
4 Fiber polytopes

Que mes claviers seront usés
D’avoir osé

Toujours vouloir tout essayer
Et recommencer

Là où le monde a commencé
– Michel Berger, Le Paradis Blanc

4.1 Preliminaries on fiber polytopes

In the following, we give a very brief introduction to fiber polytopes, secondary polytopes and
π-coherent subdivisions arising from a polytope projection π : P → Q. For an instructive and
illustrated presentation of the subject, we advise the reader to look at [Zie98, Chapter 9], a more
in depth explanation can be found in [ALRS00, Section 2] and [LRS10, Chapter 9.1], and the
original articles [BS92] (for fiber polytopes) and [GKZ90, GKZ91] (for secondary polytopes) give
the details of the proofs.

Definition 4.1. A polytope projection is a couple (P, π) where P ⊂ Rd is a polytope and
π : Rd → Rd′

is a projection. When dimensions are obvious or irrelevant, we usually denote
such a projection by π : P → Q assuming that Q := π(P).

In order to define fiber polytopes, we need to introduce (coherent) subdivisions. The notion
of a complex is widely spread in mathematics, and we have already seen an instance of them, as
fans are complexes. Here, we only focus on polyhedral complexes.

Definition 4.2. A polyhedral complex C is a collection of polytopes such that if P ∈ C, then all the
faces of P are in C, and if P,Q ∈ C, then the intersection P ∩ Q is a face of both P and Q.

A subdivision of a polytope Q is a polyhedral complex C such that
⋃

P∈C P = Q.

Definition 4.3. For a polytope projection π : P → Q, a π-induced subdivision of Q is a subdivision
π(F) of Q where:
(i) π(F) = {π(F ) ; F ∈ F} for F a family of faces of P.
(ii) for F, F ′ ∈ F , if π(F ) ⊆ π(F ′), then F = F ′ ∩ π−1 (π(F )).
The set of π-induced subdivisions is ordered by refinement, forming the Baues poset: π(F1) ≼

π(F2) when every polytope of π(F2) is a union of polytopes of π(F1). More conveniently, as F can
be recovered from the knowledge of π(F) (see [Zie98, Chapter 9]), one has that π(F1) ≼ π(F2) if
and only if

⋃
F∈F1

F ⊆ ⋃F∈F2
F .

By convention, the empty family will be considered a π-induced subdivision. It is the minimal
element of the Baues poset. Note that even if they are called subdivisions, the π-induced subdi-
visions are better thought of not as subdivisions of Q, but as polyhedral complexes that live in P
(and whose projection by π is a subdivision of Q). Among π-induced subdivisions, some appear
as special (regular) subdivisions, we follow here the reformulation of [Zie98].

Definition 4.4. ([Zie98, definition 9.2]) Let π : P → Q be a polytope projection with dimP = d
and dimQ = d′. For ω ∈ Rd, define πω : Rd → Rd′+1 by

πω(x) =

(
π(x)
⟨ω,x⟩

)

The family of lower faces13 of πω(P) projects down to Q by forgetting the last coordinate, giving
rise to a π-induced subdivision of Q. The π-induced subdivisions of this form are called π-coherent
subdivisions, and form a sub-poset of the Baues poset: the lattice of π-coherent subdivisions.

We say that ω captures the subdivision.

13A face is a lower face when its normal cone contains a vector with a negative last coordinate.
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Figure 55: (Left) A projection ρ : R → P induces a projection between the fiber polytopes of R
and P for their projections onto Q. Note that as ρ and π are projection |V (R)| ≥ |V (P)| ≥ |V (Q)|.
(Right) If n = |V (Q)|, then Σπ(P,Q) is a projection of Σ(Q) when |V (P)| = |V (Q)| = n.

Note that when ω is generic with respect to P, then the associated π-coherent subdivision is a
finest π-coherent subdivision in the sense that it covers the empty subdivision in the Baues poset.

The fiber polytope has several (equivalent) definitions. In the present thesis, even though the
formal definition is given here, we will not use the realization of the fiber polytope, but only focus
on the characterization of its face lattice given in the following Theorem 4.6.

Definition 4.5. For a polytope projection π : P → Q, a section of P is a continuous map γ : Q → P
satisfying π ◦ γ = idQ. The fiber polytope Σπ(P,Q) for the projection π : P → Q is defined by:

Σπ(P,Q) =

{
1

vol(Q)

∫

Q

γ(x)dx ; γ section of P

}

Theorem 4.6. ([BS92, Corollary 1.4]). For a polytope projection π : P → Q, the fiber polytope
Σπ(P,Q) is a polytope and its face lattice is (isomorphic to) the lattice of π-coherent subdivisions
of Q.

Note that Σπ(P,Q) is of dimension dim(P)− dim(Q), though embedded in Rdim(P).
The construction of fiber polytopes through Definition 4.5 is cumbersome for numerical compu-

tations and drawings. Fortunately, the following theorem provides a description of fiber polytopes
as a finite Minkowski sum.

Theorem 4.7. ([BS92, Theorem 1.5]). For the polytope projection π : P → Q, consider the
subdivision of Q defined as the common refinement of all π(F) for F a face of P. For each maximal
cell C of this subdivision, we denote bC the barycenter (or centroid) of C. Then:

Σπ(P,Q) =
1

vol(Q)

∑

C maximal cells

vol(C) π−1(bC)

Even though an adequate construction of a category of polytopes is still lacking, fiber polytopes
have a categorical flavor. Indeed, if one would construct a category Pol in which objects are
polytopes, and morphisms are (surjective) projections between polytopes, then the map (π : P →
Q) 7→ Σπ(P,Q) would resemble a functor from the category of morphisms of Pol to Pol itself.
The commutative diagram of Figure 55(Left) indicates how the (categorical) cone over Q would
be sent to Pol by this functor. Notably, the following proposition guaranties fiber polytopes are
well-behaved with respect to projections:

Proposition 4.8. ([BS92, Lemma 2.3]). For two polytopes projections ρ : R → P and π : P → Q,
one has:

Σπ(P,Q) = ρ
(
Σπ◦ρ(P,R)

)

Among all fiber polytopes, some are very special. For instance, when projecting a simplex onto
a polytope, the finest π-coherent subdivisions are then in bijection with all regular triangulations
of P. This motivates the construction of the following universal object.
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Definition 4.9. Consider the standard simplex ∆n = conv(e1, ..., en) ⊂ Rn and a polytope P of
dimension d with vertices (v1, ...,vn). Let π : Rn → Rd be the projection defined by π(ei) = vi.
Then the dilate of the fiber polytope Σ(P) := (d + 1)vol(P)Σπ(∆n,P) is called the secondary
polytope of P. The vertices of Σ(P) are in bijection with the set of regular triangulations of P.

