even though it will be notationally heavy,
most of it will boil down to proving that what our previous drawings indicates holds in general.

Definition 3.25. For a non-crossing arborescence A, a forward-sliding i is called minimal when i is
a leaf, and a backward-sliding i is called maximal when i∗ + 1 = A(i∗).

Lemma 3.26. Let A : [n] → [n] be a non-universal cubic arborescence, and L◦(A) = {k}. For any
minimal forward-sliding i, i∗ + 1 = A(i∗) with i ≤ k and i∗ > k. Any maximal backward-sliding j
is a leaf, j < k and j∗ ≥ k.
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Figure 39: All non-crossing arborescences A on n = 7 nodes with µ(A) ≤ 3. Green and blue dots
represent universal arborescences, red dots non-universal ones.
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Proof. Since A is non-universal and cubic, A is of the form described in Corollary 3.19(ii). For
any i > k, one has A(i− 1) = i ; thus any minimal forward-sliding i has to be smaller or equal to
k. Moreover this ensures that i∗ > k and A(i∗) = i∗ + 1.

Suppose j is backward-sliding and maximal. The fact that A(j) > j + 1, forces j < k. Thus j
is a leaf. By Corollary 3.19(ii), j∗ > k.

Theorem 3.27. Let A : [n] → [n] be a cubic arborescence and t ∈ O◦
n. If A is non-universal, then

t ∈ T ◦
3 (A) if and only if

(i) ti < ti+1 for all 1 ≤ i < n,

(ii) tj + tj∗ + tA(j∗) < ti + ti∗ + tA(i∗) for all j ∈ Ib
A maximal and i ∈ If

A minimal.

Proof. Let A be cubic non-universal. By Theorem 3.16, it suffices to show that Pf
d (A, t) ∩

Pb
d (A, t) = ∅ and t ∈ O◦

n precisely when t satisfies the conditions (i) and (ii). Let Pf
d (A, t) =

[xf , yf ] and Pb
d (A, t) = [xb, yb]. By Lemma 3.20 we conclude that for t ∈ O◦

n, P
f
d (A, t)∩Pb

d (A, t) =
∅ if and only if yb < xf . As a consequence any t ∈ T ◦

3 (A) satisfies (i) and (ii).
Conversely, let t ∈ Rn fulfil (i) and (ii). Obviously t ∈ O◦

n.

Assume that i ∈ If
A is not minimal. Then there is a forward-sliding leaf a < i and m > 1 such

that Am(a) = i. This shows xf ≤ ta + ta∗ + tA(a∗) < ti + ti∗ + tA(i∗). Hence tj + tj∗ + tA(j∗) <
ti + ti∗ + tA(i∗) is implied by tj + tj∗ + tA(j∗) < ta + ta∗ + tA(a∗).

Assume that j ∈ Ib
A is not maximal. Then j∗ < A(j∗)−1 implies that there exists a backward-

sliding b with j∗ ≤ b < A(j∗) and A(j∗) = A(b∗) = b∗ + 1. This shows ti + ti∗ + tA(i∗) <
tj + tj∗ + tA(j∗) ≤ yb. We conclude that tj + tj∗ + tA(j∗) < ti + ti∗ + tA(i∗) is implied by
tb + tb∗ + tA(b∗) < ti + ti∗ + tA(i∗).

Example 3.28. For n = 5, there are 10 non-crossing arborescences A with µ(A) ≤ 3, see Fig-
ure 38(Left). Among them, 8 are universal and 2 are not. We have discussed the 2 non-
universal ones in Example 3.17. Theorem 3.27 allows us to compute the realizations sets of
theses 2 non-universal arborescences: besides facets of O5, they have a facet on the hyperplane
{t ∈ R5 ; t2 + t3 + t4 = t1 + t4 + t5}. In Figure 40(Bottom) are drawn these two realization sets,
embedded inside the order cone O5. As this cone is 5-dimensional, we intersect it with the two
hyperplanes {t ∈ R5 ; t1 = 0} and {t ∈ R5 ; t5 = 1}, making the picture 3-dimensional. For
each realization sets, we have drawn in blue Assod−1(t) for d = 4 which is an associahedron, and
highlighted in red the non-crossing arborescences A with µ(A, t) ≤ 3 for the corresponding t.

