
2 Deformations of polytopes and generalized permutahedra

“Surely,” said I, “surely that is something at my window lattice;
Let me see, then, what thereat is, and this mystery explore
Let my heart be still a moment and this mystery explore;”

– Edgar Allan Poe, The Raven

2.1 Deformations of polytopes

In Section 1.2.4, we have seen that a realization of the associahedron, Loday’s associahedron,
can be retrieved from the standard permutahedron by removing facets. In this construction,
edge directions are preserved, and only the normal fan is coarsened. This process embodies the
combinatorics of flips of Catalan families inside the graph of the weak order on permutations. This
section is devoted to the presentation of the general concept of “gliding facets”, and the vast family
of polytopes one can obtain from the permutahedron by this construction.

Definition 2.1. A deformation (or weak Minkowski summand) of a polytope P is a polytope Q
whose normal fan NQ coarsens the normal fan of P. The set of deformations of P is called its
deformation cone:

DC(P) =
{
Q ⊂ Rd ; NQ ⊴ NP

}

The name deformation comes from the pictorial illustration of gliding facets along their normal
vectors, see Figure 10. To justify the appellation cone, note the following: For Q and R two
polytopes, then NλQ = NQ for all λ > 0, and NQ+R is the common refinement of NQ and NR.
Consequently, NλQ and NQ+R coarsen NP when NQ and NR do, which means DC(P) is closed by
dilation and Minkowski sums.

Howbeit, it is hard to understand the deformation cone as a cone of polytopes, one would
prefer to parameterize it by a cone in the Euclidean space RN for some N . There are several ways
to do so, this thesis will focus on the so-called height deformation cone, and briefly present the
other realizations.

Let P ⊂ Rd be a polytope with normal fan F supported on the vector set S. Let G be the
N × d-matrix whose rows are the vectors in S. For any height vector h ∈ RN , we define the
polytope Ph :=

{
x ∈ Rd ; Gx ≤ h

}
. It is not hard to see that any weak Minkowski summand

of P is of the form Ph for some h ∈ RN .
Moreover, for deformations Ph and Ph′ of P, we have Ph + Ph′ = Ph+h′ and λPh = Pλh for

any λ > 0. Hence, the deformation cone is parameterized by the height deformation cone:

DC(P) ≃ DCh(P) :=
{
h ∈ RN ; NPh

⊴ NP

}
.

Other descriptions of the deformation cones are of theoretical importance. As we will not use
them in this thesis, we restrain ourselves to a succinct glimpse of their definitions.

For a polytope P, let E(P) be the set of its edges. To P, one can associate the vector ℓ ∈ RE(P)

of its edge-lengths, where ℓe is simply the length of e ∈ E(P). Conversely, a vector in RE(P)
+

gives rise to a polytope Qℓ: for e ∈ E(P), choose a direction and denote ue the unitary vector in
this direction, then Qℓ = conv

{∑
e∈P εPe ℓeue ; P directed edge-path in GP

}
where εPe = 1 if the

direction of e ∈ P is the same as in ue, and εPe = −1 else way. The deformation cone is isomorphic

to the edge deformation cone
{
ℓ ∈ RE(P)

+ ; Qℓ ⊴ NP

}
, see [PRW08, Appendix 15] for instance.

On top of that, a deformation of P can also be described as a polytope whose support functional
is a convex piece-wise linear continuous function supported on the face fan of P [CLS11, Section
6.1] and [DRS10, Section 9.5]. The deformation cone is isomorphic to the cone of such linear
functionals.

From now on, we will slightly abuse notations by using ambiguously the word deformation cone
to designate the cone of the deformations of a polytope or the height deformation cone. Besides,
although we define the deformation cone for a polytope, it only depends on the normal equivalence
class of the latter, i.e. of its normal fan. Consequently, we will sometimes prefer to talk about the
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Figure 10: Animated sequence of deformations. The first polyhedron is the permutahedron Π4

(First frame). One by one, we remove inequalities from its facet-description (by augmenting
the constant b in ⟨x,a⟩ ≤ b) to obtain the associahedron Asso4 (Middle pause), and then pur-
sue the process to obtain a cube linearly isomorphic to □3 (Final frame). See also Figure 6.
(Animated figures obviously do not display on paper, and some PDF readers do not support the
format: it is advised to use Adobe Acrobat Reader. If no solution is suitable, the animation can be
found on my website or asked by email.)

31



deformation cone of a fan (especially in Section 2.3): when the fan F is polytopal, then DC(F)
would be the deformation cone DC(P) of any polytope P with NP = F ; and DC(F) = ∅ when F
is not polytopal.

The height deformation cone is a polyhedral cone, and the two following propositions give an
inequality description of it. The first one is devoted to simple polytopes and will be used for
describing the deformation cones of nestohedra in Section 2.3, while the second one deals with
general polytopes exploiting a triangulation of their normal fan, allowing a description of the
deformation cones of graphical zonotopes in Section 2.2. Note that, in general, these propositions
give an inequality description far from being a facet-description: namely, many inequalities are
actually redundant.

Proposition 2.2 ([CFZ02, GKZ08]). Let P ⊂ Rd be a simple polytope with simplicial normal fan F
supported on the rays S. Then the deformation cone DC(P) is the set of polytopes Ph for all h in
the cone of RS defined by the inequalities

∑

s∈R∪R′

αR,R′(s)hs ≥ 0

for all adjacent maximal cones R≥0R and R≥0R
′ of F with R∖ {r} = R′∖ {r′}, where αR,R′(s)

denote the coefficients in the unique linear dependence5

∑

s∈R∪R′

αR,R′(s) s = 0

among the rays of R ∪R′ such that αR,R′(r) + αR,R′(r′) = 2.