In particular, if P and Q share the same number n of vertices, then there exists a polytope
projection ρ : ∆n−1 → P, see Figure 55(Right). In this setting, the previous proposition ensures:

Corollary 4.10. If P and Q share the same number n of vertices, then Σπ(P,Q) arises as a projec-
tion of the secondary polytope of Q, i.e. there exists a projection ρ such that:

Σπ(P,Q) = ρ
(
Σ(Q)

)

This corollary is only a glint of the more general theory of secondary polytopes. They were
defined to study triangulations of any points configuration. We limit ourselves to secondary
polytopes of polytopes (i.e. points configuration in convex position), but the interested reader is
referred to the original papers of Gelfand, Kapranov and Zelevinsky [GKZ90, GKZ91] for a global
presentation. In particular, it is important to keep in mind that any fiber polytope is a projection
of a secondary polytope of a points configuration, but only fiber polytopes for projections that
retain the number of vertices are projections of secondary polytopes of polytopes.
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4.2 Monotone path polytopes of the hypersimplices

This section is a work on my own on a question originally asked by Alex Black and a conjecture
from Jesús De Loera. An article is in preparation.

After their introduction by Billera and Sturmfels in [BS92], fiber polytopes have received a
lot of attention. Especially, the fiber polytope for the projection of a polytope P onto a segment
encapsulates the combinatorics of monotone paths on P. For this reason, it is called the monotone
path polytope of P [Ath99, AER00, BLL20]. The vertices of the monotone path polytopes are in
bijection with the monotone paths that can be followed by a shadow vertex rule. As such, it links
the world of linear optimization to the world of triangulations.

This, and the fact that monotone path polytopes stand among the easiest fiber polytopes to
compute, have motivated numerous studies on the subject. Especially, the monotone path polytope
of a simplex is a cube [BS92], the one of a cube is a permutahedron [BS92, Zie98, Example 9.8],
the one of a cyclic polytope is a cyclic zonotope [ALRS00], the one of a cross-polytope is the
signohedron [BL21], and the one of a S-hypersimplex is a permutahedron [MSS20].

However, the monotone path polytopes of the hypersimplices have not yet been explored. The
(n, k)-hypersimplex ∆(n, k) can be equivalently defined as the section of the standard cube by the
hyperplane {x ∈ Rn ;

∑
i xi = k}, or as the convex hull of the (0, 1)-vectors with k ones and

n − k zeros [Zie98, Example 0.11]. Hypersimplices appear as usual examples of various classes
of examples ranging from generalized permutahedra [Pos09] to matroid polytopes of uniform ma-
troids [ABD10], and alcove polytopes [LP07]. Moreover, triangulations of the second hypersimplex
∆(n, 2) can be interpreted as through toric ideals of the complete graph [DLST95].

In the present section, we begin with a general introduction to monotone path polytopes
(Section 4.2.1), and then examine the monotone path polytopes of hypersimplices, especially their
vertices. We give a necessary criterion for a monotone path on ∆(n, k) to appear as a vertex of
its monotone path polytope (Section 4.2.2). We prove that this criterion is furthermore sufficient
in the case of the second hypersimplex (Section 4.2.3) and give the exact count of the vertices of
the monotone path polytope of ∆(n, 2) (Section 4.2.4).

4.2.1 Monotone paths polytopes in general

In general, fiber polytopes are, by construction, complicated to compute, even with the help
of Theorem 4.7. As a simple case, fiber polytopes for projections onto a point are trivial, as
Σπ(P, {q}) = P. Hence, among the first cases one would want to investigate are the fiber polytopes
associated to projections onto a 1-dimensional polytope, i.e. a segment.

Definition 4.11. For a linear program (P, c), the monotone path polytope Mc(P) is the fiber poly-
tope for the projection πc : x 7→ ⟨x, c⟩. Denoting the image segment Q = πc(P) = {⟨x, c⟩ ; x ∈ P},
one has: Mc(P) := Σπc(P,Q).

Note that Mc(P) has dimension dim(P)− 1 but is embedded in Rdim(P).
The monotone path polytope, though arising from a fiber polytope point of view, is deeply

linked to linear programming. Indeed, fix a polytope P ⊂ Rd, and consider a finest πc-coherent
subdivision F of P. By Definition 4.4, this amounts to taking a generic ω ∈ Rd and looking at
the polygon πω

c (P) =
{(

⟨x, c⟩ , ⟨x,ω⟩
)
; x ∈ P

}
. The family of lower faces of πω

c (P) is at the
same time the subdivision F at stake, and the monotone path followed by the simplex method
for the shadow vertex rule with secondary direction −ω. Accordingly, this process gives a clever
way to encompass in a polytope the combinatorial behavior of the shadow vertex rule. Note that,
whereas pivot rule polytopes (see Section 3.1) cover the behavior the shadow vertex rule14 has on
each vertex of P, the monotone path polytopes only describe the possible coherent leading paths
on P, that is the coherent paths from the worst vertex to the best, i.e. from the vertex vmin ∈ V (P)
minimizing ⟨v, c⟩ for v ∈ V (P ) to the vertex vopt ∈ V (P) maximizing it. Consequently, the face
lattice of the monotone path polytope is the lattice of coherent cellular strings on P.

14Technically, max-slope pivot polytopes encompass max-slope pivot rules, a generalization of shadow vertex
rules, see Sections 1.3 and 3.1.
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Definition 4.12. For a linear program (P, c), a cellular string is a sequence σ = (F1, . . . ,Fk) of faces
of P such that min(F1) = vmin, max(Fk) = vopt, and for all i ∈ [k − 1], max(Fk) = min(Fk+1),
where minima and maxima are taken with respect to the scalar product against c. As πc-induced
subdivisions, cellular strings are ordered by containment of their union. A cellular string σ is
coherent if there exists ω ∈ Rd such that F ∈ σ if F is the pre-image by πc of a lower face of πc(P).

To make the notations consistent and ease the drawings, we will keep for this section the
convention of linear programming, saying a cellular string σ is captured by ω when πω

c (σ) is the
family of upper faces of πω

c (P) (instead of lower faces).
We now present two ways to visualize the monotone path polytope. First of all, Definition 4.4

invites us to focus on the space of all ω and partition it depending on the coherent cellular strings
they yield. Precisely, to a cellular string σ we associate N (σ) = {ω ; ω captures σ}. Then N (σ)
is a polyhedral cone by linearity of πω

c in ω, and the family N =
(
N (σ)

)
σ
is a fan. This fan is

exactly the normal fan of Mc(P). Hence, one can run through all possible ω ∈ Rd, orthogonal to
c (as all ω+λc capture the same cellular string for any λ ∈ R), to draw the normal fan of Mc(P),
see Figure 56.

