
4.3 Fiber polytopes for the projection from Cycd(t) to Cyc2(t)

This section is a joint work with Aenne Benjes and Raman Sanyal. An article is in preparation,
containing this section, together with Section 3.2.

We have seen that the study of fiber polytopes has drawn a lot of attention in recent years.
They were, at the beginning, constructed in order to give a positive answer to the generalized
Baues problem [BS92, Rei99] which can be thought of as the problem of structuring the set of
subdivisions of a given polytope. From there, fiber polytopes made an appearance in a myriad
of domains, ranging from linear optimization up to triangulations, and the search for a category
of polytopes. We have already discussed their link with linear programming in Section 4.2, and
briefly mentioned the longing for a category of polytope in Section 4.1, and we emphasize here
their relationship with triangulations.

In particular, the secondary polytope introduced by Gelfand, Kapranov and Zelevinsky [GKZ90,
GKZ91] (see also [BFS90]) encapsulates (regular) triangulations of a point configuration into the
vertices of a polytope. It is worth noting that when the points of the configuration are in convex
position, i.e. when looking at a polytope, the secondary polytope is (a dilation of) the fiber poly-
tope for the projection of a simplex onto these points. In this context, the associahedron again
appears, as the secondary polytope of a polygon [DRS10, Chapter 5]. Polygons and simplices are
the two extreme cases of cyclic polytopes, so the aim of the section is to factor the projection from
a simplex onto a polygon by an intermediate projection from a cyclic polytope onto a polygon:
for t = (t1, . . . , tn), one consider the sequence of projections Cycn(t) → Cycd(t) → Cyc2(t) where
Cycn(t) ≃ ∆n and Cyc2(t) is a n-gon (and 2 ≤ d ≤ n). The vertices of the fiber polytope for
the projection Cycd(t) → Cyc2(t) will naturally associate to triangulations of Cyc2(t), prompting
a notion of degree on triangulation (and hence Catalan families). This way, we will analyze a
fiber polytope that is not a monotone path polytope (projection onto a segment), nor a secondary
polytope (projection from a simplex), but a more general case.

It is not an accident that the present framework resemble the one of Section 3.2: even if the
motivations and context are different, the tools and techniques developed are the same, and the
results similar. We will widely reuse the material of this section and the ideas of [ALRS00] who
began the exploration of fiber polytopes between cyclic polytopes. The present section starts
with a short preliminary on triangulations (Section 4.3.1), gathering the useful vocabulary and
constructing the bijection from triangulations to non-crossing arborescences. We pursue with the
main result (Section 4.3.2) that determines how to know if a triangulation appears or not as a
vertex of the fiber polytope for the projection Cycd(t) → Cyc2(t), and we then focus on the case
d = 4 (Section 4.3.3). Again, quite surprisingly, we obtain that the number of vertices of the fiber
polytope Σπ(Cyc4(t),Cyc2(t)) is

(
n
2

)
− 1, independently of t, see Theorem 4.60.

4.3.1 Bijection between triangulations and non-crossing arborescences

Triangulations of a (n + 1)-gon and non-crossing arborescences on n nodes are both Catalan
families, as presented in Section 1.2.4. We exhibit an explicit bijection between these families
that will allow us to link fiber polytope for the projection from Cycd(t) to Cyc2(t) and cyclic
associahedra Πd

t of Section 3.2.
A vast study of triangulations, adorned by plenty of figures, can be found in [LRS10], especially

Chapters 3 and 5 for what concerns us here.

Definition 4.42. Let P be a (n+1)-gon whose vertices are labelled clockwise from 0 to n in circular
order. A triangle in P is a triplet of distinct indices δ = (i, j, k) ∈ [0, n]3 with i < j < k. Such a
triangle splits the (cyclic) interval [n] into three pieces of circle: [i, j], [j, k] and [k, n] ∪ [0, i]. Two
triangles δ1, δ2 in P don’t intersect when all three indices of δ2 belong to the same piece of circle of
δ1. A triangulation T of P is a family of n− 1 (pairwise) non-intersecting triangles, see Figure 70
(n− 1 being the maximum number of non-intersecting triangles that a (n+ 1)-gon can welcome).

An edge of a triangulation T is a couple (x, y) with x < y that appears in a triangle of T :
(x, y) ⊂ δ for some δ ∈ T . An edge (x, y) is exterior when y = x + 1 or (x, y) = (0, n) (meaning
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Figure 70: (Left) The triangulation T =
(
(0, 5, 7), (0, 1, 5), (1, 3, 5), (1, 2, 3), (3, 4, 5), (5, 6, 7)

)
. Its 8

exterior edges are in black, while its 5 interior ones are in blue. It has 2 positive quadrangles and
3 negative ones: Q+(T ) =

(
(0, 1, 5, 7), (1, 2, 3, 5)

)
and Q−(T ) =

(
(0, 1, 3, 5), (0, 5, 6, 7), (1, 3, 4, 5)

)
.

Its immediate vertices are in green: L(T ) = {2, 4, 6}. Flipping the edge (3, 5) gives the triangu-
lation T ′ on the Right. The new quadrangles are Q+(T ′) =

(
(0, 1, 5, 7), (1, 3, 4, 5), (1, 2, 3, 4)

)
and

Q−(T ′) =
(
(0, 5, 6, 7), (0, 1, 4, 5)

)
, and new immediate vertices are L(T ′) = {2, 6}. Flipping the

edge (1, 4) in T ′ gives back T .

it is an edge of the polygon P), interior otherwise. We denote by E(T ) the set of edges of T and
E◦(T ) the set of interior edges of T . Note that in a triangulation, interior edges appear in exactly
two triangles, while exterior ones appear in exactly one triangle.

A quadrangle in a triangulation T is a quadruplet of indices κ = δ1 ∪ δ2 corresponding to two
adjacent triangles δ1, δ2 ∈ T , i.e. |κ| = 4. The edge eκ of the quadrangle κ is the (interior) edge
shared by the two adjacent triangles. Note that κ 7→ eκ is a bijection between interior edges E◦(T )
and the set of quadrangles of T . A quadrangle (i, j, k, l) is positive when its edge is (i, k), and
negative when its edge is (j, l). The family of positive quadrangles is denoted Q+(T ), and the
family of negative ones Q−(T ).

A flip in a triangulation T consists in removing one interior edge and adding back the only other
interior edge possible. Namely, if (x, y) ∈ E◦(T ), then (x, y) belongs to two triangles, forming a
quadrangle κ: flipping (x, y) amounts to changing κ from positive to negative or the reverse (the
Tamari orientation consists in changing from negative to positive). This changes one edge, two
triangles and at most five quadrangles. It is well known that the graph of flips of the triangulations
of a (n+ 1)-gon is precisely the graph of the associahedron Asson−1.

An immediate vertex of T is some index ℓ ∈ [n − 1] such that (ℓ − 1, ℓ, ℓ + 1) ∈ T . When
immediate vertices, 1 and n − 1 are called exterior, while other immediate vertices are called
interior ones. We denote by L(T ) the set of all immediate vertices of T , and by L◦(T ) the set of
interior ones.