Remark 3.29. Note that different cases of Theorem 3.27 lead to the same inequality (see Figure 41):

(i) For example, if i ∈ Ib
A ∩ [1, k − 1], i + 1 ∈ If

A and A(i + 1) < i∗. Since i + 1 ≤ k,
i + 1 is a leaf and thus minimal. By A(i + 1) < i∗ and thus i∗ > k follows that i is
maximal. Moreover, i < i + 1 < k < A(i + 1) < A(A(i + 1)) ≤ i∗ < A(i∗). By (ii),
tA(i+1) < tA(A(i+1)) ≤ ti∗ < tA(i∗) and so (iii) implies ti < ti+1.

(ii) If i ∈ Ib
A, j ∈ If

A and i = j, then A(i∗) = j∗ and thus the inequality ti + ti∗ + tA(i∗) <
tj + tj∗ + tA(j∗) is implied by ti∗ < tA(j∗).

(iii) If i ∈ Ib
A, j ∈ If

A and i∗ = j∗, then j < i as A is non-crossing. As i is forward-sliding and j
is maximal, i = j + 1 and the inequality corresponding to i and j follows from tj < ti.

Now we want a closer look at the realization set and describe, which of the inequalities in
Theorem 3.27 of the form (ii) give a facet for T3(A).

Let A : [n] → [n] be a non-crossing arborescence, i ∈ [n − 2] forward-sliding and j ∈ [n − 2]
backward-sliding. Recall the definitions of flips (FiA and BjA are non-crossing arborescences):

FiA(k) =

{
A(i∗) k = i

A(k) k ̸= i
and BjA(k) =

{
j∗ k = j

A(k) k ̸= i.
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•
t2 + t3 + t4 = t1 + t4 + t5

Figure 40: The order cone O5 intersected by the hyperplanes {t ; t1 = 0} and {t ; t5 = 1}, and
subdivided into the different realization sets for non-crossing arborescences A with µ(A) ≤ 3. For
each realization sets, the cyclic associahedron Asso3(t) with, highlighted in red, the non-crossing
arborescences A with µ(A, t) ≤ 3.
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Figure 41: Some diagonal switches are forbidden due to the relative positions of i, j, i∗ and j∗.
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Figure 42: A non-crossing arborescence A : [7] → [7] and two diagonal switches.

If j is backward-sliding in FiA and i is forward-sliding in BjA then we could consider the
combination of the two flips. We say that A and A′ differ by a diagonal switch if A′ = FiBjA =
BjFiA ̸= A, equivalently we say that we perform a diagonal switch with respect to i and j on A.

The notion diagonal switch is motivated by the fact that A, FiA, BjA and FiBjA form a square
face8 of Asson−2, and switching from A to FiBjA corresponds to switching along the diagonal of
the square that contains A. In the directed graph Gt defined in Example 3.23, a diagonal flip
amounts to travelling through two edges: one respecting the Tamari orientation and the other not
(in Figure 38 and Figure 39, two arborescences are linked by a diagonal switch when there are at
the same height and at distance 2).

Lemma 3.30. Let A : [n] → [n] be a non-crossing arborescence, i forward-sliding and j backward-
sliding. We can perform a diagonal switch with respect to i and j on A, if and only if the following
conditions are fulfilled, see Figure 41:
(i) i ̸= j
(ii) j∗ ̸= i∗

(iii) j ̸= i∗

Proof. Suppose one of the conditions is not fulfilled. If i = j, then FiBjA = BjFiA = A. If j∗ = i∗,
then A(j∗) = A(i∗) and as A(j) = A(j∗) > A(i) = i∗, we need j < i. Hence BjA(j) = j∗ = i∗,
and thus i is not forward-sliding in BjA. If j = i∗, then FiBjA(i) = j∗ ̸= BjFiA(i) = A(i∗).