This construction gives two interesting properties. On the one hand, it is clear that the normal
fan of Π(P, c) coarsens the normal fan of Mc(P): the cone associated to a coherent cellular string
σ is the union of the cones associated to all coherent multi-arborescences whose leading cellular
string is σ, see Figure 57. Consequently:

Proposition 4.13. ([BDLLS22, Proposition 6.2]). The monotone path polytope Mc(P) is a defor-
mation of the pivot rule polytope Π(P, c).

On the other hand, we have said that for a fixed ω, all ω+λc for λ ∈ R capture the same cellular
string. Consequently, one can obtain the normal fan of Mc(P) by projecting the normal fan of P:

to each normal cone C ∈ NP, associate its projection along c, namely C⊥ := {x− ⟨x,c⟩
⟨c,c⟩ c ; x ∈ C}.

Then the common refinement of all
(
C⊥ ; C ∈ NP

)
is the normal fan15 of Mc(P).

A second way to visualize monotone path polytopes is to use Theorem 4.7. We begin by
sorting the vertices of P according to the scalar product against c: V (P) = {v1, . . . ,vn} with
⟨vi, c⟩ < ⟨vi+1, c⟩. The maximal cells of the segment Q = πc(P) are then the sub-segments
Ci := [qi, qi+1] with qi = ⟨vi, c⟩, and the barycenter (i.e. middle) of Ci is trivially bi =

qi+qi+1

2 .
The monotone path polytope Mc(P) is normally equivalent to the Minkowski sum of sections∑n

i=1 π
−1
c (bi).

Though exact, this construction is a bit unhandy. Yet, as we will prove in Theorem 4.14, one
can forget about centers, as Mc(P) is normally equivalent to

∑n−1
i=2 π−1

c (qi). This gives beautiful
pictures, see Figure 58 for the case of the simplex.

Note that, between the two figures, a slight change of perspective happened: to see that
the fan constructed in Figures 56 and 57(Left) is the normal fan of the Mc(P) appearing in
Figure 58(Right), rotate the latter clockwise slightly so that its bottom left corner fits in the cone
with a right angle.

Theorem 4.14. For a linear program (P, c), denote V (P) = {v1, . . . ,vn} and qi = ⟨vi, c⟩ with
q1 < · · · < qn. The monotone path polytope Mc(P) is normally equivalent to the Minkowski sum

of sections
∑n−1

i=2 {x ∈ P ; ⟨x, c⟩ = qi}.

Remark 4.15. This theorem is not a new result, but is known in the folklore. We give here a
self-contained proof, with the tools developed so far on sections and Minkowski sums, but the
reader at ease with the subject shall rather think of it as an exercise on Cayley polytopes.

Proof of Theorem 4.14. For i ∈ [1, n], we denote γi = {x ∈ P ; ⟨x, c⟩ = qi} the section over qi
and ζi(λ) = {x ∈ P ; ⟨x, c⟩ = λqi + (1− λ)qi+1)} for λ ∈]0, 1[.

First, note that the sections γ1 and γn are points, so adding them to
∑n−1

i=2 Γi amounts to
translating it (without changing its normal equivalence class). For this reason, we will prove by

15This construction embeds the fan NMc(P) directly into the hyperplane c⊥, instead of embedding it in Rdim(P).
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Figure 56: Animated construction of the normal fan of the monotone path polytope of the 3-
dimensional simplex. For each ω ∈ R3 orthogonal to c, we project ∆3 onto the plane (c,ω) (Left),
and record the corresponding coherent monotone path (Right). note that, contrarily to Figure 26,
we only score the upper path of each projection of the tetrahedron, not the full arborescence.
(Animated figures obviously do not display on paper, and some PDF readers do not support the
format: it is advised to use Adobe Acrobat Reader. If no solution is suitable, the animation can be
found on my website or asked by email.)
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Figure 57: The normal fan of Mc(P) coarsens the one of Π(P, c). Here is drawn the example for
the tetrahedron P = ∆3.
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Figure 58: The construction of Mc(P) as a sum of sections for the tetrahedron P = ∆3. Each
section is orthogonal to c and contains a vertex (except for vmin and vopt).
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induction that Γk+1 =
∑k+1

i=1 γi is normally equivalent to Zk =
∑k

i=1 ζi(
1
2 ). As Zn−1 is normally

equivalent to Mc(P) by Theorem 4.7, this will prove the theorem.
All ζi(λ) are normally equivalent for λ ∈]0, 1[, and γi+1 is a deformation of ζi(λ). Thus Γn is

a deformation of Zn. Furthermore, suppose a face f of ζi(λ) does not appear in the deformation
γi+1 and let F be the corresponding intersected face in P. Then vi+1 is the last vertex of F, and
there exists a vertex vj with j ≤ i in F: then in γj , the face f appears.

This fact has two consequences. On one side, Γ2 is normally equivalent to Z1 as the only
possible face with last vertex v2 is the edge [v1,v2] which section is a point. On the other side,
suppose Γk+1 is normally equivalent to Zk, and consider a face in Zk + ζk+1. This face either
appears in one of the γi for i ≤ k + 1, or in γk+2. As the normal fan of a Minkowski sum is
the common refinement of the normal fans of the summands, the polytopes Γk+2 and Zk+1 are
normally equivalent.

The rest of this section is devoted to the monotone path polytopes of hypersimplices, and
especially hypersimplices for k = 2. Before presenting new results on this subject, we shortly
recall two former results from Billera and Sturmfels [BS92, end of Section 5].

Theorem 4.16 ([BS92]). For any simplex ∆ on n + 1 vertices, and any generic direction c, the
monotone path polytope Mc(∆) is (isomorphic to) a cube of dimension n− 1.

Theorem 4.17 ([BS92]). For the standard cube □d = [0, 1]n of dimension n, and the direction
c = (1, . . . , 1), the monotone path polytope Mc(□d) is (a dilation of) the permutahedron Πn of
dimension n− 1.

These two results motivate the study of the monotone path polytopes of hypersimplices. Indeed,
hypersimplices are a generalization of simplices, and arise as sections of the standard cube.

Definition 4.18. For n ≥ 2, k ∈ [n], the (n, k)-hypersimplex is ∆(n, k) =
{
x ∈ [0, 1]n ;

∑
i xi = k

}
.

It is the section of the standard cube□d = [0, 1]n by the hyperplane {x ∈ Rn ; ⟨x, (1, . . . , 1)⟩ = k}.
The vertices of ∆(n, k) are exactly its (0, 1)-coordinate elements: the (0, 1)-vectors with k ones

and n− k zeros. We denote the support of a vertex v ∈ V (∆(n, k)) by s(v) := {i ; vi = 1}. Two
vertices u,v ∈ V (∆(n, k)) share an edge when |s(u) ∩ s(v)| = k − 1, i.e. to obtain v from u, flip
a zero to a one and a one to a zero.

Note that the hypersimplices∆(n, 1) and∆(n, n−1) are simplices: in this sense, hypersimplices
are a generalization of simplices.