The edge deformation cone also enjoys an inequality description. Indeed, an edge vector ℓ ∈ RE
+

corresponds to a deformation of a simple polytope P when it satisfies the polygonal face equations:
for each 2-dimensional face F of P,

∑
e∈E(F) ℓeue = 0 where the sum is on the edges of F. The edge

deformation cone of a simple polytope P is the intersection of RE(P)
+ with the kernel of polygonal

face equations [PRW08, Pos09].
Similarly, the cone of convex piece-wise linear continuous functions on the face fan of a simple

polytope has an inequality description.

The characterization of the height deformation cone can be extended to general (not neces-
sarily simple) polytopes. One straightforward way to do so is via a simplicial refinement of the
normal fan. If such a simplicial refinement contains additional rays, then the type cone will be
embedded in a higher dimensional space, but projecting out these additional coordinates gives a
linear isomorphism with the standard presentation. See [PS19, Prop. 3] and [PPPP19, Prop. 1.7].

Proposition 2.3. Let P ⊂ Rd be a polytope whose normal fan F is refined by the simplicial fan G
supported on the rays S. Then the deformation cone DC(P) is the set of polytopes Ph for all h in
the cone of RS defined by

• the equalities
∑

s∈R∪R′ αR,R′(s)hs = 0 for any adjacent maximal cones R≥0R and R≥0R
′

of G belonging to the same maximal cone of F ,

• the inequalities
∑

s∈R∪R′ αR,R′(s)hs ≥ 0 for any adjacent maximal cones R≥0R and R≥0R
′

of G belonging to distinct maximal cones of F ,

where
∑

s∈R∪R′ αR,R′(s) s = 0 is the unique linear dependence with αR,R′(r) + αR,R′(r′) = 2
among the rays of two adjacent maximal cones R≥0R and R≥0R

′ of G with R∖ {r} = R′ ∖ {r′}.
5The linear dependence is unique up to rescaling, and we fix this arbitrary positive rescaling for convenience in

the exposition.
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As a polyhedral cone, the height deformation cone possesses a face lattice. In particular, if
h ∈ DCh(P) is in the interior of the deformation cone, then Ph has the same normal fan as P,
i.e. is normally equivalent to P. The interior of the deformation cone is sometimes called the
type cone in the literature, while the word deformations can refer to non-(normally)-equivalent
deformations of P. Consequently, (the interior of) each face of DCh(P) is associated to a class of
normally equivalent polytopes, and the face lattice of DCh(P) gives rise to a lattice of (classes of
normally equivalent) deformations of P. The following proposition grants us access to the faces of
the deformation cone.

Proposition 2.4. If Q is a deformation of P, then DC(Q) is a face of DC(P).

Though simple, this proposition is of great importance. As a first application, suppose we
want to study the deformation cone of P and we know one of its deformations, Q, then studying
the deformation cone of Q is a simpler problem (because Q is of lower dimension than P) which
describes a face of DC(P). A second purpose of this proposition is to measure how deformed is Q
with respect to P. For example, the associahedron is a deformation of the permutahedron, and we
will see in Proposition 2.32 that the respective dimensions of DC

(
Πn

)
and DC(Asson) are 2n−n−1

and
(
n
2

)
: in high dimension, the associahedron is very low in the lattice of deformations of Πn.

Deformations of the standard permutahedron Πn are called generalized permutahedra. Origi-
nally introduced by Edmonds in 1970 under the name of polymatroids as a polyhedral generaliza-
tion of matroids in the context of linear optimization [Edm70], the generalized permutahedra were
rediscovered by Postnikov in 2009 [Pos09], who initiated the investigation of their rich combina-
torial structure. They have since become a widely studied family of polytopes that appears nat-
urally in several areas of mathematics, such as algebraic combinatorics [AA17, ABD10, PRW08],
optimization [Fuj05], game theory [DK00], statistics [MPS+09, MUWY18], and economic the-
ory [JKS22]. The set of deformed permutahedra can be parametrized by the cone of submodular
functions [Edm70, Pos09].

The search for irredundant facet descriptions of deformation cones of particular families of com-
binatorial polytopes has received considerable attention recently [ACEP20, BMDM+18, CDG+20,
CL20, PPPP19, APR21]. One of the motivations sparking this interest arises from the amplituhe-
dron program to study scattering amplitudes in mathematical physics [AHT14]. As described in
[PPPP19, Sec. 1.4], the deformation cone provides canonical realizations of a polytope (seen as a
positive geometry [AHBL17]) in the positive region of the kinematic space, akin to those of the
associahedron in [AHBHY18].

Contributing to this domain, Sections 2.2 and 2.3 set forth and prove the facet-descriptions of
deformation cones of two families of generalized permutahedra: graphical zonotopes and nestohe-
dra respectively.
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2.2 Deformation cones of graphical zonotopes

This section is joint work with Arnau Padrol and Vincent Pilaud. It comes from our paper
[PPP22b] (accepted for publication), enriched with some additional details and figures.

The graphical zonotope of a graph G is a convex polytope ZG whose geometry encodes several
combinatorial properties of G. For example, its vertices are in bijection with the acyclic orienta-
tions of G [Sta07, Prop. 2.5] and its volume is the number of spanning trees of G [Sta12, Ex. 4.64].
When G is the complete graph Kn, the graphical zonotope is a translation of the classical
n-dimensional permutahedron, see Section 1.2.3.