Suppose (i)− (iii) are fulfilled. Notice that (i) implies i∗ ̸= A(j∗), (ii) and (iii) imply A(i∗) ̸=
A(j∗). It cannot happen that j∗ = i, as then i would not be forward-sliding. If i = A(j∗), j =
A(i∗) or j∗ = A(i∗), then the diagonal switch can be performed. Otherwise, {i, i∗, A(i∗)} ∩
{j, j∗, A(j∗)} = ∅ and thus the diagonal switch can be performed as well.

Corollary 3.31. Let A : [n] → [n] be a non-crossing arborescence, 1 ≤ i ≤ n − 2 forward-sliding
and 1 ≤ j ≤ n− 2 backward-sliding. If j = i∗, then either L(A) = {1, n− 1} or µ(A) > 3.

Proof. From j = i∗ follows that A(i∗) = A(j∗). As i∗ < A(i∗) − 1, there is an immediate leaf
i∗ < ℓ1 < A(i∗) ≤ n − 1. Furthermore either A(1) = 2 and thus 1 ∈ L(A), or there is an interior
immediate leaf 1 < ℓ2 < i∗.

8All induced 3-, 4- and 5-cycles in the graph of a simple polytope are 2-faces, thus the four vertices associated
to A, FiA, BjA and FiBjA form a square face of Asson−2.

90



Proposition 3.32. Let A : [n] → [n] be a cubic non-universal non-crossing arborescence. Let
1 ≤ i ≤ n− 2 be forward-sliding and minimal and 1 ≤ j ≤ n− 2 backward-sliding and maximal. If
i ̸= j and i∗ ̸= j∗, then A′ = FiBjA = BjFiA is cubic and non-universal.

Proof. As A is non-universal and cubic, by Theorem 3.21 A satisfies L(A) = {ℓ}, 1 < ℓ < n − 1.
If i is minimal, then, by Corollary 3.19 and Lemma 3.26, either i = ℓ or i < ℓ. If i = ℓ, then this
implies i∗ = ℓ + 1 and A(i∗) = ℓ + 2 and thus L(FiA) = L(FlA) = {ℓ + 1}. If i < ℓ, then as
A(i∗) = i∗ + 1 ≥ ℓ+ 1, it follows that L(FiA) = L(A) = {ℓ}.

If j is maximal, then, by Corollary 3.19, either j = ℓ−1 or j < ℓ < j∗. In the first case, j∗ = ℓ,
A(j∗) = ℓ+ 1 and L(BjA) = {ℓ− 1}. In the second case, L(BjA) = L(A) = {ℓ}.

Moreover, we observe, that ℓ can not be forward-sliding and ℓ − 1 is backward-sliding at the
same time. We conclude, that L(FiBjA) ⊆ [2, n − 2] and thus FiBjA is cubic. If 3 ≤ ℓ ≤ n − 3
this almost shows that FiBjA is non-universal. We only have to consider two special cases.
Suppose ℓ = 3 and A(1) = 4. Then only 2 is backward-sliding and maximal and only 1 is forward-
sliding and minimal. Thus L(B2F1A) = {2}, but with A(1) = 5, implying that B2F1A is non-
universal. Similarly, if ℓ = n−3 and A(k) = n for all k < n−3, then as only n−3 is forward-sliding
and minimal and only n−4 is backward-sliding and maximal. We have L(Bn−4Fn−3A) = {n−2}.
Moreover, Bn−4Fn−3A(n− 4) = n− 1 and thus Bn−4Fn−3A is non-universal.

If ℓ = 2, as A is non-universal, we have A(1) > 4. Thus only 1 is backward-sliding and
maximal, and only 2 is forward-sliding and minimal, which leads to L(B1F2A) = 3 and hence
B1F2A is non-universal. If ℓ = n− 2, as A is non-universal, we have A(n− 4) = A(n− 3) = n− 1.
Then the smallest i < n−4 such that A(i) = n−1 is the only forward-sliding and minimal choice,
and only n− 3 is backward-sliding and maximal. This leads to L(FiBn−3A) = {n− 3} and thus
A is non-universal.