We consider the linear problem (∆(n, k), c) where c ∈ Rn is generic with respect to ∆(n, k).
The vector c ∈ Rn will be fixed for the rest of this analysis of monotone path polytopes of the
hypersimplices. See Figure 59(Left) for an example. We denote M(n, k) := Mc(∆(n, k)) to ease
notations. Such a c is generic for the hypersimplex when ci ̸= cj for all i ̸= j, as each edge has
direction ei − ej . Without lost of generality, as the hypersimplex is invariant under reordering
coordinates, we suppose c1 < c2 < · · · < cn. Note however that there can exist v,w ∈ V (∆(n, k))
with ⟨v, c⟩ = ⟨w, c⟩ (when v and w are not adjacent vertices). When drawing, we will take
c = (1, 2, . . . , n).

We denote vmin = (1, . . . , 1, 0, . . . , 0) ∈ V (∆(n, k)) the vertex of ∆(n, k) minimizing ⟨v, c⟩ for
v ∈ V (∆(n, k)), and vmax = (0, . . . , 0, 1, . . . , 1) ∈ V (∆(n, k)) the vertex of ∆(n, k) maximizing
⟨v, c⟩ for v ∈ V (∆(n, k)). We now interpret the conditions for being a coherent monotone path
on a polytope for the case of the hypersimplex ∆(n, k).

Definition 4.19. A monotone path of vertices P = (v1, ...,vr) on ∆(n, k) is an ordered list of
vertices of ∆(n, k) such that v1 = vmin, vr = vmax and for all i ∈ [r − 1], (vi,vi+1) is an
improving edge of ∆(n, k) for c, i.e. an edge of ∆(n, k) with ⟨vi, c⟩ < ⟨vi+1, c⟩. The length of P
is r.

For all i ∈ [1, r − 1], the vertices vi and vi+1 form an edge of ∆(n, k). Thus, instead of
considering the path P as a list of vertices, we emphasize what changes and what remains between

vi and vi+1 by storing the enhanced steps of P . The i-th enhanced step of P is denoted x
Z−→ y

with:
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• Z the common support, i.e. Z = s(vi) ∩ s(vi+1).
• x the only index in the support of vi that is not in the support of vi+1, i.e. {x} = s(vi)∖s(vi+1).
• y the only index in the support of vi+1 that is not in the support of vi, i.e. {y} = s(vi+1)∖s(vi).

The list of enhanced steps of P is denoted S(P ). The application P 7→ S(P ) is obviously

injective. When a
C−→ b is the i-th enhanced step, and x

Z−→ y the j-th one, with i < j, we denote

a
C−→ b ≺ x

Z−→ y and say that a
C−→ b precedes x

Z−→ y.
A monotone path is said coherent when it corresponds to a vertex of M(n, k).

Proposition 4.20. For ω ∈ Rn, let πω : Rn → R2 be the projection πω(x) =
(
⟨x, c⟩ , ⟨x,ω⟩

)
. In

particular, for a vertex v ∈ V (∆(n, k)), then πω(v) =
(∑

i∈s(v) ci,
∑

i∈s(v) ωi

)
.

A monotone path of vertices P = (v1, . . .vr) is coherent if and only if there exists ω ∈ Rn such
that for all i ∈ [1, r − 1]:

∀J ∈
(
[n]

k

)
,

∑

j∈J

cj >
∑

p∈s(vi)

cp =⇒ τω
(
s(vi), J

)
< τω

(
s(vi), s(vi+1)

)

where τω
(
I, J

)
=

∑
j∈J ωj−

∑
i∈I ωi∑

j∈J cj−
∑

i∈I ci
is the slope between the point

(∑
i∈I ci,

∑
i∈I ωi

)
and the point

(∑
i∈J cj ,

∑
j∈J ωj

)
, see Figure 61(Top). We say that such ω captures P .

Proof. By Definition 4.4, a monotone path of vertices P is coherent if and only if there exists
ω ∈ Rn such that the upper path of the polygon πω(∆(n, k)) is precisely πω(P ) :=

(
πω(v)

)
v∈P

(remember we take the upper faces instead of the lower faces by convention in the section).
If v ∈ V (∆(n, k)) is in the upper path of πω(∆(n, k)), then the next vertex in the upper path

is the improving neighbor v′ of v that maximizes the slope
⟨v′−v,ω⟩
⟨v′−v,c⟩ . As c is generic for ∆(n, k),

the vertex u ∈ V (∆(n, k)) maximizing this slope is necessarily an improving neighbor of v, as the
pre-image of edge

[
πω(v), πω(u)

]
in the polygon πω(∆(n, k)) is an (improving) edge in ∆(n, k).

Consequently, the condition stated in the proposition is both necessary and sufficient.

Example 4.21. The hypersimplex ∆(3, 2) is a triangle, that is to say a simplex of dimension 2.
By Billera–Sturmfels’ Theorem 4.16, for any c ∈ R3, its monotone path polytope is a cube of
dimension 1: it has 2 vertices, one corresponding to the path of length 3 and the other to the path
of length 2.

Example 4.22. On the hypersimplex ∆(4, 2), for c = (1, 2, 3, 4) there are 8 coherent monotone
paths, and 2 non-coherent monotone paths. The 8 coherent monotone paths correspond to the
vertices of the octagon M(4, 2) depicted on Figure 59(Right). There are 4 coherent monotone paths
of length 3, and 4 coherent monotone paths of length 4. On the other side, the 2 non-coherent
monotone paths are of length 5: (1100, 1010,0110, 0101, 0011) and (1100, 1010,1001, 0101, 0011),
in bold are the vertices that differ between the two paths.

With a quick jotting, one can prove that for all c ∈ R4, the same holds: for all c ∈ R4, the
coherent monotone paths are exactly the same. This can also be retrieved from [BL21, Theorem
3.2] as ∆(4, 2) is the cross-polytope of dimension 3.