The main result of this section (Theorem 2.12) presents complete irredundant descriptions of
the deformation cones of graphical zonotopes. Note that, since graphical zonotopes are deformed
permutahedra, their type cones appear as particular faces of the submodular cone. Faces of the
submodular cone are far from being well understood. For example, determining its rays remains
an open problem since the 1970s, when it was first asked by Edmonds [Edm70].

It is worth noting that most of the existing approaches to compute deformation cones only focus
on simple polytopes with simplicial normal fans [CFZ02, PRW08]. Nevertheless, most graphical
zonotopes are not simple. They are simple only for chordful graphs (those where every cycle
induces a clique), see [PRW08, Prop. 5.2], [Kim08, Rmk. 6.2], or [Pil21, Prop. 52]. In this section,
we thus use an alternative approach to describe the deformation cone of a non-simple polytope
based on a simplicial refinement of its normal cone.

This section is organized as follows. We first recall in Section 2.2.1 the necessary material
concerning graphical zonotopes. We then describe the deformation cone of any graphical zonotope,
providing first a possibly redundant description (Section 2.2.2), then irredundant descriptions of
its linear span (Section 2.2.2) and of its facet-defining inequalities (Section 2.2.3), and finally a
characterization of graphical zonotopes with simplicial type cones (Section 2.2.4).

2.2.1 Graphical zonotopes

Let G = (V,E) be a graph with vertex set V and edge set E. The graphical arrangement AG is
the arrangement of the hyperplanes

{
x ∈ RV ; xu = xv

}
for all edges {u, v} ∈ E. It induces the

graphical fan FG whose cones are all possible intersections of one of the sets
{
x ∈ RV ; xu = xv

}
,{

x ∈ RV ; xu ≥ xv

}
, or

{
x ∈ RV ; xu ≤ xv

}
for each edge {u, v} ∈ E. The lineality of FG is

the subspace KG of RV spanned by the characteristic vectors of the connected components of G.
The graphical zonotope ZG is the Minkowski sum of the line segments [eu, ev] in RV for all

edges {u, v} ∈ E. Here, (ev)v∈V denotes the canonical basis of RV . Note that ZG lies in a subspace
orthogonal to KG. The graphical fan FG is the normal fan of the graphical zonotope ZG.

The following result is well-known. For example, it can be easily deduced from [Sta07, Propo-
sition 2.5] or [BLS+99] (for the latter, see that the graphical matroid from Section 1.1 is realized
by the graphical arrangement, and use the description of the cells of the arrangement in terms of
covectors from Section 1.2(c)).

An ordered partition (µ, ω) of G consists of a partition µ of V where each part induces a
connected subgraph of G, together with an acyclic orientation ω of the quotient graph G/µ. We
say that (µ, ω) refines (µ′, ω′) if each part of µ is contained in a part of µ′ and the orientations
are compatible; that is, for all u, v ∈ V if there is a directed path in ω between the parts of µ
respectively containing u and v, then there is a directed path in ω′ between the parts of µ′

respectively containing u and v.

Proposition 2.5. The face lattice of FG is antiisomorphic to the lattice of ordered partitions of G
ordered by refinement. Explicitly, the antiisomorphism is given by the map that associates the
ordered partition (µ, ω) to the cone Cµ,ω defined by the inequalities xu ≤ xv for all u, v ∈ V such
that there is a directed path in ω from the part containing u to the part containing v (in particular,
xu = xv if u, v are in the same part of µ).
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Some easy consequences of Proposition 2.5 are:

• The maximal cones of FG are in bijection with the acyclic orientations of G. We denote
by Cω the maximal cone of FG associated to the acyclic orientation ω.

• The minimal cones of FG, that is the rays of FG/KG, are in bijection with the biconnected
subsets of G, i.e. non-empty subsets S of V such that there is a disjoint non-empty subset T
of V such that S ∪ T is a connected component of G and the induced subgraphs G[S] and
G[T ] are connected.

• The rays of FG/KG that belong to the maximal cone associated to an acyclic orientation are
the biconnected subsets which form an upper set of the acyclic orientation (hence, they are
in bijection with the minimal directed cuts of the acyclic orientation).

• Similarly, the rays of FG/KG that belong to the cone associated to an ordered partition
(µ, ω) are the biconnected sets that contracted by µ give rise to an upper set of ω.

Note that the natural embedding of a graphical fan FG is not essential, as it has a lineality
given by its connected components. This is why we cannot directly talk about the rays of the
fan in the enumeration above. The usual solution to avoid this is to consider the quotient by the
subspace KG. However, this subspace depends on the graph, and with such a quotient we would
lose the capacity of uniformly treating all the graphs with a fixed vertex set. We will instead
work with the natural non-essential embedding, together with a collection of vectors supporting
simultaneously all graphical fans.

Example 2.6. As seen in Section 1.2.3, when G is the complete graph Kn, the graphical zonotope
is the permutahedron. The graphical fan is the braid fan Bn, induced by the braid arrangement
consisting of the hyperplanes {x ∈ Rn ; xi = xj} for all 1 ≤ i < j ≤ n. Its lineality is spanned
by the all-ones vector 11n := (1, . . . , 1). Since all the proper subsets of [n] are biconnected in Kn,
the face lattice of Bn is isomorphic to the lattice of ordered partitions of [n]. The rays of Bn/11n
correspond to proper subsets of [n], and its maximal cells are in bijection with permutations of [n].
Each maximal cell is the positive hull of the n− 1 rays corresponding to the proper upper sets of
the order given by the permutation. In particular, Bn/11n is a simplicial fan.