Now we want to highlight some inequalities of Theorem 3.27. Let A : [n] → [n] be a cubic
arborescence. We call a facet of T3(A) internal, if it is not contained in any facet of On. By
definition, universal arborescences have no internal facets.

Theorem 3.33. Let A be a cubic, non-crossing and non-universal arborescence. Any internal facet
of T3(A) is of the form

T3(A) ∩ {t ∈ Rn ; tj + tj∗ + tA(j∗) = ti + ti∗ + tA(i∗)},

where i is forward-sliding and minimal and j is backward-sliding and maximal, and a diagonal
switch can be performed on A with respect to i and j.

Proof. In the inequality description given by Theorem 3.27, the inequalities of the form (i) come
from facets of On. By Lemma 3.30 and Corollary 3.31, a diagonal switch can be performed with
respect to i and j if and only if i ̸= j and i∗ ̸= j∗. If i = j or i∗ = j∗, then the associated inequality
gives rise to a facet of On, Remark 3.29(ii) and (iii).

Remark 3.34. The above Theorem 3.33 almost gives a facet-description of T3(A). Indeed, we
know that its facets are associated to pairs of compatible minimal forward-sliding and maximal
backward-sliding nodes, but it is not mandatory that all such couples are associated to a facet.
Nonetheless, the collection of such couples is far smaller than the collection of all couples of
forward-sliding and backward-sliding nodes, and will reveal to be far more manageable thanks to
the diagonal flip.

Definition 3.35. The switching arrangement Hn is the collection of hyperplanes

H(i,j) = {t ∈ Rn : tj + tj∗ + tA(j∗) = ti + ti∗ + tA(i∗)}

for all couples (i, j) such that there exists a non-crossing non-universal cubic arborescence A :
[n] → [n] with i forward-sliding and minimal, and j backward-sliding and maximal and a diagonal
switch can be performed with respect to i and j.
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For t ∈ Rn, let A(t) be the collection of non-crossing arborescences A : [n] → [n] such that
t ∈ T ◦

3 (A). Observe, that A ∈ A(t) for any universal A : [n] → [n] and any t ∈ O◦
n. We can prove

the last main theorem of this section:

Theorem 3.36. For all t, t′ ∈ O◦
n \⋃H∈Hn

H, one has |A(t)| = |A(t′)|.
Proof. By Theorem 3.33, if t and t′ belong to the same maximal cone of O◦

n \ ⋃H∈Hn
H, then

A(t) = A(t′).
Suppose t ∈ C and t′ ∈ C′ where C and C′ are two adjacent maximal cones of O◦

n \⋃H∈Hn
H.

Then C and C′ are separated by a hyperplane H(i,j).
For A ∈ A(t), if (i, j) is not a couple with i minimal forward-sliding in A and j maximal

backward-sliding in A such that a diagonal switch can be performed, then A ∈ A(t′), as the
segment [t, t′] does cross any facet of T3(A).

Suppose the converse. Then A /∈ A(t′), but we can perform a diagonal switch on A with
respect to i and j to obtain A′ = FiBjA. We are going to prove that A′ ∈ A(t′). For a minimal
forward-sliding in A′, then one can list the possibilities: either a = j, or a∗ = i, or a∗ = j∗,
or a is forward-sliding in A (all other possibilities contradict the minimality of a or the fact that
µ(A′) = 3). In all these cases, as A is captured on t, we have ti+ti∗ +tA(i∗) ≤ ta+ta∗ +tA′(a∗). By
adjacency of C and C′, the segment [t, t′] does not cross any hyperplane of Hn other than H(i,j), so
t′j+t′j∗+t′A′(j∗) ≤ t′a+t′a∗+t′A′(a∗). The same arguments ensure that t′i+t′i∗+t′A′(i∗) ≤ t′b+t′b∗+t′A′(b∗)

for all bmaximal back-sliding in A′. By construction of t′, we have t′i+t′i∗+t′A′(i∗) ≤ t′j+t′j∗+t′A′(j∗).