Example 4.23. To be able to draw the monotone path polytope M(n, k) of the hypersimplex
∆(n, k), we need that dim∆(n, k) ≤ 4, so that dimM(n, k) ≤ 3. This implies n ≤ 5. Moreover,
remember that ∆(n, k) is linearly isomorphic to ∆(n, n− k). For n = 3, Example 4.21 deals with
k = 2 (and thus k = 1 by symmetry). For n = 4, Example 4.22 deals with k = 2, while ∆(4, k)
with k = 1 and k = 3 are simplices and their monotone path polytopes are squares. For n = 5,
∆(5, k) with k = 1 and k = 4 are simplices and their monotone path polytopes are cubes, while
k = 2 and k = 3 are equivalent and their monotone path polytope is depicted in Figure 60: it has
33 vertices, 52 edges, and 21 faces (5 octagons and 16 squares).
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Figure 59: (Left) The (4, 2)-hypersimplex lives in the hyperplane {x ;
∑4

i=1 xi = 2} inside R4.
(Right) The monotone path polytope M(4, 2) is an octagon, each vertex of which is labelled by
the corresponding monotone path (drawn on ∆(4, 2)).
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Figure 60: The monotone path polytope M(5, 2) of the hypersimplex ∆(5, 2). This hypersimplex is
linearly equivalent to ∆(5, 3). As ∆(5, 2) has 5 facets linearly equivalent to ∆(4, 2), its monotone
path polytope M(5, 2) has 5 facets which are isomorphic to M(4, 2) i.e. octagons.
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Figure 61: (Top) For the given c and ω, the hypersimplex ∆(5, 2) is projected the 10 points
drawn, where each vertex of ∆(5, 2) is indicated by its support. The coherent path P captured
is drawn in blue. (Bottom) P corresponds to the diagonal-avoiding path depicted on the right,
while associating P to lattice points (x, y) with x < y give the bottom left figure.
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4.2.2 A necessary criterion for coherent paths on ∆(n, k)

Even if Proposition 4.20 gives an efficient criterion for determining which monotone path a given ω
does capture, the question we want to answer is the converse one: how to characterize the coherent
paths on the hypersimplex? In this section, we present a necessary criterion for a monotone path
to be coherent, and in the next one, we prove this criterion is sufficient in the case of the (n, 2)-
hypersimplices (but not sufficient in general).

Theorem 4.24. If path P is coherent, then for all couples of enhanced steps i
A−→ j ≺ x

Z−→ y with
x < j, one has j ∈ Z or x ∈ A.

Before proving this criterion, we will introduce a simple but powerful lemma. In essence, this
lemma states that there exist only two kinds of triangles in the plane: upwards pointing ones △
and downwards pointing ones ∇. This lemma is equivalent to Lemma 3.5, but we give it here
again to make the section self contained.

Lemma 4.25. For three points in the plane (x1, y1), (x2, y2) and (x3, y3) with x1 < x2 < x3,
denote the slopes τ(1, 2) = y2−y1

x2−x1
, τ(2, 3) = y3−y2

x3−x2
and τ(1, 3) = y3−y1

x3−x1
. Then τ(1, 3) is a convex

combination of the slopes τ(1, 2) and τ(2, 3). In particular, if τ(1, 2) < τ(1, 3), then τ(1, 3) <
τ(2, 3) (and conversely if τ(1, 2) > τ(1, 3), then τ(1, 3) > τ(2, 3)).

Proof. One has the convex combination: τ(1, 3) = x2−x1

x3−x1
τ(1, 2) + x3−x2

x3−x1
τ(2, 3)

Proof of Theorem 4.24. Suppose i
A−→ j ≺ x

Z−→ y ∈ S(P ) with x < j (so cx < cj), j /∈ Z and
x /∈ A. Fix ω ∈ Rn that captures P . Then consider v1, v2 with s(v1) = A∪ {i}, s(v2) = A∪ {j},
and v3, v4 with s(v3) = Z ∪ {x}, s(v4) = Z ∪ {y}, see Figure 62. These are 4 vertices of ∆(n, k)
in the path P . Abusing notation, we write τω(u,v) instead of τω

(
s(u), s(v)

)
when the context is

clear.
As x /∈ A, there exists u1 ∈ V (∆(n, k)) with s(u1) = A ∪ {x}, thus v2 is an improving

neighbor of u1. As j /∈ Z, there exists u2 ∈ V (∆(n, k)) with s(u2) = Z ∪ {j}, thus u2 is an
improving neighbor of v3. First observe that, τω

(
v1,u1

)
< τω

(
v1,v2

)
by Proposition 4.20, thus

τω
(
u1,v2

)
> τω

(
v1,v2

)
by Lemma 4.25 applied in the triangle πω(v1), πω(v2), πω(u1). Moreover,

τω
(
v3,u2

)
< τω

(
v3,v4

)
by Proposition 4.20. As πω(P ) is convex: τω

(
v1,v2

)
> τω

(
v3,v4

)

because the second step comes later in the path. But then: τω
(
u1,v2

)
< τω

(
v3,u2

)
, while in the

meantime: τω
(
u1,v2

)
=

ωj−ωx

cj−cx
= τω

(
v3,u2

)
. This contradiction proves the theorem.

4.2.3 Sufficiency of this criterion in the case ∆(n, 2)

We are going to prove that for ∆(n, 2), the criterion of Theorem 4.24 is actually sufficient. To this
end, we want to associate monotone paths on ∆(n, k) with some lattice paths on the integer grid
[n]k. A first idea to do so would be to associate to each vertex vi in the path P = (v1, . . .vr) a
point ℓi = (ℓi,1, . . . , ℓi,k) ∈ [n]k satisfying {ℓi,1, . . . , ℓi,k} = s(vi). This leaves k! possible choices
for ℓi. Even though a natural choice would be to impose ℓi,1 < · · · < ℓi,k, we will prefer another
one. Indeed, as vi and vi+1 form an edge of ∆(n, k), there is only one index differing between
s(vi) and s(vi+1), so we will impose that ℓi and ℓi+1 differ at only one coordinate.

Although this idea allows us to embed our problem into the realm of lattice paths, it has for
drawback to associate k! different lattice points to a same vertex, see Figure 61(Bottom).

Definition 4.26. A diagonal-avoiding lattice path L = (ℓ1, . . . , ℓr) of size n and dimension k is an
ordered list of points ℓi ∈ [n]k such that:

• ℓ1 = (k, k − 1, . . . , 1);

• ℓr = (ℓr,1, . . . , ℓr,k) with {ℓr,1, . . . , ℓr,k} = {n− k + 1, . . . , n};

• for all i ∈ [r], ℓi,p ̸= ℓi,q for all p, q ∈ [k] with p ̸= q;
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•
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•

•

•
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•

s(v1) = A ∪ {i} s(v2) = A ∪ {j}

s(v3) = Z ∪ {x} s(v4) = Z ∪ {y}

s(u1) = A ∪ {x} s(u2) = Z ∪ {j}

Figure 62: Dotted slopes shall be both equal to
ωj−ωx

cj−cx
: this is impossible if πω(u1) and πω(u2) are

below πω(P ), thus either u1 or u2 is not a vertex of ∆(n, k) (i.e. |s(u1)| ≤ k−1 or |s(u2)| ≤ k−1).

• for all i ∈ [r− 1], there exists a p ∈ [k] such that ℓi,p < ℓi+1,p, and ℓi,q = ℓi+1,q for all q ̸= p.

The i-th enhanced step of L is denoted ℓi,p
Z−→ ℓi+1,p with Z = {ℓi,q ; q ̸= p}.

The ordered list of enhanced steps of L is denoted S(L). The length of L is r.