2.2.2 Graphical deformation cones

Our main result is an irredundant facet description of the deformation cone of ZG for every
graph G = (V,E). Our starting point is Proposition 2.10, which gives a (possibly redundant)
description derived from Proposition 2.3. It is strongly based on the fact that the braid fan
simultaneously refines all the graphical fans. Note however that the braid fan is not simplicial
(due to its lineality). The classical approach to overcome this issue is to quotient the braid fan
by its lineality space. However, we prefer to triangulate the braid fan, since it simplifies the
presentation of the proof.

A first polyhedral description Associate to each subset S ⊆ V the vector

ιS :=
∑

v∈S

ev −
∑

v/∈S

ev.

This is essentially the characteristic vector of S, but it has the advantage that ιV = 11V
and ι∅ = −11V positively span the line 11V R, which is the lineality KKV

of the braid fan.

Lemma 2.7. For any ordered partition (µ, ω) of a graph G = (V,E), we have

Cµ,ω = cone {ιS ; S ⊆ V upper set of ω} .
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Figure 11: The fan B̂123 intersected with the unit sphere. (For brevity, here and in the labels we
write 123 to denote the set {1, 2, 3}, and so on.) The braid fan B123 is the Cartesian product of a

regular hexagonal fan with a line. To obtain B̂123, each maximal cell is divided into two simplicial
cells, one containing ι∅ and one containing ι123.

Here, we mean that S is an upper set of ω when contracted by µ. Note that ∅ and V are
always upper sets, which is consistent with the fact that the lineality of FG always contains the
line spanned by 11V .

We will work with a refined version B̂V of the braid fan whose maximal cells are

C∅
σ := cone {ιS ; S ⊊ V upper set of σ} and CV

σ := cone {ιS ; ∅ ̸= S ⊆ V upper set of σ}
for every acyclic orientation of the complete graph KV , which we identify with a permutation σ
of V . An example is depicted in Figure 11. The following two immediate statements are left to
the reader.

Lemma 2.8. For any finite set V :

(i) The fan B̂V is an essential complete simplicial fan in RV supported on the 2|V | vectors ιS
for S ⊆ V .

(ii) For any permutation σ, the maximal cones C∅
σ and CV

σ are adjacent, and the unique linear
relation supported on the rays of C∅

σ ∪ CV
σ is ι∅ + ιV = 0.

(iii) The other pairs of adjacent maximal cells are of the form CX
σ and CX

σ′ , where X ∈ {∅, V } and
σ = PuvS and σ′ = PvuS are permutations that differ in the inversion of two consecutive
elements. The two rays that are not shared by CX

σ and CX
σ′ are ιS∪{u} and ιS∪{v}, and the

unique linear relation supported on the rays of CX
σ ∪ CX

σ′ is given by

ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.

Lemma 2.9. For any graph G = (V,E):

(i) The fan B̂V is a simplicial refinement of the graphical fan FG.

(ii) For an acyclic orientation ω of G and S ⊆ V , we have ιS ∈ Cω if and only if S is an upper
set of ω.

(iii) For an acyclic orientation σ of KV and X ∈ {∅, V } we have CX
σ ⊆ Cω if and only if σ is a

linear extension of ω.

We are now ready to describe the deformation cone of the graphical zonotope ZG. For

any h ∈ R2V , let Dh be the polytope given by

Dh :=
{
x ∈ RV ;

∑

v∈S

xv −
∑

v/∈S

xv ≤ hS for all S ⊆ V
}
.
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Proposition 2.10. For any graph G = (V,E), the deformation cone DC(ZG) of the graphical zono-

tope ZG is the set of polytopes Dh for all h in the cone of R2V defined by the following (possibly
redundant) description:

• h∅ = −hV ,

• hS∪{u} + hS∪{v} = hS + hS∪{u,v} for each {u, v} ∈
(
V
2

)
∖ E and S ⊆ V ∖ {u, v}, and

• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ V ∖ {u, v}.

Proof. Observe first that, as stated in Lemma 2.9, B̂V provides a simplicial refinement of FG.
Following Proposition 2.3, we need to consider all pairs of adjacent maximal cones of B̂V , and to
study which ones lie in the same cone of FG.

Adjacent maximal cones of B̂V are described in Lemma 2.8, and the containment relations of
the cones of B̂V in the cones of FG are described in Lemma 2.9.

For any σ, the cones C∅
σ and CV

σ belong to the same cell of FG. Hence, by Proposition 2.3, the
following equation holds in the deformation cone:

h∅ = −hV .

The remaining pairs of adjacent maximal cones of B̂V correspond to pairs of acyclic orientations
ofKV differing in a single edge; or equivalently, to pairs of permutations of V of the form σ = PuvS
and σ′ = PvuS. The unique linear relation supported on the rays of CX

σ ∪ CX
σ′ for X ∈ {∅, V } is

then
ιS∪{u} + ιS∪{v} = ιS + ιS∪{u,v}.

We consider first the case when {u, v} /∈ E. Observe that both σ and σ′ induce the same
acyclic orientation of G, which we call ω. We have then CX

σ ∪CX
σ′ ⊆ Cω by Lemma 2.9. Therefore,

by Proposition 2.3 and Lemma 2.8, we have

hS∪{u} + hS∪{v} = hS + hS∪{u,v}

for any h in DC(ZG). Note that, for any {u, v} /∈ E and S ⊂ V ∖ {u, v}, we can construct such
permutations σ and σ′. This gives the claimed description of the linear span of DC(ZG).