Consequently, t′ ∈ T3(A′), meaning that A′ ∈ A(t′).
We have proven that |A(t)| ≥ |A(t′)|. By symmetry, both quantities are equal. The theorem

results from the fact that the graph of maximal cones of O◦
n \⋃H∈Hn

H is connected.

Corollary 3.37. If t ∈ O◦
n \⋃H∈Hn

H, then |A(t)| =
(
n
2

)
− 1.

Proof. By Theorem 3.36 it is enough to show |A(t)| =
(
n
2

)
− 1 for some t ∈ O◦

n \ ⋃H∈Hn
H.

Let tlex = (2, 22, . . . , 2n). Recall that for m ∈ N, 2m − 1 =
∑m−1

i=0 2i and thus 2m >
∑m−1

i=0 2i.
Thus for any triples (i1, i2, i3), (j1, j2, j3) with 1 ≤ i1 < i2 < i3 ≤ n and 1 ≤ j1 < j2 < j3 ≤ n,
2i1 + 2i2 + 2i3 = 2j1 + 2j2 + 2j3 if and only if (i1, i2, i3) = (j1, j2, j3). This implies that tlex ∈
O◦

n \⋃H∈Hn
H.

Let A : [n] → [n] be a non-crossing arborescence with µ(A) ≤ 3. If A is universal, then
A ∈ A(tlex). There are two such arborescences of intrinsic degree 2 by Corollary 3.18 and n − 3
of intrinsic degree 3 by Corollary 3.19(i). Otherwise, L(A) = L◦(A) = {ℓ} ⊆ [2, n − 2], see
Corollary 3.19. By Lemma 3.26, if j is backward-sliding and maximal, then j < ℓ, j∗ > ℓ and
A(j∗) = j∗+1. If i is forward-sliding and minimal, then i ≤ ℓ and A(i∗)−1 = i∗ > ℓ. Consequently,
A ∈ A(tlex) if and only if for all i minimal forward and j maximal backward:

2j + 2j
∗
+ 2A(j∗) < 2i + 2i

∗
+ 2A(i∗). (12)

As A is non-crossing, if j < i, then j∗ ≥ i∗. Assume j∗ ≥ i∗ + 1. Then 2A(j∗) > 2i + 2i
∗
+ 2A(i∗)

and thus A /∈ A(tlex). Otherwise, if i∗ = j∗, then Equation (12) holds. If j ≥ i, then A(i∗) > j∗

and thus Equation (12) also holds. Consequently, if A ∈ A(tlex), then there is p ∈ [ℓ] and
k ∈ [ℓ+ 1, n− 1] such that for all i < p, A(i) = k and for all p ≤ i < ℓ, A(i) = k + 1. If k > ℓ+ 1,
then ℓ is forward-sliding and minimal and 2k+1 > 2ℓ + 2ℓ+1 + 2ℓ+2. Thus A ∈ A(tlex) if and only
if k = ℓ+ 1. The number of those arborescences is

n−2∑

ℓ=2

ℓ∑

p=1

1 =

n−2∑

ℓ=2

ℓ =

(
n− 1

2

)
− 1.

Hence in total

|A(tlex)| =
(
n− 1

2

)
− 1 + (n− 1) =

(
n

2

)
− 1.
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Example 3.38. We consider the subdivision of On induced by Hn, and then merge the maximal
cones C and C′ such that A(t) = A(t′) for t ∈ C and t′ ∈ C′. Said differently, we consider the
subdivision Sn of On induced by the family of polytopes T3(A) for A with µ(A) ≤ 3.