To a path P = (v1, . . .vr) on ∆(n, k), one can associate a diagonal-avoiding lattice path
L (P ) =

(
ℓ1, . . . , ℓr

)
of size n and dimension k defined by S(L (P )) = S(P ), see Figure 63.

Proposition 4.27. The map P 7→ L (P ) is a bijection from monotone paths on ∆(n, k) to diagonal-
avoiding lattice paths of size n and dimension k.

Proof. Fix a monotone path P on ∆(n, k). Starting at ℓ1 = (k, k − 1, . . . , 1), the lattice path
L (P ) = (ℓ1, . . . , ℓi, . . . , ℓr) can be defined by induction on i. Indeed, denote by L (P )≤i =
(ℓ1, . . . , ℓi), and suppose that for a fixed i: {ℓj,1, . . . , ℓj,k} = s(vj) for all j ≤ i, and the enhanced
steps of L (P )≤i are the (i − 1) first enhanced steps of P . Consider the i-th enhanced step

of P , say x
Z−→ y. As {ℓi,1, . . . , ℓi,k} = s(vj), there exists p ∈ [k] such that ℓi,p = x, and

{ℓi,1, . . . , ℓi,k} ∖ {ℓi,p} = Z. By setting ℓi+1 with ℓi+1,q = ℓi,q for q ̸= p, and ℓi+1,p = y, we
construct L (P )≤i+1 that fulfills the induction hypothesis. Hence, we can define L (P ) such
that S(L (P )) = S(P ). By induction, L (P ) satisfies that {ℓi,1, . . . , ℓi,k} = s(vi). Moreover, as
|s(vi)| = k, we know that ℓi,p ̸= ℓi,q for all p ̸= q. Consequently, as s(vi) and s(vi+1) differ by
only one element, L (P ) is a diagonal-avoiding path.

As P 7→ S(P ) is injective, it is immediate that P 7→ L (P ) is also injective.
Finally, for all diagonal-avoiding paths L = (ℓ1, . . . , ℓr), one can construct by induction an

ordered list of vertices PL = (v1, . . . ,vr) by taking vi =
∑

j∈ℓi
ej . Such a path PL is a monotone

path on ∆(n, k) thanks to the properties of diagonal-avoiding paths. Moreover, as S(PL) = S(L),
the map L 7→ PL is the reciprocal of P 7→ L (P ).

Remark 4.28. It is straightforward to see that the length of P , i.e. the number of vertices contained
in P , equals the length of L (P ), i.e. the number of lattice points contained in L (P ).

Example 4.29. For size n = 3, there are 2 diagonal-avoiding paths, one of length 1 and one of
length 2. As seen in Example 4.21, all of them are images (by L ) of coherent paths on the simplex
∆(3, 2).
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S(P ) =
(
2

1−→ 4, 1
4−→ 5, 4

5−→ 6, 6
5−→ 7, 7

5−→ 8, 5
8−→ 7
)

Figure 63: The lattice path associated to the ordered list of enhanced steps given on Top. It has
size 8, dimension 2 and length 6.

For size n = 4, there are 10 diagonal-avoiding paths, see Figure 64. As seen in Example 4.22,
8 of them are images (by L ) of coherent paths on ∆(4, 2), while 2 come from monotone but not
coherent paths on ∆(4, 2).

To ease notation, for an enhanced step of a path P on ∆(n, 2) or enhanced steps of diagonal-

avoiding lattice paths of dimension 2, we will write i
a−→ j instead of i

{a}−−→ j. We will now
study diagonal-avoiding paths of dimension 2. In particular, we will show that coherent monotone
paths on ∆(n, 2) are associated with a certain family of diagonal-avoiding lattice paths, and that
this family respects an induction process (which is cumbersome but powerful). To describe this
induction process for our family, we need the notion of restriction of diagonal-avoiding lattice
paths, which consists in shrinking the lattice grid [n]2: suppose given a diagonal-avoiding lattice
path on [n+1]2, then erase the points of [n+1]2∖ [n]2 ; the path obtained on [n]2 will probably not
end at the right spot, but you can complete it to mimic the path you started with. The following
definition formalizes this idea.

Definition 4.30. The restriction of a diagonal-avoiding lattice path L = (ℓ1, . . . , ℓr) of size n + 1
and dimension 2 is the diagonal-avoiding lattice path L′ = (ℓ′1, . . . , ℓ

′
s) of size n and dimension 2

defined by:

1. First, for all i ∈ [r] define ℓ′i,p =

{
ℓi,p if ℓi,p ̸= n+ 1
n else

(for p ∈ {1, 2}) with s = r,

2. Next, as ℓ′r = (n, n): if ℓ′r−1 = (x, n) then set ℓ′r = (n− 1, n), whereas if ℓ′r−1 = (n, x) then
set ℓ′r = (n, n− 1);

3. Finally, if ℓ′i = ℓ′i+1, then discard ℓ′i+1 (and keep discarding until no doubles remain).

Even though this definition seems convoluted, it has a very straightforward illustration, see
Figure 65: as explained before, draw the path L on the (n+1)× (n+1) grid, then L′ is obtained

by first restricting L to the n× n grid, then mimicking the steps i
n+1−−−→ j of L by introducing the

steps i
n−→ j in L′ (and slightly modifying L′ to make it diagonal-avoiding).
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Figure 64: All 10 diagonal-avoiding lattice paths of size 4 and dimension 2, sorted by size.
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Figure 65: The restriction of L to L′ restrict its enhanced steps from S(L) =
(
2

1−→ 4, 1
4−→ 2, 4

2−→
n + 1, 2

n+1−−−→ 4, 4
n+1−−−→ 5, 5

n+1−−−→ n
)
to S(L′) =

(
2

1−→ 4, 1
4−→ 2, 4

2−→ n, 2
n−→ 4, 4

n−→ 5, 5
n−→

n− 1
)
.

130



We can now introduce the main object of this section:

Definition 4.31. A diagonal-avoiding lattice path L of dimension 2 is said to be a coherent lattice
path if for all couples of enhanced steps i

a−→ j ≺ x
z−→ y with x < j, we have j = z or x = a.

Now, we will study the set of coherent lattice paths of size n. First, we will prove that such
lattice paths can be constructed inductively. Then, we will show that the bijection P 7→ L (P )
(between monotone paths and diagonal-avoiding paths) bijectively sends coherent paths on ∆(n, 2)
to coherent lattice paths. Finally, our inductive construction will allow us to count the number of
coherent paths on ∆(n, 2).