In contrast, if {u, v} ∈ E, then σ and σ′ induce different orientations of G, and hence they be-
long to different adjacent cones of FG by Lemma 2.9. Therefore, by Proposition 2.3 and Lemma 2.8,
we have

hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v}

for any h in DC(ZG). As before, for any {u, v} ∈ E and S ⊂ V ∖ {u, v}, we can construct such
permutations σ and σ′. This gives the claimed inequalities describing DC(ZG).

The linear span of graphical deformation cones The description of the deformation cone of Propo-
sition 2.10 is highly redundant, both in the equations describing its linear span and in the inequal-
ities describing its facets. We will give a non-redundant description in Theorem 2.12. The first
step will be to give linearly independent equations describing the linear span. As an important
by-product, we will obtain the dimension and a linear basis of (the vector space generated by) the
deformation cone DC(ZG).

It is sometimes convenient to consider the set of deformations of P embedded inside the
real vector space of virtual d-dimensional polytopes Vd [PK92]. This is the set of formal dif-
ferences of polytopes P − Q under the equivalence relation (P1 − Q1) = (P2 − Q2) whenever
P1 + P2 = Q1 +Q2. Endowed with Minkowski addition, it is the Grothendieck group of the semi-
group of polytopes, which are embedded into Vd via the map P 7→ P − {0}. It extends to a real
vector space via dilation: for P − Q ∈ Vd and λ ∈ R, we set λ(P − Q) := λP − λQ when λ ≥ 0,
and λ(P−Q) := ((−λ)Q)− ((−λ)P) when λ < 0. Here, λP := {λp ; p ∈ P} denotes the dilation6

of P by λ ≥ 0.

6Note in particular that −P does not represent the reflection of P, but its group inverse.
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For a polytope P ⊂ Rd, we define the space VD(P) ⊂ Vd of virtual deformations of P as the
vector sub-space of virtual polytopes generated by the deformations of P. Equivalently, VD(P)
is the linear span of the deformation cone DC(P). Every virtual polytope in VD(P) is of the
form Ph −Ph′ for deformations Ph,Ph′ ∈ DC(P ). Note that the vector h−h′ uniquely describes
the equivalence class of this virtual polytope, and we will use the notation Ph−h′ to denote it.

Denote by ∆U := conv {eu ; u ∈ U} ⊂ RV the face of the standard simplex ∆V corresponding
to a subset U ⊆ V . These polytopes are particularly important deformed permutahedra as they
form a linear basis of the deformation space of the permutahedron [DK00] (see also [ABD10,
Prop. 2.4]). Namely, any (virtual) deformed permutahedron can be uniquely written as a signed
Minkowski sum of dilates of ∆I . Our first result states that this linear basis is adapted to graphical
zonotopes.

Theorem 2.11. For any graph G = (V,E):

(i) The dimension of VD(ZG) is the number of non-empty induced cliques in G (the vertices
of G count for the dimension as they correspond to the lineality space).

(ii) The faces ∆K of the standard simplex ∆V corresponding to the non-empty induced cliques K
of G form a linear basis of VD(ZG).

(iii) VD(ZG) is the set of virtual polytopes Dh for all h ∈ R2V fulfilling the following linearly
independent equations:

• h∅ = −hV and

• hS∖{u} + hS∖{v} = hS + hS∖{u,v} for each S ⊆ V with |S| ≥ 2 not inducing a clique

of G and any {u, v} ∈
(
S
2

)
∖E (here, we only choose one missing edge for each subset S,

for example, the lexicographically smallest).

Proof. Observe first that the faces ∆I of the standard simplex ∆V corresponding to the induced
cliques I of G are all in the deformation cone DC(ZG). Indeed, faces of the standard simplex ∆I

belong to the deformation cone of the complete graph KI by [Pos09, Prop. 6.3]. The graphical
zonotope ZG′ is a Minkowski summand of ZG for any subgraph G′ of G, and hence summands
of ZG′ are also summands of ZG.

Moreover, all faces ∆I for ∅ ̸= I ⊊ V are Minkowski independent by [ABD10, Prop. 2.4]. This
shows that the dimension of VD(ZG) is at least the number of non-empty induced cliques of G.

Let (fX)X⊆V be the canonical basis of
(
R2V

)∗
. The vectors

oS := fS − fS∖{u} − fS∖{v} + fS∖{u,v},

for all subsets ∅ ̸= S ⊆ V not inducing a clique of G and one selected missing edge {u, v} for
each S, are clearly linearly independent. Indeed, if the fX are ordered according to any linear
extension of the inclusion order on the indices X, and the oS are ordered analogously in terms
of the indices S, then the equations are already in echelon form, as fS is the greatest non-zero
coordinate of oS . Finally, the vector v ∈ 2V with vX = |X| for X ∈ 2V is orthogonal to any oS

with |S| ≥ 2 but not to o∅ := f∅ + fV , showing that the latter is linearly independent to the
former. This proves that the dimension of VD(ZG) is at most the number of non-empty induced
cliques of G.

We conclude that
{
∆K ; ∅ ̸= K ⊆ V inducing a clique of G

}
is a linear basis of the deforma-

tion cone, and that
{
oS ; S = ∅ or S ⊆ V not inducing a clique of G

}
is a basis of its orthogonal

complement (we slightly abuse notation here as oS was defined in
(
R2V

)∗
instead of in (Vd)∗,

but note that each fX can be considered as a linear functional in (Vd)∗ if seen as a support
function).