The corresponding super-Catalan family is the family of all subdivisions of P.

There is a very easy way to construct a bijection from the set of triangulations of a (n+1)-gon
to the set of non-crossing arborescences on n nodes:

Proposition 4.43. Let T be a triangulation of a (n + 1)-gon and E(T ) its set of edges. Then the
map AT : [n− 1] → [n− 1] defined by AT (i) = max{j ; j > i and (i, j) ∈ E(T )} is a non-crossing
arborescence on n nodes16, see Figure 71. The application T 7→ AT is a bijection between the set
of triangulations of a (n+ 1)-gon and the set of non-crossing arborescences on n nodes.17

Proof. First, notice that T 7→ AT sends a triangulation of a (n + 1)-gon to a non-crossing ar-
borescence on n nodes. Indeed, edges of AT are (some) edges of T , so if AT were crossing, then
two triangles of T would intersect. Furthermore, flipping the edge (j, l) in a negative quadrangle
(i, j, k, l) of T changes the (j, l) in AT to (j, k) because of the non-intersecting property: flips for
triangulations correspond to flips for non-crossing arborescences. Thus, the application T 7→ AT

16As usual, it shall be complete with AT (n) = n.
17Triangulations are defined on [0, n] while arborescences are defined on [1, n]: 0 is not mapped by AT .
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Figure 71: The bijection T 7→ AT between triangulations of a (n + 1)-gon and non-crossing
arborescences on n nodes. (Left) In bold are drawn the edges of the triangulation kept in the
non-crossing arborescence.
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Figure 72: In the left triangulation T , the positive quadrangle (0, 2, 3, 8) ∈ Q+(T ) is sent to the

forward-sliding node 2 ∈ If
AT

, while the negative quadrangle (4, 5, 6, 7) ∈ Q−(T ) is sent to the

backward-sliding node 5 ∈ Ib
AT

.

is surjective as the graph of flips of non-crossing arborescences is connected. As the numbers of
triangulations of a (n + 1)-gon and the number of non-crossing arborescences on n nodes is the
same, T 7→ AT is a bijection.

Note that, in particular, immediate vertices of T are sent bijectively through the bijection
T 7→ AT to immediate leaves of AT . We refer to Section 3.2.2 for the definitions of forward- and
backward-sliding nodes (and consort).

Lemma 4.44. Let T be triangulation and AT the associated non-crossing arborescence. Positive
quadrangles of T are sent bijectively to forward-sliding nodes AT through (i, j, k, l) 7→ j; and
negative quadrangles of T are sent bijectively to backward-sliding nodes AT through (i, j, k, l) 7→ j,
see Figure 72.

Proof. Fix (i, j, k, l) ∈ Q+(T ). Then k = max{y ; (j, y) ∈ E(T )} because otherwise (j, y) would
cross the edge (i, k). Thus AT (j) = k. Besides l = max{y ; (k, y) ∈ E(T )} because otherwise
(k, y) would cross the edge (i, l). Thus AT (k) = l. Finally, an edge (a, k) with a < j would cross
either the edge (i, j) or the edge (i, l). So j = min{x ; AT (x) = k}, which fulfills the definition

for j ∈ If
AT

.

The proof is similar for the negative quadrangles. As |Q+(T )|+|Q−(T )| = n−1 = |If
AT

|+|Ib
AT

|,
the two bijections holds.

4.3.2 Fiber polytopes for the projection Cycd(t)
π−→ Cyc2(t)

In the remaining of this section, we present some new results on a family of fiber polytopes
associated to cyclic polytopes. These results extend the one of [ALRS00]. It will be the opportunity
to use the tools and ideas developed in Section 3.2.

In the latter, we designated the order cone by On = {t ∈ Rn ; t1 ≤ · · · ≤ tn}. In what
follows, we will slightly abuse notations: for a fixed n ≥ 1, if t ∈ On+1, then its coordinates will
be denoted t = (t0, t1, . . . , tn), and triangulations will be on a (n+ 1)-gon ; while if t ∈ On, then
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its coordinates will be denoted t = (t1, . . . , tn) and non-crossing arborescences will take place on
n nodes.

Definition 4.45. For d ≥ 2 and t ∈ O◦
n+1, the fiber associahedron Σd

2(t) is the fiber polytope
Σπ(Cycd(t),Cyc2(t)) where π is the projection that forgets all but the two first coordinates: π(x) =
(⟨x, e1⟩ , ⟨x, e2⟩).

By Corollary 4.10, Σd
2(t) is a projection of the secondary polytope Σ(Cyc2(t)). As Cyc2(t)

is a polygon with n vertices, its secondary polytope Σ(Cyc2(t)) is an associahedron Asson−2, see
[LRS10]. For t ∈ O◦

n+1, as vertices of Σ(Cyc2(t)) are naturally associated to triangulations of
Cyc2(t), one can associate a triangulation to each vertex of Σd

2(t). We now establish a criterion
for a triangulation to be associated to a vertex of Σd

2(t).

Proposition 4.46. For (i, j, k, l) ∈ [0, n]4 with i < j < k < l, t ∈ O◦
n and a polynomial P , we denote

τ(i, j, k, l) = det




1 1 1 1
ti tj tk tl
t2i t2j t2k t2l

P (ti) P (tj) P (tk) P (tl)




For t ∈ O◦
n+1 and d ≥ 2, a triangulation T of Cyc2(t) corresponds to a vertex of Σd

2(t) if and
only if there exists a polynomial P of degree at most d such that τ(κ) > 0 for all κ ∈ Q+(T ) and
τ(κ) < 0 for all κ ∈ Q−(T ).

When these conditions are satisfied, we say that P captures the triangulation T on t.

To prove this property, we need a classical lemma, of which we give a short proof for the sake
of completeness.

Lemma 4.47. For a 3-dimensional polytope P with vertices v0 =



x0

y0
z0


 , . . . ,vn =



xn

yn
zn


, a

triangle (i, j, k) corresponds to a lower face of P if and only if, for all l ∈ [0, n]∖ {i, j, k} one has:

det




1 1 1 1
xi xj xk xl

yi yj yk yl
zi zj zk zl


 > 0

Proof of Lemma 4.47. The positivity of this determinant is equivalent to the fact that vl ∈ H+
(i,j,k)

where H(i,j,k) is the plane of R3 containing the points vi, vj and vk.

Proof of Proposition 4.46. Fix t ∈ O◦
n+1. By Theorem 4.6, vertices of Σd

2(t) are in bijection
with π-coherent triangulations of Cyc2(t). Pick w = (w1, ..., wd) ∈ Rd generic with respect to

Cycd(t) and construct πw : x 7→
(

π(x)
⟨w,x⟩

)
as in Definition 4.4. Then the vertices of πw(Cycd(t))

come from vertices γd(ti) of Cycd(t): they are thus of the form pi :=




ti
t2i

⟨w,γd(ti)⟩


. Denoting

P (t) = w1t + · · · + wdt
d, one has ⟨w,γd(ti)⟩ = P (ti). The family of lower faces of πw(Cycd(t))

projects down to a triangulation of Cyc2(t) (by forgetting the last coordinate).
Consequently, a triangulation T of Cyc2(t) appears as such a projection if and only if there

exists a polynomial P of degree at most d satisfying that for all triangle δ = (j, k, l) ∈ T , the
points pj ,pk,pl are the vertices of a lower face of conv{pi ; i ∈ [0, n]}. By Lemma 4.47, this
amount to having τ(j, k, l,m) > 0 for all m ∈ [0, n]∖ {j, k, l}.