Theorem 4.32. For n ≥ 3, let L be a coherent lattice path of size n+1 and L′ its restriction of size
n. Then L′ is coherent and L can be reconstructed from L′ as it belongs to one of these (mutually
exclusive) 12 cases:

(i) if L′ ends by a step x
n−1−−−→ n with x < n− 1, then denote S ′ = S(L′)∖ {x n−1−−−→ n}. One of

the following holds (see Figure 66):

(a) S(L) = S(L′) ∪ {n− 1
n−→ n+ 1}

(b) S(L) = S(L′) ∪ {n n−1−−−→ n+ 1, n− 1
n+1−−−→ n}

(c) S(L) = S ′ ∪ {x n−1−−−→ n+ 1, n− 1
n+1−−−→ n}

(ii) if L′ ends by steps x
y1−→ n, y1

n−→ y2, . . . , ym−1
n−→ ym with x < n− 1, m ≥ 3 and y1 < · · · <

ym = n − 1, then denote S ′ = S(L′) ∖ {x y1−→ n, y1
n−→ y2, . . . , ym−1

n−→ ym}. One of the
following holds (see Figure 67):

(a) S(L) = S(L′) ∪ {n− 1
n−→ n+ 1}

(b) S(L) =
(
S(L′)∖ {ym−1

n−→ n− 1}
)
∪ {ym−1

n−→ n+ 1}
(c) S(L) = S ′ ∪ {x y1−→ n+ 1, y1

n+1−−−→ y2, . . . , ym−1
n+1−−−→ n− 1, n− 1

n+1−−−→ n}
(d) S(L) = S ′ ∪ {x y1−→ n+ 1, y1

n+1−−−→ y2, . . . , ym−1
n+1−−−→ n}

(iii) if L′ ends by steps x
y−→ n, y

n−→ n − 1 with x < n and y < n − 1, then denote S ′ =

S(L′)∖ {x y−→ n, y
n−→ n− 1}. One of the following holds (see Figure 68):

(a) S(L) = S(L′) ∪ {n− 1
n−→ n+ 1}

(b) S(L) =
(
S(L′)∖ {y n−→ n− 1}

)
∪ {y n−→ n+ 1}

(c) S(L) =
(
S(L′)∖ {y n−→ n− 1}

)
∪ {n y−→ n+ 1, y

n+1−−−→ n}
(d) S(L) = S ′ ∪ {x y−→ n+ 1, y

n+1−−−→ n− 1, n− 1
n+1−−−→ n}

(e) S(L) = S ′ ∪ {x y−→ n+ 1, y
n+1−−−→ n}

Proof. Observe first that if L is a coherent lattice path of size n+ 1, then its restriction L′ of size
n is also coherent. Indeed, if i

a−→ j ≺ x
z−→ y ∈ S(L′) with x < j, then the following two properties

hold:
• either i

a−→ j ∈ S(L), or i a−→ n+ 1 ∈ S(L) and j = n;

• either x
z−→ y ∈ S(L), or x

z−→ n + 1 ∈ S(L) and y = n, or x
n+1−−−→ y′ ∈ S(L) and z = n and

y′ ∈ {y, n}.
As L is coherent, this implies x = a or j = z in all cases except if i

a−→ j ∈ S(L) with j = n and

x
n+1−−−→ y ∈ S(L) with x > a. But in the latter, x > a > j and x ̸= a, j ̸= n+ 1, contradicting the

coherence of L.
Now, we first prove that all 12 cases lead to coherent paths, and then that there is no other

coherent path of size n+ 1.

131



x . . . n n+ 1

...

n− 1

n

n+ 1

•

•

•

•

•

•

•

•

•

•

•

•

× × × ×

×

×

×

×

• •

×

x . . . n n+ 1

...

n− 1

n

n+ 1

•

•

•

•

•

•

•

•

•

•

•

•

× × × ×

×

×

×

×

• • ×

×

x . . . n n+ 1

...

n− 1

n

n+ 1

•

•

•

•

•

•

•

•

•

•

•

•

× × × ×

×

×

×

×

• ×

×

Figure 66: All 3 paths of size n+ 1 that restrict to a path of size n of type (i) in Theorem 4.32.
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Figure 67: All 4 paths of size n+ 1 that restrict to a path of size n of type (ii) in Theorem 4.32.
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Figure 68: All 5 paths of size n+ 1 that restrict to a path of size n of type (iii) in Theorem 4.32.
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We say that i
a−→ j ≺ x

z−→ y are mutually coherent if x ≥ j, or if x < j and j = z or x = a.
Case (i)(a), (ii)(a) and (iii)(a) If i

a−→ j ∈ S(L′) satisfies n − 1 < j, then j = n so adding

n− 1
n−→ n+ 1 to S(L′) does not infringe coherence.

Case (i)(b) n
n−1−−−→ n+1 and n−1

n+1−−−→ n are mutually coherent, and if i
a−→ j ∈ S(L′) satisfies

n− 1 < j, then j = n and a = n− 1, so i
a−→ j is mutually coherent with both n

n−1−−−→ n+ 1 and

n− 1
n+1−−−→ n.

Case (i)(c) and (iii)(e) x
y−→ n+1 and y

n+1−−−→ n are mutually coherent, and if i
a−→ j ∈ S′ then

j ≤ y, so i
a−→ j is mutually coherent with both x

y−→ n+ 1 and y
n+1−−−→ n.

Case (ii)(b) and (iii)(b) Changing the endpoint of the last enhanced step doesn’t interfere with
mutual coherence (with previous steps).

Case (ii)(c) and (ii)(d) For p ∈ [m−1], x
y1−→ n+1 and yp

n+1−−−→ yp+1 are mutually coherent as

x
y1−→ n and yp

n−→ yp+1 are in S(L′); if i
a−→ j ∈ S ′, then j ≤ max{x, y1} ≤ n− 1 and thus i

a−→ j is

mutually coherent with yp
n+1−−−→ yp+1, and mutually coherent with x

y1−→ n+1 as x
y1−→ n ∈ S(L′).

Case (iii)(d) The above argument applies here, replacing y1 by y.

Case (iii)(c) The steps x
y−→ n, n

y−→ n + 1 and y
n+1−−−→ n are mutually coherent, and if

i
a−→ j ∈ S(L′)∖ {y n−→ n− 1}, then the above argument again applies.

Finally, we prove that there exists no other coherent paths of size n+ 1.

Case (i) If the last step of L′ is x
n−1−−−→ n, then the 3 claimed L are the only diagonal-avoiding

lattice paths whose restriction is L′ (as lattice paths must be North-East increasing).

Case (ii) If L restrict to L′ whose last steps are x
y1−→ n, y1

n−→ y2, . . . , ym−1
n−→ ym with

x < n− 1, m ≥ 3 and y1 < · · · < ym = n− 1, then consider the last step of the form i
a−→ n+ 1 in

L. Either a = n and L is necessarily in cases (a) or (b); or (i, a) ∈ {(x, y1)} ∪ {(n, yp)}p∈[m]. The
first possibility leads necessarily to cases (c) and (d), while the latest lead to non-coherent paths,

as x
y1−→ n would be in L and is not mutually coherent with yp

n+1−−−→ yp+1 for p ≥ 2.