Note that the dimension of the deformation space of graphical zonotopes has been indepen-
dently computed by Raman Sanyal and Josephine Yu (personal communication), who computed
the space of Minkowski 1-weights of graphical zonotopes in the sense of McMullen [McM96]. Their
proof also uses the basis from Theorem 2.11 (ii), but with an alternative argument to show that
they are a generating family.
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2.2.3 The facets of graphical deformation cones

To conclude, it remains to compute the facets of the deformation cones, i.e. a non-redundant
inequality description.

We define the neighborhood of a vertex v in a graphG = (V,E) asN(v) := {u ∈ V ; {u, v} ∈ E}.

Theorem 2.12. For any graph G = (V,E), the deformation cone DC(ZG) of the graphical zono-

tope ZG is the set of polytopes Dh for all h in the cone of R2V defined by the following irredundant
facet description:

• h∅ = −hV ,

• hS∖{u} + hS∖{v} = hS + hS∖{u,v} for each ∅ ̸= S ⊆ V and any {u, v} ∈
(
S
2

)
∖ E,

• hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ∈ E and S ⊆ N(v) ∩N(v).

Note that this description is given as a face of the submodular cone, embedded into R2V . One
gets easily an intrinsic presentation by restricting to the space spanned by the biconnected subsets
of V . However, that presentation loses its symmetry, and the explicit equations depend on the
biconnected sets of G.

Proof of Theorem 2.12. We know by Proposition 2.10 that DC(ZG) is the intersection of the cone

hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} (1)

for {u, v} ∈ E and S ⊆ V ∖ {u, v} with the linear space given by the equations h∅ = −hV and

hS∪{u} + hS∪{v} = hS + hS∪{u,v} (2)

for {u, v} ∈
(
V
2

)
∖ E and S ⊆ V ∖ {u, v}.

We have already determined the equations describing the linear span in Theorem 2.11, so it
only remains to provide non-redundant inequalities describing the deformation cone.

We will prove first that the inequalities from (1) indexed by {u, v} ∈ E and S ⊆ N(v) ∩N(v)
suffice to describe DC(ZG). To this end, consider an inequality from (1) for which S ⊈ N(v)∩N(v).
Without loss of generality, assume that there is some x ∈ S such that {x, v} /∈ E. We will show
that this inequality is induced (in the sense that the half-spaces they define coincide on the linear
span of DC(ZG)) by the inequality

hS′∪{u} + hS′∪{v} ≥ hS′ + hS′∪{u,v} (3)

where S′ = S ∖ {x}. Our claim will then follow from this by induction on the elements of
S ∖ (N(v) ∩N(v)).

Indeed, if {x, v} /∈ E, we know by (2) that the following two equations hold in the linear span
of DC(ZG) by considering the non-edge {x, v} with the subsets S′ and S′ ∪ {u}, respectively:

hS∪{u} + hS′∪{u,v} = hS′∪{u} + hS∪{u,v}, (4)

hS + hS′∪{v} = hS′ + hS∪{v}, (5)

where we used that (S′ ∪ {u}) ∪ {x} = S ∪ {u} and (S′ ∪ {u}) ∪ {x, v} = S ∪ {u, v} in the first
equation, and that S′ ∪ {x} = S and S′ ∪ {x, v} = S ∪ {v} in the second equation. To conclude,
note that (1) is precisely the linear combination (3) + (4)− (5).

We know therefore that the descriptions in Proposition 2.10 and Theorem 2.12 give rise to the
same cone. It remains to show that the latter is irredundant. That is, that each of the inequalities
gives rise to a unique facet of DC(ZG).

Let (fX)X⊆V be the canonical basis of
(
R2V

)∗
. For u, v ∈ V and S ⊆ V ∖ {u, v}, let

n(u, v, S) := fS∪{u} + fS∪{v} − fS − fS∪{u,v}.
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Note that, if {u, v} /∈ E, then n(u, v, S) is orthogonal to DC(ZG), whereas if {u, v} ∈ E, then
n(u, v, S) is an inner normal vector to DC(ZG).

Fix {u, v} ∈ E and S ⊆ N(v) ∩N(v). To prove that the half-space with normal n(u, v, S) is

not redundant, we will exhibit a vector w ∈ R2V in the linear span of DC(ZG) that belongs to the
interior of all the half-spaces describing DC(ZG) except for this one. That is, we will construct a

vector w ∈ R2V respecting the system:





⟨w, n(u, v, S)⟩ ≤ 0,

⟨w, n(u, v,X)⟩ > 0 for S ̸= X ⊆ N(u) ∩N(v),

⟨w, n(a, b,X)⟩ > 0 for {a, b} ∈ E ∖ {u, v} and X ⊆ N(a) ∩N(b), and

⟨w, n(a, b,X)⟩ = 0 for {a, b} ∈
(
V
2

)
∖ E and X ⊆ V ∖ {a, b}.

(6)

Denote by T := N(u) ∩N(v)∖ S. We will construct w as the sum w := tS − tT + c for some

vectors tS , tT , and c ∈ R2V defined below, whose scalar products with n(a, b,X) for {a, b} ∈
(
V
2

)

and X ⊆ V ∖ {a, b} fulfill:

〈
tS , n(a, b,X)

〉 〈
−tT , n(a, b,X)

〉
⟨c, n(a, b,X)⟩

if {a, b} = {u, v} and X = S −|S| 0 |S|
if {a, b} = {u, v} and S ̸= X ⊆ N(u) ∩N(v) −|S ∩X| |T ∩X| |S|
if {a, b} ∈ E ∖ {u, v} and X ⊆ N(a) ∩N(b) ≥ −1 ≥ 0 2

if {a, b} /∈ E 0 0 0

It immediately follows from this table that the vector w will fulfill the desired properties from (6).
For the second one, note that if S ̸= X ⊆ S ⊔ T , then either |S ∩X| < |S| or |T ∩X| > 0.