In the associahedron Asson−2, the vertex associated with T is adjacent to the vertices associated
with the triangulations T ′ obtained by flipping any quadrangle in T . Hence, by convexity, it is
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equivalent to test the positivity of τ(j, k, l,m) for (j, k, l,m) a quadrangle of T , than to test the
positivity of τ(j, k, l,m) for all (j, k, l) ∈ T and m ∈ [0, n]∖ {j, k, l}.

Thus, by re-ordering the columns of the determinant τ(κ), the triangulation T appears if and
only P satisfies that τ(κ) > 0 for all κ ∈ Q+(T ) and τ(κ) < 0 for all κ ∈ Q−(T ).

The above Proposition 4.20 gives a simple criterion for determining the triangulation captured
by a polynomial on a given t. Moreover, Lemma 4.47 ensures that if P captures T on t, then we
know the value of τ(i, j, k, l) for all quadruples (i, j, k, l) ∈ [0, n]4, not only for the quadrangles of
T .

Recall from Appendix A that the complete symmetric polynomial of degree s on 4 variables is:

hs(X,Y, Z, U) =
∑

a+b+c+d=s

XaY bZcUd

For a quadrangle κ = (i, j, k, l) in a triangulation T and t ∈ O◦
n+1, we construct Ωd

κ(t) ∈ Rd

defined by Ωd
κ(t)s = hs−3(ti, tj , tk, tl), together with Ω

d

κ(t) =
(
hs(ti, tj , tk, tl)

)
s=1,...,d−3

∈ Rd−2.

As for Theorem 3.16, these points allow us to reformulate Proposition 4.46 into a more handy
criterion, that hinges on intersection of polytopes.

Theorem 4.48. For t ∈ O◦
n+1, a triangulation T of Cyc2(t) can be captured on t if and only if the

following polytopes do not intersect:

Q+
d (T, t) = conv

{
Ω

d

κ(t) ; κ ∈ Q+(T )
}

and Q−
d (T, t) = conv

{
Ω

d

κ(t) ; κ ∈ Q−(T )
}

Proof. Fix t ∈ O◦
n+1. A triangulation T can be captured on t if and only if there exists P (t) =

wdt
d + · · ·+ w1t such that τ(κ) > 0 for all κ ∈ Q+(T ), and τ(κ) < 0 for all κ ∈ Q−(T ). Remark

that, by linearity of the determinant and Theorem A.2:

τ(κ) =

d∑

s=1

ws det




1 1 1 1
ti tj tk tl
t2i t2j t2k t2l
tsi tsj tsk tsl


 = VdM4(ti, tj , tk, tl)

d∑

s=1

wshs−3(ti, tj , tk, tl)

where the Vandermonde determinant VdM4(ti, tj , tk, tl) = (tl − tk)(tl − tj)(tl − ti)(tk − tj)(tk −
ti)(tj − ti) > 0 (as i < j < k < l and t ∈ O◦

n+1).
Thus, the existence of P amounts to the existence of a solutionw to the system

∑
s wshs−3(κ) >

0 if κ is positive, and negative respectively. By Gordan’s lemma, this is equivalent to the existence
of a λκ ≥ 0, for all κ, non-identically zero, satisfying

∑

κ∈Q+(T )

λκΩ
d
κ(t) =

∑

κ∈Q−(T )

λκΩ
d
κ(t)

Since Ωd
κ(t)2 = 1, it follows that Λ =

∑
κ∈Q+(T ) λκ =

∑
κ∈Q−(T ) λκ > 0. Dividing both sides

of the previous equation by Λ yields a point in Q+
d (T, t) ∩ Q−

d (T, t).

Once defined the notion of capturing a triangulation, we can define the degree of a triangu-
lation and its realization set, mirroring the ones of non-crossing arborescences. Even if it will be
slightly confusing at first glance, we adopt the same notations for triangulations and non-crossing
arborescences, as the ideas concerning them are too akin to be distinguished by new notations.

Definition 4.49. Let T be a triangulation of a (n+ 1)-gon.
For t ∈ O◦

n+1, the degree of T on t is µ(T, t) = min{degP ; T is captured by P on t}. The
intrinsic degree of T is µ(T ) = min{µ(T, t) ; t ∈ O◦

n+1}.
For d ≥ 2, the realization set of T of degree d is T ◦

d (T ) = {t ∈ O◦
n+1 ; µ(T, t) ≤ d}.

A triangulation T is universal when T ◦
µ(T ) = O◦

n+1.
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These notions respect the same straightforward properties as their counterparts for non-crossing
arborescences. For all t ∈ O◦

n+1, one has µ(T, t) ≤ n+ 1, and consequently µ(T ) ≤ n+ 1. Indeed,
if d ≥ n + 1, then Cycd(t) is a simplex and Σd

2(t) is combinatorially isomorphic to the secondary
polytope Σ(Cyc2(t)): an associahedron.

For d ≥ 2, the closure Td(T ) of T ◦
d (T ) is a (generally non-polyhedral and even non-convex)

full-dimensional subcone of the order cone On+1, because if T can be captured on t ∈ O◦
n+1, then

by translation, T can be captured on (t0 + c, . . . , tn + c) for all c ∈ R, and on λt for λ > 0, by a
polynomial of the same degree. Furthermore, the definition ensures that:

T3(T ) ⊆ T4(T ) ⊆ · · · ⊆ Tn+1(T ) = On+1

In addition, Theorem 4.48 gives the following powerful reformulation.

Proposition 4.50. Let T be a triangulation of a (n + 1)-gon. One has, for t ∈ O◦
n+1 and d ≥ 3:

µ(T, t) = min{d ; Q+
d (T, t) ∩ Q−

d (T, t) = ∅}, and T ◦
d (T ) = {t ; Q+

d (T, t) ∩ Q−
d (T, t) = ∅}.

Beside these properties, µ(T, t) and µ(T ) are hard to describe: Theorem 4.48 gives a nice
way to check whether a triangulation can be captured in some degree, but no mean to estimate
the minimal degree after which it becomes possible. In particular, note that the coordinates of
Q+

d (T, t) and Q−
d (T, t) are polynomials of degree up to d − 3, thus it is simple to study the case

d = 4, but when d ≥ 5 deciding if their intersection is empty becomes as hard as deciding if there
exists a solution to a certain polynomial system (of degree at least d− 3). In the following part of
this section, we focus on the case d = 4.