For n = 6, thanks to a computer analysis, we can show that S6 is composed of 12 cones,
separated by the 5 hyperplanes of H6. Corollary 3.37 ensures that to each cone C correspond a
14-gon whose vertices are in bijection with the 14 non-crossing arborescences A with µ(A, t) ≤ 3
for all t ∈ C. In Figure 43 is pictured the dual graph of S6: each maximal cone is represented by
its 14-gon whose vertices are labelled by the corresponding non-crossing arborescence. The edges
of the dual graph are colored according to the hyperplane of H6 they correspond to. Moreover, the
vertices of the 14-gons are colored with the same colors: hence, following the cyan edge amounts to
performing a diagonal switch on the label of the cyan vertex (and similarly for the other colors).
As before, green vertices correspond to non-crossing arborescences A with µ(A) = 2, and blue
vertices to universal ones with µ(A) = 3.

3.2.3 Pivot polytopes of cyclic polytopes of dimension 2 and 3

The cyclic polytope Cycd(t) has a complete graph for d ≥ 4, but for d = 2 and d = 3, one can also
define the max-slope pivot polytope Π(Cycd(t), e1), even though it will not be the projection of an
associahedron. Hence, its vertices will not be associated (in general) to non-crossing arborescences,
but just to arborescences on n nodes. For the sake of completeness, we present here the study of
the cases d = 2 and d = 3. To this end, we make use of the method developed in the previous
sections (and the proof will be exposed in a more concise way).

Dimension 2 In dimension 2, whatever the chosen t ∈ Rn, n ≥ 4, the cyclic polytope Cyc2(t) is
not neighborly: as it is a polygon, its graph is not complete. Thus, its max-slope pivot polytope
is not in general the projection of an associahedron. In this section, we describe the max-slope
pivot polytope of Cyc2(t) for the objective function e1.

Theorem 3.39. For all t ∈ O◦
n, the 1-dimensional polytope Π(Cyc2(t), e1) has two vertices, one cor-

responding to the arborescence A
(2)
m defined by A

(2)
m (i) = i+1 for all i ∈ [n], and one corresponding

to A
(2)
M defined by A

(2)
M (1) = n and A

(2)
M (i) = i+ 1 for i ̸= 1, see Figure 44.

Proof. As Cyc2(t) is 2-dimensional, Π(Cyc2(t), e1) is 1-dimensional and has precisely two vertices.
Fix t ∈ O◦

n. When orienting Cyc2(t) along e1, the only improving neighbor of γd(ti) is γd(ti+1)
for i ̸= 1 ; on the other hand, γd(t1) has two improving neighbors: γd(t2) and γd(tn). Thus, there

are exactly two possible arborescences on Cyc2(t): A
(2)
m and A

(2)
M . Consequently A

(2)
m and A

(2)
M

correspond to the two vertices of Π(Cyc2(t), e1).

Remark 3.40. The arborescences A
(2)
m and A

(2)
M are universal in the sense that they appear as

vertices of Π(Cyc2(t), e1) for all t ∈ O◦
n. Note that A

(2)
m is captured on all t ∈ O◦

n by any

polynomial P (t) = a2t
2 + a1t+ a0 with a2 < 0 whereas A

(2)
M is captured when a2 > 0.

Last but not least, although A
(2)
m = Am is a non-crossing arborescence of degree 2 in the sense

of the previous section, this is not the case of A
(2)
M ̸= AM .

Dimension 3 In dimension d = 3, whatever the chosen t ∈ On, n ≥ 5, the cyclic polytope Cyc3(t)
is not neighborly: its graph is not complete. Thus, its max-slope pivot polytope is not in general
the projection of an associahedron. In this section, we will explore the max-slope pivot polytope
of the cyclic polytope Cyc3(t). First, we need to understand the edges of Cyc3(t).

Lemma 3.41. When orienting Cyc3(t) along e1, the vertex γd(ti) has at most 2 improving neighbors
for i ̸= 1: γd(tj) with j ∈ {i+1, n}. Moreover, every γd(tj) for 1 < j ≤ n is an improving neighbor
of γd(t1).
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Figure 43: Dual graph of the subdivision of O6 induced by T3(A) for A non-crossing with µ(A) ≤ 3.
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