To define these vectors, first, for {x, y, z} ∈
(
V
3

)
, let txyz ∈ R2V be the vector such that txyzX = 1

if {x, y, z} ⊆ X and txyzX = 0 otherwise. Note that, for any a, b ∈
(
V
2

)
and X ⊆ V ∖{a, b}, we have

⟨txyz, n(a, b,X)⟩ =
{
−1 if {x, y, z} = {a, b, t} for some t ∈ X, and

0 otherwise.
(7)

We define
tS :=

∑

s∈S

tuvs and tT :=
∑

t∈T

tuvt.

It is straightforward to derive the identities in the table from (7). For the inequalities, notice that
if ⟨tuvx, n(a, b,X)⟩ = −1 but {a, b} ≠ {u, v}, then either {a, b} = {u, x} or {a, b} = {v, x}, and
in both cases ⟨tuvy, n(a, b,X)⟩ = 0 for any y ̸= x.

Now, for {x, y} ∈
(
V
2

)
, let cxy ∈ R2V be the vector such that cxyX = 1 if |{x, y} ∩X| = 1 (that

is, if {x, y} belongs to the cut defined by X), and cxyX = 0 otherwise. Note that, for any a, b ∈
(
V
2

)

and X ⊆ V ∖ {a, b}, we have

⟨cxy, n(a, b,X)⟩ =
{
2 if {a, b} = {x, y}, and

0 otherwise.
(8)

We set

c :=
|S|
2
cuv +

∑

{a,b}∈E∖{u,v}
cab.

The identities in the table are straightforward to derive from (8).

Corollary 2.13. For any graph G = (V,E), the dimension of DC(ZG) is the number of induced
cliques in G, the dimension of the lineality space of DC(ZG) is |V |, and the number of facets
of DC(ZG) is the number of triplets (u, v, S) with {u, v} ∈ E and S ⊆ N(u) ∩N(v).
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Figure 12: A 3-dimensional affine section of the deformation cone DC(ZK3
) for the triangle K3.

The deformations of ZK3
corresponding to some of the points of DC(ZK3

) are depicted. Especially,
all points in the interior correspond to polytopes normally equivalent to Π3, while the above left
polytope is the Loday associahedron Asso3.

Example 2.14. For the complete graph KV , the graphical zonotope ZKV
is a permutahedron

and the deformation cone DC(ZKV
) is the submodular cone given by the irredundant inequal-

ities hS∪{u} + hS∪{v} ≥ hS + hS∪{u,v} for each {u, v} ⊆ V and S ⊆ V ∖ {u, v}. (The usual
presentation imposes h∅ = 0, but both presentations are clearly equivalent up to translation). It

has dimension 2|V | − 1 and
(|V |

2

)
2|V |−2 facets. The lineality space is |V |-dimensional, given by the

space of translations in R|V |.
For instance, for the triangle K3, the graphical zonotope ZK3 = Π3 is the regular hexagon

depicted in the bottom left of Figure 12, which arises as the Minkowski sum of 3 coplanar vec-
tors in R3. Its deformation cone DC(ZK3

) lives in the 8-dimensional space R2[3] , has dimen-
sion 7, a lineality space of dimension 3, and 6 facets. It admits as irredundant description the
equation h∅ = −h123 and the following 6 inequalities:

h1 + h2 ≥ h∅ + h12 h1 + h3 ≥ h∅ + h13 h2 + h3 ≥ h∅ + h23

h12 + h13 ≥ h1 + h123 h12 + h23 ≥ h2 + h123 h13 + h23 ≥ h3 + h123.

After quotienting the lineality and intersecting with an affine hyperplane, we get the bipyramid
over a triangle (living in dimension 7− 3− 1 = 3) illustrated in Figure 12. Note that the four rays
of DC(ZK3) (i.e. vertices of the bipyramid) of the form ∆K for an induced clique K of K3 provide
a linear basis of DC(ZK3) (i.e. an affine basis of the bipyramid). Nevertheless, the last ray can not
be written as a positive Minkowski sum of ∆K and remain thus unlabeled.

Example 2.15. For a triangle-free graph G = (V,E), the deformation cone DC(ZG) has dimen-
sion |V | + |E| and |E| facets. As before, the lineality is |V |-dimensional, given by the space of
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Figure 13: A 3-dimensional affine section of the deformation cone DC(ZC4
) for the 4-cycle C4.

The deformations of ZC4
corresponding to some of the points of DC(ZC4

) are depicted. Especially,
interior all points correspond to polytopes normally equivalent to ZC4

. Note that as the rays of
DC(ZC4) correspond to segments, all deformations of ZC4 are zonotopes (which is not the case for
the deformations of Πn).

translations in R|V |. Thus DC(ZG) is simplicial.
For instance, for the 4-cycle C4, the graphical zonotope ZC4

is the 3-dimensional zonotope
depicted in the bottom right of Figure 13 (a rhombic dodecahedron), which arises as the Minkowski
sum of 4 vectors in a hyperplane of R4. Its deformation cone DC(ZC4) lives in the 16-dimensional
space R2[4] , has dimension 8, a lineality space of dimension 4, and 4 facets. It admits as irredundant
description the following 8 equations and 4 inequalities:

h∅ = −h1234 h12 + h14 = h124 + h1 h1 + h2 ≥ h12 + h∅

h1 + h3 = h13 + h∅ h12 + h23 = h123 + h2 h2 + h3 ≥ h23 + h∅

h2 + h4 = h24 + h∅ h23 + h34 = h234 + h3 h3 + h4 ≥ h34 + h∅

h123 + h134 = h1234 + h13 h14 + h34 = h134 + h4 h1 + h4 ≥ h14 + h∅.