4.3.3 Realization sets and universal triangulations for Cyc4(t)
π−→ Cyc2(t)

In this section, we study the fiber polytope Σ4
2(t) = Σπ(Cyc4(t),Cyc2(t)) for t ∈ O◦

n+1 where π :
R4 → R2 is the projection forgetting all but the two first coordinates. These results extend the last
example of [ALRS00]. In particular, we give a complete characterization of which triangulations
of a (n+ 1)-gon can be associated to a vertex of Σd

2(t) for some t ∈ O◦
n+1, then we describe their

realization sets, state which of them are universal, and conclude on the number of vertices of Σd
2(t).

Even though the computations of the present section are different from the ones of Section 3.2, the
ideas behind them clearly look alike. Note however that there seems not to be a straightforward
way to deduce the following results from the theorems of Section 3.2: we will see in Example 4.61
an example indicating that cyclic associahedra and fiber associahedra are indeed dissimilar.

Even though it will not be at the center of our proofs, the bijection T 7→ AT between triangu-
lations of a (n+1)-gon will help us get a better understanding of the notions at stake. Indeed, we
will prove that this bijection induces a bijection between:
(i) Triangulations T with µ(T ) = 3 and non-crossing arborescences A with µ(A) = 2 (Corol-

lary 4.52(i)).
(ii) Triangulations T with µ(T ) = 4 and non-crossing arborescences A with µ(A) = 3 (Theo-

rem 4.55).
(iii) Universal triangulations T with µ(T ) = 4 and universal non-crossing arborescences A with

µ(A) = 3 (Corollary 4.54).
Nevertheless, this bijection is not a magic wand! Some powerful properties are not shared

between cyclic associahedra and fiber associahedra, in particular:
(a) We don’t have a theorem that characterizes µ(T ) in terms of L(T ) and L◦(T ) (a twin to

Corollary 3.13). In particular, we don’t know if there exists a triangulation T such that
µ(T ) = 6 but µ(AT ) = 4.

(b) The vertices of Σ4
2(u) for u ∈ O◦

n+1 correspond to a family of triangulations, but the associated
family of non-crossing arborescences does not necessarily correspond to the vertices of Π3

t for
any t ∈ O◦

n+1, see Example 4.61.
We first would like to show that triangulations T with |L(T )|+ |L◦(T )| ≤ 2 are exactly the ones

satisfying µ(T ) ≤ 4. We will prove this in two steps. We first state one inclusion, and postpone
the reciprocal for later (see Theorem 4.55).
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Proposition 4.51. For a triangulation T of a (n+ 1)-gon: if µ(T ) ≤ 4 then |L(T )|+ |L◦(T )| ≤ 2.

Proof. Fix a triangulation T captured by P (t) = w1t+w2t
2 +w3t

3 +w4t
4 on t ∈ O◦

n+1. Suppose
that |L(T )|+ |L◦(T )| > 2, then either |L◦(T )| ≥ 2, or L(T ) ∩ {1, n− 1} ≠ ∅ and L◦(T ) ̸= ∅.

Suppose |L◦(T )| ≥ 2. Let ℓ ∈ L◦(T ). For a < ℓ− 1 and b > ℓ+ 1, Lemma 4.47 ensures that:

τ(ℓ− 1, ℓ, ℓ+ 1, a) > 0 and τ(ℓ− 1, ℓ, ℓ+ 1, b) > 0

Giving:

{
VdM4(tℓ−1, tℓ, tℓ+1, ta)

(
w4(tℓ−1 + tℓ + tℓ+1 + ta) + w3

)
> 0 and

VdM4(tℓ−1, tℓ, tℓ+1, tb)
(
w4(tℓ−1 + tℓ + tℓ+1 + tb) + w3

)
> 0

As a < ℓ− 1 < ℓ < ℓ+ 1 < b, the signs of the Vandermonde determinants give:

w4(tℓ−1 + tℓ + tℓ+1 + ta) + w3 < 0 and w4(tℓ−1 + tℓ + tℓ+1 + tb) + w3 > 0

But if m ∈ L◦(T ) with ℓ < m, then w4(tℓ−1 + tℓ + tℓ+1 + tm) + w3 > 0 as ℓ ∈ L◦(T ), and
w4(tm−1 + tm + tm+1 + tℓ) + w3 < 0 as m ∈ L◦(T ). But tℓ−1 ≤ tm−1 and tℓ+1 ≤ tm+1, so
w4(tℓ−1 + tℓ + tℓ+1 + tm) + w3 < w4(tm−1 + tm + tm+1 + tℓ) + w3, which contradicts the signs of
each side.

The same ideas apply when {1, n− 1} ∩ L(T ) ̸= ∅ and L◦(T ) ̸= ∅.

The above theorem can be reformulated in saying that T 7→ AT injects the family of triangula-
tions T with µ(T ) ≤ 4 into the family of non-crossing arborescences A with µ(A) ≤ 3. This allows
us to give a description of the triangulations with µ(T ) ≤ 4.

Corollary 4.52. If T is a triangulation with µ(T ) ≤ 4, then T falls in one of the following cases:
(i) The triangulations Tm with interior edges E◦(Tm) = {(0, i) ; i ∈ [n − 1]}, and TM with

interior edges E◦(TM ) = {(i, n) ; i ∈ [n − 1]}. These are the only 2 triangulations with
µ(T ) = 3. Note that L(Tm) = {1} and L(TM ) = {n− 1}.

(ii) For 1 < k < n−1, triangulations with triangles (0, i, i+1) for i < k, (0, k, n), and (i, i+1, n)
for i ≥ k. These are n− 1 triangulations with L(T ) = {1, n− 1}.

(iii) For 1 < ℓ < n − 2, triangulations with (ℓ − 1, ℓ + 1) ∈ E◦(T ) and all (x, y) ∈ E◦(T ) satisfy
x < ℓ < y. These are 2n − 2 triangulations with L(T ) = {ℓ}.

Proof. For (i), note thatQ−(Tm) = ∅ andQ+(T ) =
(
(0, i, i+1, i+2) ; i ∈ [n−2]

)
, so Theorem 4.48

ensures that Tm can be captured on any t by a degree 3 polynomial, as Q−
4 (Tm, t) = ∅ (so the

intersection is empty). The case of TM is identical.
For (ii) and (iii), note that all triangulations (on a polygon of any number of vertices) have

an immediate leave, by induction. If ℓ ∈ L◦(T ), and (x, y) ∈ E◦(T ) with ℓ /∈ [x, y], then the sub-
triangulation T

∣∣
[x,y] is the triangulation of some polygon: there is an immediate leaf m ∈ L◦(T )

with x ≤ m ≤ y, so m ̸= ℓ. Consequently, if µ(T ) ≤ 4, then Proposition 4.51 implies that T is of
the form (ii) or (iii).

In the rest of this section, we give a description of the realization sets for triangulations T with
µ(T ) ≤ 4, and the characterization of universal triangulations.

Lemma 4.53. Let T be a triangulation of a (n+1)-gon with µ(T ) = 4 and L(T ) = {ℓ}, 1 < ℓ < n−1.
Then µ(T, t) = 4 for all t ∈ O◦

n+1 satisfying:

max{ti + tj + tk + tl ; (i, j, k, l) ∈ Q−(T )} < min{ti + tj + tk + tl ; (i, j, k, l) ∈ Q+(T )}

Proof. By Theorem 4.48, we know that T can be captured on t ∈ O◦
n+1 by a polynomial of degree

4 if and only if Q+
4 (T, t)∩Q−

4 (T, t) = ∅. As they are 1-dimensional, we denote Q+
4 (T, t) = [x+, y+]

and Q−
4 (T, t) = [x−, y−]. Suppose proven that x− < y+, then Q+

4 (T, t)∩Q−
4 (T, t) = ∅ if and only

if y− < x+, which is what the lemma states.
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For T non-universal with µ(T ) = 4, let ℓ be its immediate leaf. Corollary 4.52 ensures that
negative quadrangles (i, j, k, l) satisfy either i < j < ℓ < k < l or i < j < k < ℓ < l. There
always exists a negative quadrangle of the first kind: if (i, j, k, l) is of the second kind, then the
quadrangle which edge is (max{x ; (x, l) ∈ E(T )}, l) is of the first kind.

For (i, j, k, l) of the first kind, if (j, k) is an interior edge, then there exists a ∈]j, k[ such
that (j, a, k) ∈ T : the quadrangle (j, a, k, l) is positive with ti + tj + tk + tl < tj + ta + tk + tl
(as t ∈ O◦

n+1). Else, (j, k) = (ℓ − 1, ℓ), and taking i′ = min{x ; (x, ℓ + 1) ∈ E(T )} gives a
negative quadrangle (i′, i′ + 1, i′ + 2, ℓ) and a positive quadrangle (i′, i′ + 1, ℓ, ℓ + 1) satisfying
ti′ + ti′+1 + ti′+2 + tℓ < ti′ + ti′+1 + tℓ + tℓ+1. In all cases, we have proven that x− < y+, yielding
the lemma.

Lemma 4.53 allows us to show that universal triangulations T for µ(T ) ≤ 4 are in bijection
with universal non-crossing arborescences A with µ(A) ≤ 3:

Corollary 4.54. A triangulation T of a (n + 1)-gon is universal if and only if µ(T ) = 3, or if
µ(T ) = 4 and one of the following holds:
(i) L(T ) = {1, n− 1} ;
(ii) L(T ) = {n− 2} and interior edges of T are either (1, 3) and (0, i) for i ∈ [3, n− 1], or (1, 3),

(1, 4) and (0, i) for i ∈ [4, n− 1] ;
(iii) L(T ) = {2} and interior edges of T are either (n − 3, n − 1) and (i, n) for i ∈ [1, n − 3], or

(n− 3, n− 1), (n− 4, n− 1) and (i, n) for i ∈ [1, n− 3].
Note that they are in bijection with universal non-crossing arborescences A with µ(A) = 3,

through the usual bijection T 7→ AT .

Proof. If µ(T ) = 3, then the universality of T follows directly from the proof of Corollary 4.52, as
Q−

4 (Tm, t) = ∅, and Q−
4 (TM , t) = ∅.

(i) In this case, by Corollary 4.52, there exists k such that Q+(T ) =
(
(0, i, i + 1, i + 2) ; i ∈

[k − 2]
)
∪
(
(0, k − 1, k, n)

)
, and Q−(T ) =

(
(i, i + 1, i + 2, n) ; i ∈ [k, n − 3]

)
∪
(
(0, k, k + 1, , n)

)
.

Then Q−
4 (T, t) ∩ Q+

4 (T, t) = ∅ for all t ∈ O◦
n+1, as

∑
i∈κ ti <

∑
j∈κ′ tj for all κ ∈ Q−(T ) and

κ′ ∈ Q−(T ). Thus by Theorem 4.48, T is universal.
(ii) Suppose (1, 3) ∈ E(T ) but (1, 4) /∈ E(T ). In this case, Q−(T ) =

(
(0, 1, 2, 3)

)
and Q+(T ) =(

(0, i, i+ 1, i+ 2) ; i ∈ [3, n− 2]
)
. Thus Q+

4 (T, t) ∩ Q−
4 (T, t) = ∅ for all t ∈ O◦

n+1.

(ii) Suppose (1, 3) ∈ E(T ) and (1, 4) ∈ E(T ). In this case, Q−(T ) =
(
(0, 1, 3, 4)

)
and Q+(T ) =(

(0, i, i+ 1, i+ 2) ; i ∈ [4, n− 2]
)
∪
(
(1, 2, 3, 4)

)
. Thus Q+

4 (T, t) ∩ Q−
4 (T, t) = ∅ for all t ∈ O◦

n+1.
(iii) This case is symmetric to (ii).
We finish by proving that if T does not belong to the above cases, then T is not universal, mean-

ing there exists t ∈ O◦
n+1 with Q+

4 (T, t) ∩ Q−
4 (T, t) ̸= ∅. Fix T of the form of Corollary 4.52(iii),

and for i < ℓ, denote ji the index ji > ℓ such that (i − 1, i, ji) ∈ T . If jℓ−1 ≥ ℓ + 2, then
(ℓ−1, ℓ, ℓ+1, ℓ+2) ∈ Q+(T ) and (ℓ−2, ℓ−1, ji, ji−1) ∈ Q−(T ). Taking an arbitrarily high value
for tji violates the inequality of Lemma 4.53. The case ji = ℓ+ 2 is a mirror of the latter.

With Corollary 4.52 and Lemma 4.53, we can also prove the reciprocal of Proposition 4.51:

Theorem 4.55. For a triangulation T of a (n+1)-gon, µ(T ) ≤ 4 if and only if |L(T )|+|L◦(T )| ≤ 2.

Proof. Proposition 4.51 states that if µ(T ) ≤ 4 then |L(T )|+ |L◦(T )| ≤ 2. We prove the reciprocal
by induction on n. The latter is clear for (the only) triangulation on n+ 1 = 3 vertices.

Fix a triangulation T with |L(T )|+ |L◦(T )| ≤ 2. Corollary 4.54 ensures that µ(T ) ≤ 4 if T is
of the form of Corollary 4.52(i) or Corollary 4.52(ii). Suppose T is of the form Corollary 4.52(iii),
then either (0, 1, n) ∈ T or (0, n − 1, n) ∈ T . In the first case, set T ′ = T

∣∣
[1,n] and construct,

by induction, t′ ∈ O◦
n such that µ(T ′, t′) = 4. Then, define t = (t0, t

′
1, . . . , t

′
n) by choosing t0

arbitrarily small. Then, Q+(T ) = Q+(T ′), and Q−(T ) = Q−(T ′)∪
(
(0, 1, a, n)

)
with a ∈ {2, n−1}.

As t0 is small enough, we have t0 + t1 + ta + tn < min{ti + tj + tk + tl ; (i, j, k, l) ∈ Q+(T )}, so
Lemma 4.53 ensures that µ(T, t) = 4.