After quotienting the lineality and intersecting with an affine hyperplane, we get the 3-simplex
(i.e. tetrahedron) illustrated in Figure 13.

2.2.4 Simplicial graphical deformation cones

As an immediate corollary, we obtain a characterization of those graphical zonotopes whose de-
formation cone is simplicial.

Corollary 2.16. The deformation cone DC(ZG) is simplicial (modulo its lineality) if and only if G
is triangle-free.

Proof. If G is triangle-free, the deformation cone DC(ZG) has dimension |V |+ |E|, lineality space
of dimension |V |, and |E| facets, and hence it is simplicial. If G is not triangle-free, then we
claim that the number of induced cliques K of G with |K| ≥ 2 is strictly less than the number
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of triples (u, v, S) with {u, v} ∈ E and S ⊆ N(u) ∩ N(v). Indeed, each induced clique K of G

with |K| ≥ 2 already produces
(|K|

2

)
triples of the form (u, v,K ∖ {u, v}) which satisfy {u, v} ∈ E

and K ∖ {u, v} ⊆ N(u) ∩ N(v) and are all distinct. Since
(|K|

2

)
> |K| as soon as |K| ≥ 3, by

Corollary 2.13, this shows that the deformation cone DC(ZG) is not simplicial.

Corollary 2.17. If G is triangle-free, then every deformation of ZG is a zonotope, which is the
graphical zonotope of a subgraph of G up to rescaling of the generators.

Proof. For any induced clique K of G of size at least 2, ∆K is a Minkowski indecomposable
(|K| − 1)-dimensional polytope in the deformation cone DC(ZG) (see for example [Grü03, 15.1.3]
for a certificate of indecomposability). It spans therefore a ray of DC(ZG). When G is triangle-free,
the deformation cone modulo its lineality is of dimension |E|, and the polytopes ∆e for e ∈ E
account for the |E| rays of the simplicial deformation cone DC(ZG).

Therefore, each polytope P ∈ DC(ZG) can be uniquely7 expressed as a Minkowski sum

P =
∑

e∈E

λe∆e

with non-negative coefficients λe. Since each ∆e is a segment, P is a zonotope, normally equivalent
to the graphical zonotope of the subgraph G′ = (V,E′) with E′ = {e ∈ E ; λe ̸= 0}.

2.2.5 Perspectives and open questions

Computational remarks The computation of deformation cones of graphical zonotopes has been
implemented with Sage, allowing us to conjecture Corollary 2.13 before proving it. Thanks to this
code, one can input a graph G and compute the deformation cone of its graphical zonotope as
the cone of heights in R2n , illustrating Theorem 2.12. Although very symmetric and well suited
for mathematical purposes, this first implementation has the inconvenient to live in a highly
dimensional space. For this reason, I have also implemented a second version that computes the
deformation cone in RBS(G) where BS(G) is the collection of biconnected subsets of G (which
are in bijection with the rays of F(G)). Some technical choices have to be made to speed up this
computation, in particular by efficiently using the dual graph of F(G) in order to get rid of some
redundant equalities.

Assets and limits of the current approach, open questions The question of the dimension space
of the deformation is of prime importance for a larger subject. In [McM93, McM96], McMullen
constructed several algebras associated to a polytope P: in particular, its polytope algebra and
its weight algebra. This construction was used to provide an alternative proof of the famous g-
theorem of Billera–Lee and Stanley [Sta80]. Both algebras are graded. When P is simple, these
two algebras are isomorphic, but in general there is only an embedding of the polytope algebra in
the weight algebra. For example, the permutahedron Πn is simple and the dimension of the k-th
graded piece of its polytope algebra is the Eulerian number A(n, k), see [Ham17].

The first graded piece of the polytope algebra of P is the linear span of DC(P) (i.e. the space
of virtual deformations discussed above Theorem 2.11). This means that in the present section,
we have computed the dimension of the first graded piece of the polytope algebra of graphical
zonotopes (and of nestohedra in the next section). On top of that, our result gives a basis of this
first graded piece, and the polytope algebra is generated in degree 1.

With Arnau Padrol, we considered the second graded piece of the polytope algebra of graphical
zonotopes and managed to find an explicit basis of it. We are currently attempting to extend these
results to higher graded pieces. Furthermore, graphical zonotopes are (in general) non-simple
polytopes: therefore, we hope to describe the gap between both algebras for graphical zonotopes.

7Uniqueness comes from the simpliciality of DC(ZG).

43


	78199cb078bf90e2934e4fb3531c84edc2641fb2bf9d16fcbdb302777a568a81.pdf
	Deformations of polytopes and generalized permutahedra
	Deformations of polytopes
	Deformation cones of graphical zonotopes
	Graphical zonotopes
	Graphical deformation cones
	The facets of graphical deformation cones
	Simplicial graphical deformation cones
	Perspectives and open questions




	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.111: 
	0.110: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 