The case of (0, n− 1, n) ∈ T is solved similarly by setting tn large enough.
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Figure 73: All triangulations T of a hexagon with µ(T ) ≤ 4. Green and blue dots represent
universal triangulations, red dots non-universal ones.
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Figure 74: A non-universal triangulation T with µ(T ) = 4 and L(T ) = {4}. It has 2 minimal
positive quadrangles among which (2, 3, 5, 6), and 3 maximal negative quadrangles among which
(0, 1, 7, 8). It has 1 non-minimal positive quadrangle (2, 5, 6, 7), and no non-maximal negative
quadrangle.

As announced, we have proven that T 7→ AT induces a bijection between:
(i) Triangulations T with µ(T ) = 3 and non-crossing arborescences A with µ(A) = 2.
(ii) Triangulations T with µ(T ) = 4 and non-crossing arborescences A with µ(A) = 3.
(iii) Universal triangulations T with µ(T ) = 4 and universal non-crossing arborescences A with

µ(A) = 3.
This allows us to construct in Figure 73 the graph of all triangulations T with µ(T ) ≤ 4,

similarly as in Figure 38 but with triangulations. This figure is closely related to Figure 1 of
[ALRS00], and all its properties are the pendant as the one discussed in Example 3.23 about
non-crossing arborescences A with µ(A) ≤ A.

It remains to study, for a fixed t ∈ O◦
n+1, the number of vertices of Σ4

2(t), that is the number
of triangulations T with µ(T, t) ≤ 4.

Definition 4.56. In a non-universal triangulation T with µ(T ) = 4, a positive quadrangle κ =
(i, j, k, l) is minimal when k = min{k′ ; (i, k′) ∈ E◦(T )}; a negative quadrangle κ = (i, j, k, l) is
maximal when l = max{l′ ; (j, l′) ∈ E◦(T )}, see Figure 74.

Remark 4.57. Note that maximal negative quadrangles (i, j, k, l) are quadrangles that form a Z-
shape, while minimal positive ones form a Z-shape, see Figure 74. This illustrates the fact that
flipping the edge of a minimal positive quadrangle turns it into a maximal negative quadrangle.
Moreover, such flips send a triangulation T with µ(T ) = 4 either to another triangulation T ′ with
µ(T ′) = 4, or to one of the triangulations Tm or TM of Corollary 4.52(i).
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Theorem 4.58. Let T be a non-universal triangulation with µ(T ) = 4, and t ∈ O◦
n+1, then t ∈ T4(T )

if and only if ti + tj + tk + tl < ti′ + tj′ + tk′ + tl′ for all (i, j, k, l) ∈ Q−(T ) maximal and
(i′, j′, k′, l′) ∈ Q+(T ) minimal.

Proof. Fix a non-universal triangulation T with µ(T ) = 4, and t ∈ O◦
n+1. By Lemma 4.53,

this theorem amounts to proving that the minimum of {ti + tj + tk + tl ; (i, j, k, l) ∈ Q+(T )} is
achieved when (i, j, k, l) is a minimal positive quadrangle, and conversely for negative quadrangles.
Suppose that (i, j, k, l) ∈ Q+(T ) is not minimal, and let a = max{x ∈]i, j[ ; (i, x) ∈ E(T )}. Then
(i, a, j, k) ∈ Q+(T ) and ti+ ta+ tj + tk < ti+ tj + tk+ tl. A similar reasoning gives that a negative
quadrangle achieves the maximum of {ti′ + tj′ + tk′ + tl′ ; (i′, j′, k′, l′) ∈ Q−(T )} only when it is
maximal.

For a triangulation T , if κ is a minimal positive quadrangle and ζ a maximal negative one, such
that they do not share a triangle, then one can flip the edge eκ and the edge eζ independently.
We say that T and T ′ differ by a diagonal switch with respect to these two quadrangles when T ′

can be obtained by flipping two such edges.
The switching arrangement Gn is the collection of hyperplanes

G(κ,ζ) = {t ∈ Rn+1 ; ti + tj + tk + tl = ti′ + tj′ + tk′ + tl′}

for all couples of quadruples κ = (i, j, k, l) and ζ = (i′, j′, k′, l′) such that κ ∈ Q+(T ) is minimal
and ζ ∈ Q−(T ) is maximal for some non-universal triangulation T with µ(T ) = 4.

Theorem 4.59. For tlex = (1, 2, . . . , 2n) ∈ O◦
n+1 and ulex = (2, . . . , 2n) ∈ O◦

n, the triangulations T
with µ(T, tlex) ≤ 4 are sent bijectively through T 7→ AT to the non-crossing arborescences A with
µ(A,ulex) ≤ 3. Informally, this amounts to say that Σ4

2(tlex) ≃ Π3
ulex

.

Proof. As universal triangulations and universal non-crossing arborescences are in bijection, we
only focus on non-universal ones.

By Lemma 4.53, to know whether a non-universal triangulation T can be captured or not on
t, we need to compare the ti+ tj + tk + tl for different quadrangles (i, j, k, l). But comparing these
values for tlex amounts to comparing reverse-lexicographically the associated quadruplets (this is
the principle of the binary numeral system). The lexicographic order is denoted ≤lex.

Let T be a triangulation with µ(T ) ≤ 4. On one side, tlex ∈ T ◦
4 (T ) if and only if (l, k, j, i) ≤lex

(l′, k′, j′, i′) for all (i, j, k, l) ∈ Q+(T ) and (i′, j′, k′, l′) ∈ Q−(T ). On the other side, Lemma 4.44

ensures that (i, j, k, l) ∈ Q+(T ) if and only if j ∈ If
AT

, and (i′, j′, k′, l′) ∈ Q−(T ) if and only if

j′ ∈ Ib
AT

; thus ulex ∈ T ◦
3 (AT ) if and only if (l, k, j) ≤lex (l′, k′, j′) for all (i, j, k, l) ∈ Q+(T ) and

(i′, j′, k′, l′) ∈ Q−(T ).
Moreover, if (i, j, k, l) ∈ Q+(T ), then (j, k, l) /∈ T , so there is no negative quadrangle in T of

the form (a, j, k, l) for a < j. Therefore, i and i′ are irrelevant in the comparison (l, k, j, i) ≤lex

(l′, k′, j′, i′), meaning that: (l, k, j, i) ≤lex (l′, k′, j′, i′) if and only if (l, k, j) ≤lex (l′, k′, j′).
Consequently, T can be captured on tlex if and only if AT can be captured on ulex.

Theorem 4.60. For all t ∈ O◦
n+1 \

⋂
G∈Gn

G, the number of vertices of Σd
2(t) is

(
n
2

)
− 1.

Proof. By Theorem 4.58, if t and t′ belong to the same maximal cone of O◦
n+1 \

⋃
G∈Gn

G, then

the triangulations captured on t and t′ are the same. Thus the number of vertices of Σd
2(t) and

Σd
2(t

′) are the same.
For a maximal cone C of the arrangement Gn, we denote by V(C) the set of triangulations T

such that C ⊆ T ◦
4 (T ). Take two adjacent maximal cones C and C′. Suppose that T ∈ V(C) but

T /∈ V(C′). Then the hyperplane separating C from C′ is of the form G = {t ; ti + tj + tk + tl =
ti′ + tj′ + tk′ + tl′} for some κ = (i, j, k, l) ∈ Q+(T ) minimal in T and ζ = (i′, j′, k′, l′) ∈ Q−(T )
maximal in T . As the two sums are equal for t ∈ G, κ and ζ can not share a triangle. Let T ′ be
obtained from T by first flipping (i, k) and then (j′, l′). We know that T ′ /∈ V(C) (because C is on
the wrong side of G for T ′ to be captured), and we want to prove that T ′ ∈ V(C′), i.e. C′ ⊆ T ◦

4 (T ′).
Fix t ∈ G.
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Then, we know that ti′ + tj′ + tk′ + tl′ < tα + tβ + tγ + tη for all (α, β, γ, η) ∈ Q+(T ) as these
inequalities are respected in C because T can be captured there. Furthermore, ti + tj + tk + tl =
ti′ + tj′ + tk′ + tl′ as t ∈ G. This proves that ti+ tj + tk + tl = min{tα+ tβ + tγ + tη ; (α, β, γ, η) ∈
Q+(T ) minimal}.

Now take (e, f, g, h) ∈ Q+(T ′) minimal. If (e, f, g, h) ∈ Q+(T ), then te + tf + tg + th >
ti + tj + tk + tl. Otherwise, (e, f, g, h) comes from the diagonal switch. We detail this switch,
see Figure 75. If it comes from the flip of (i, k), then its edge is either (e, g) = (i, l) or (e, g) =
(j, k). But in the first case, (e, f, g, h) = (i, j, l, h) with h > l because (e, f, g, h) ∈ Q+(T ′).
In the second case, (e, f, g, h) = (j, f, k, l) because (e, f, g, h) is minimal in T ′. In both cases
te + tf + tg + th > ti + tj + tk + tl. No minimal positive quadrangle can appear when flipping
(j′, l′) (apart (i′, j′, k′, l′) itself) because if (e, g) = (i′, l′) then (e, f, g, h) is not minimal, and if
(e, g) = (j′, k′), then (e, f, g, h) can not be positive. This establishes that ti + tj + tk + tl =
min{tα + tβ + tγ + tη ; (α, β, γ, η) ∈ Q+(T ′) minimal}.

The same holds for negative quadrangles: ti′+tj′+tk′+tl′ = max{tα+tβ+tγ+tη ; (α, β, γ, η) ∈
Q−(T ′) maximal}.

Thus, t′ ∈ C′ taken arbitrarily close to t ∈ G respects all inequalities of T ◦
3 (T ′). This ensures

that T ′ ∈ V(C′) but T ′ /∈ V(C), and consequently |V(C′)| ≥ |V(C)|. As a result, the cardinal |V(C)|
is the same for all maximal cones C of the hyperplane arrangement Gn (as the graph of adjacency
of its maximal cones is connected).

Finally, Theorem 4.59 states that this cardinal is also the number of vertices of Π3
t :
(
n
2

)
− 1.

Example 4.61. One can consider the graph on triangulations T of a (n+1)-gon with µ(T ) ≤ 4 with
an edge between T and T ′ if there exists t ∈ O◦

n+1\
⋃

G∈Gn
G such that the vertices corresponding to

T and T ′ are neighbors in Σ4
2(t). This is precisely the induced sub-graph of flips of triangulations,

restricted to {T ; µ(T ) ≤ 4}. By Theorem 4.55, this graph is isomorphic to the graph discussed
in Example 3.23, through the bijection T 7→ AT . As previously, the polygons Σ4

2(t) correspond
to great cycles in this graph, but not all great cycles do correspond to Σ4

2(t). Nevertheless, a
given great cycle does not give rise to the same system of inequalities for triangulations as for non-
crossing arborescences. In particular, one can compute the number of combinatorially different
Σ4

2(t), i.e. the number of great cycle whose associated system of inequalities has a (full-dimension
set of) solution:

• For n = 5, there are 2 possible Σ4
2(t), see Figure 1 of [ALRS00] and Figure 76.

• For n = 6, there are 12 possible Σ4
2(t).

• For n = 7, there are 216 possible Σ4
2(t).

• For n = 8, there are 8368 possible Σ4
2(t)

For n = 5 and n = 6, the bijection T 7→ AT extends to a bijection between possible Σ4
2(t)

and possible Π3
t . But for n = 7, as there are 216 possible Σ4

2(t) and only 187 possible Π3
t , this is

no longer plausible (and for n = 8, there are only 6179 possible Π3
t). Moreover, when applying

T 7→ AT , one will conclude that 181 possible Σ4
2(t) map to Π3

t while 35 do not, and 6 Π3
t are not

(images of) Σ4
2(t).

4.3.4 Perspectives and open questions

Computational remarks As usual, the objects of this section have been implemented with Sage.
Especially, to compute the fiber polytopes at stake, we chose to first compute its secondary poly-
tope and then project it. The secondary polytope can be computed by running through all trian-
gulations of Cyc2(t), and associating to each a vertex (whose coordinates have an explicit formula
involving the area of its triangles). The projection is precisely the projection Cyc4(t) → Cyc2(t).
We could also have computed the fiber polytopes as a finite Minkowski sum, see Theorem 4.7, but
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Figure 75: All possible quadrangles that can be created during a diagonal switch.
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t0 + t1 + t4 + t5 < t1 + t2 + t3 + t4 t0 + t1 + t4 + t5 > t1 + t2 + t3 + t4

Figure 76: The 2 possible Σ4
2(t) for n = 5. Green vertices correspond to triangulations T with

µ(T ) = 3, blue ones to universal T with µ(T ) = 4, and the red one to the non-universal triangula-
tion (the only one that differs between Left and Right). Each Σ4

2(t) correspond to one of the two
cones inside O6 separated by the hyperplane {t ; t0 + t1 + t4 + t5 = t1 + t2 + t3 + t4}. Contrarily
to Figure 40, it is not possible to picture this subdivision of O6 as, even when intersected with the
hyperplanes {t ; t0 = 0} and {t ; t5 = 1}, it is 4-dimensional.

the first method has the advantage to directly associate the vertices of Σd
2(t) with triangulations

of Cyc2(t).
Besides, to calculate the values claimed in Example 4.61, one needs to construct the subdivision

On+1\
⋃

G∈Gn
G. The same issues as discussed in Section 3.2.4 occur, but note that most of the

material developed for Section 3.2 can not be directly reused here, and need to be adapted.

Assets and limits of the current approach, open questions Lemma 4.44 is essential for proving
Theorem 4.59, but to this end, we only use Lemma 4.44 on the triangulations with 1 interior
immediate leaf or 2 exterior ones. As the lemma applies for all triangulations, we can hope for
a generalization of Theorem 4.59, which would grant access to a theory of intrinsic degree for all
triangulations. However, the way to do so remains unclear.

The fiber polytope we have studied in this section is very similar to the max-slope pivot rule
polytope studied in Section 3.2, although they are not exactly the same. The mystery around the
link between both is not totally unveiled. It would be interesting to determine whether this link is
due to the combinatorics and geometry of the cyclic polytopes, or if this is but the tail of a more
general phenomenon.
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A A Vandermonde-like determinant

I was working on the proof of one of my poems all the morning, and took out a comma.
In the afternoon I put it back again.

– Oscar Wilde

This appendix is devoted to the proof of a formula that determines a generalization of the
Vandermonde determinant. This formula is used for the proof of Theorem 4.48 and can be ex-
tracted (with some difficulties) from the literature, for example [Hei26, SV00, Jan22]. For fixed
λ := (λ1, . . . , λn), we want to compute the following determinant for k ∈ N:

VdMn,k(λ) := det




1 1 . . . 1
λ1 λ2 . . . λn

λ2
1 λ2

2 . . . λ2
n

...
...

. . .
...

λn−2
1 λn−2

2 . . . λn−2
n

λk
1 λk

2 . . . λk
n




Remember the classic Vandermonde determinant: VdMn(λ) = VdMn,n−1(λ) =
∏

i<j(λj−λi).

Definition A.1. The elementary symmetric function of degree s is

σs(X1, . . . , Xn) :=
∑

εi∈{0,1}
ε1+···+εn=s

Xε1
1 . . . Xεn

n

The complete symmetric polynomial of degree s is (by convention if s < 0, hs(X1, . . . , Xn) = 0)

hs(X1, . . . , Xn) :=
∑

i1+···+in=s

Xi1
1 . . . Xin

n

Theorem A.2. For any k, n ∈ N, and λ = (λ1, . . . , λn), one has: VdMn,k(λ) = VdMn(λ)hk−n+1(λ).

Before proving this theorem, we need a useful lemma:

Lemma A.3. For any m, n, denoting X = (X1, . . . , Xn), the following polynomial equality holds:

n∑

q=0

(−1)qσq(X)hm−q(X) = 0

Proof. One has:

n∑

q=0

(−1)qσq(X)hm−q(X) =

n∑

q=0

∑

εi∈{0,1}
ε1+···+εn=q

i1+···+in=m−q

(−1)qXi1+ε1
1 . . . Xin+εn

n

Fix (j1, . . . , jn) and I = {i : ji ̸= 0} = (i1, . . . , ir). We look at the coefficient of Xj1
1 . . . Xjn

n in
the expression above. Such a monomial appears exactly once per choice of (εi1 , . . . , εir ) ∈ {0, 1}I ,
with the coefficient (−1)q. Thus, the coefficient on any Xj1

1 . . . Xjn
n is:

∑

q∈[0,r], εi∈{0,1}
εi1+···+εir=q

(−1)q =
∑

q∈[0,r]

(
r

q

)
(−1)q = 0
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Proof of Theorem A.2. We will prove the result by induction on k − (n− 1).
When k ∈ [0, n− 2], VdMn,k(λ) = 0, as two rows are identical in the matrix.
When k = n− 1, by definition VdMn,k(λ) = VdMn(λ), and the equality holds.
Suppose VdMn,k(λ) = VdMn(λ) × hk−n+1(λ) holds for a fixed k − (n − 1). Denoting

λ′ = (λ1, . . . , λn−1), then the expansion of VdMn,k(λ) along its last column ensures that
−VdMn−1,k(λ

′) is the coefficient of λn−2
n in VdMn,k(λ) (seen as a polynomial in λn). One has:

VdMn,k(λ)

= VdMn(λ)× hk−n+1(λ)

= VdMn−1(λ
′)
∏n−1

i=1 (λn − λi)×
∑k−n+1

s=0 hk−n+1−s(λ
′)λs

n

In the above last line, one identifies the coefficient on λn−2
n to be:

VdMn−1(λ
′)×∑p+q=n−2(−1)n−1−pσn−1−p(λ

′)hk−n+1−q(λ
′)

= VdMn−1(λ
′)×∑n−1

q=1 (−1)qσq(λ
′)hk+1−n−(q−1)(λ

′)

By Lemma A.3, we get VdMn−1,k(λ
′) = VdMn−1(λ

′) × hk−(n−1)+1(λ
′). This concludes the

induction, as the theorem holds for k ≤ n− 1, and induces through (n, k) 7→ (n− 1, k).
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[BL21] Alexander Black and Jesús De Loera. Monotone paths on cross-polytopes, 2021.
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[BMDM+18] Véronique Bazier-Matte, Guillaume Douville, Kaveh Mousavand, Hugh Thomas,
and Emine Yıldırım. ABHY Associahedra and Newton polytopes of F -polynomials
for finite type cluster algebras.
arXiv:1808.09986, 2018.

[BML87] Roswitha Blind and Peter Mani-Levitska. Puzzles and polytope isomorphisms. Ae-
quationes Math., 34(2-3):287–297, 1987.

[Bot19] Nathaniel Bottman. 2–associahedra. Algebraic & Geometric Topology, 19(2):743–
806, 2019.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Alge-
braic Geometry, volume 2 of Algorithms and Computation in Mathematics. Springer
Berlin, Heidelberg, 2006.

[BS92] Louis J. Billera and Bernd Sturmfels. Fiber polytopes. Anals of Mathematics,
(135):527–549, 1992.

[CD06] Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra.
Topology Appl., 153(12):2155–2168, 2006.

[CDG+20] Federico Castillo, Joseph Doolittle, Bennet Goeckner, Michael S. Ross, and Li Ying.
Minkowski summands of cubes. 2020.

[CFZ02] Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky. Polytopal realizations of
generalized associahedra. Canad. Math. Bull., 45(4):537–566, 2002.

[CL20] Federico Castillo and Fu Liu. Deformation cones of nested braid fans. Int. Math.
Res. Not. IMRN, 2020.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124
of Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 2011.

[CP22] Frédéric Chapoton and Vincent Pilaud. Shuffles of deformed permutahedra, multi-
plihedra, constrainahedra, and biassociahedra, 2022.

[Dan63] George B. Dantzig. Linear programming and Extensions. Princeton Landmarks in
Mathematics and Physics. Princeton University Press, 1963.

[DCP95] Conrado De Concini and Claudio Procesi. Wonderful models of subspace arrange-
ments. Selecta Math. (N.S.), 1(3):459–494, 1995.

[Def21] Colin Defant. Fertilitopes. Preprint, arXiv:2102.11836, 2021.

[Dev09] Satyan L. Devadoss. A realization of graph associahedra. Discrete Math., 309(1):271–
276, 2009.

157

http://arxiv.org/abs/1808.09986
http://arxiv.org/abs/2102.11836


[DK00] Vladimir I. Danilov and Gleb A. Koshevoy. Cores of cooperative games, superdif-
ferentials of functions, and the Minkowski difference of sets. J. Math. Anal. Appl.,
247(1):pp. 1–14, 2000.
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