Case (iii) If the last steps of L′ are x
n−1−−−→ n and y

n−→ n−1, then there are 6 diagonal-avoiding

lattice paths whose restriction is L′ (as lattice paths must be North-East increasing). The only non-

coherent one is given by S(L) =
(
S(L′)∖{y n−→ n−1}

)
∪{n y−→ n+1, y

n+1−−−→ n−1, n−1
n+1−−−→ n},

which is not coherent as n
y−→ n+1 and n−1

n+1−−−→ n are not mutually coherent (as y < n−1).

Now that we know how to inductively construct all coherent lattice paths, we are able to prove
the reciprocal of Theorem 4.24. The proof of the following theorem will be cumbersome but not
difficult: for each 12 cases of Theorem 4.32, we are going to exhibit a vector ω that captures it.

Theorem 4.33. Coherent paths on ∆(n, 2) are in bijection with coherent lattice paths of size n.

Proof. Theorem 4.24 proves that the application L sends injectively coherent paths on ∆(n, 2)
to coherent lattice paths of size n. We now prove the converse: if L is a coherent lattice path of
size n, then there exists a coherent path P on ∆(n, 2) such that L (P ) = L. To this end, we will
use the induction process of Theorem 4.32. Thanks to Example 4.29, we know that all coherent
lattice paths of size 3 and 4 are coherent paths on ∆(3, 2) and ∆(4, 2). We are going to prove that
if L′ = L (P ′) for L′ a coherent lattice path of size n, then for all coherent path L of size n + 1
such that L restrict to L′ (i.e. in all 12 cases of Theorem 4.32), we can find a coherent path P on
∆(n+ 1, 2) such that L = L (P ).

Let L′ be a coherent lattice path of size n such that L′ = L (P ′) where P ′ is a coherent path
and ω′ ∈ Rn captures P ′. We are going to find ωn+1 such that ω := (ω′

1, . . . , ω
′
n, ωn+1) ∈ Rn+1

captures a path P with L (P ) = L (in some cases, we will also modify ωn slightly). We denote
τω(i → j) =

ωj−ωi

cj−ci
as usual. As we will focus the behavior of the points (ci + cj , ωi + ω+j) for

(i, j) ∈ L, in order to ease notation, we say“the point (i, j)” instead of “the point (ci+cj , ωi+ωj)”.
We will distinguish three cases following the main cases of Theorem 4.32.
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Case (i) Suppose the last step of L′ is x
n−1−−−→ n with x < n−1. Remark that for i /∈ {x, n−1, n}:

τω(n− 1 → n) < τω(x → n) < τω(i → n)

Indeed, the first inequality comes directly from the last step of L′: if the inequality were reversed,
the last step would have been n− 1

x−→ n instead. The second inequality follows from Lemma 4.25
applied to the triangle (x, n− 1), (i, n− 1), (n, n− 1).

Note first that, for i < n, if ωn+1 satisfies that τω(n → n + 1) < τω(i → n), then there can

not be a step i
a−→ n + 1 in S(P ) as τω(i → n + 1) < τω(i → n) by Lemma 4.25, thus the points

associated to (i, n+ 1) are all below the path P ′ and do not belong to P . As τω(n → n+ 1) is a
continuous increasing function of ωn+1, this gives three regimes.

Case (i)(a): To obtain P with L (P ) of form (i)(a) in Theorem 4.32, choose ωn+1 small enough
to satisfy τω(n → n + 1) < τω(n − 1 → n), then the path P captured by ω has S(P ′) ⊂ S(P )

by the above, and n − 1
n−→ n + 1 ∈ S(P ) by applying Lemma 4.25 in the triangle (n, n − 1),

(n− 1, n+ 1), (n, n+ 1).
Case (i)(b): To obtain P with L (P ) of form (i)(b) in Theorem 4.32, choose ωn+1 to satisfy

τω(n− 1 → n) < τω(n → n+ 1) < τω(x → n), then the path P captured by ω has S(P ′) ⊂ S(P )

by the above, and n
n−1−−−→ n+ 1 ∈ S(P ) and n− 1

n+1−−−→ n ∈ S(P ) by applying Lemma 4.25 to the
triangle (n, n− 1), (n− 1, n+ 1), (n, n+ 1).

Case (i)(c): To obtain P with L (P ) of form (i)(c) in Theorem 4.32, choose ωn+1 to satisfy
τω(x → n) < τω(n → n + 1) < mini/∈{x,n} τω(i → n), then the path P captured by ω has

S(P ′)∖ {x n−1−−−→ n} ⊂ S(P ) by the above, and x
n−1−−−→ n+ 1 ∈ S(P ) and n− 1

n+1−−−→ n ∈ S(P ).
We have shown that if L′ is in the case (i), then all the paths L that restrict to L′ are of the

form L = L (P ) for some coherent P .

Case (ii) Suppose the last steps of L′ are x
y1−→ n, y1

n−→ y2, . . . , ym−1
n−→ n − 1 with m ≥ 3.

Then for all i /∈ {x, y1, n}, by the same argument as before:

τω(ym−1 → n− 1) < τω(ym−2 → ym−1) < · · · < τω(y1 → y2) < τω(x → n) < τω(i → n)

We distinguish three regimes.
Case (ii)(a): To obtain P with L (P ) of form (ii)(a) in Theorem 4.32, choose ωn+1 small

enough to satisfy τω(n → n + 1) < τω(ym−1 → n − 1), then the path P captured by ω has

S(P ′) ⊂ S(P ), and n − 1
n−→ n + 1 ∈ S(P ) by applying Lemma 4.25 to the triangle (n, n − 1),

(n− 1, n+ 1) and (n, n+ 1).
Case (ii)(b): To obtain P with L (P ) of form (ii)(b) in Theorem 4.32, choose ωn+1 to satisfy

τω(ym−1 → n − 1) < τω(n → n + 1) < τω(ym−2 → ym−1), then the path P captured by ω has

S(P ′)∖{ym−1
n−→ n−1} ⊂ S(P ), and ym−1

n−→ n+1 ∈ S(P ) because applying Lemma 4.25 to the
triangle (ym−1, n), (n, n− 1) and (n− 1, n+1) gives that τω(n− 1 → n+1) < τω(n− 1 → n), and
applying it to (ym−1, n), (ym−1, n+1) and (n, n+1) gives that τω(ym−1 → n+1) > τω(n → n+1).

Case (ii)(d): To obtain P with L (P ) of form (ii)(d) in Theorem 4.32, choose ωn+1 to satisfy
τω(x → n) < τω(n → n + 1) < mini/∈{x,n} τω(i → n), then the path P captured by ω has
S ′ ⊂ S(P ), and by applying Lemma 4.25 to the triangle (x, y1), (n, y1) and (n + 1, y1), one gets

that x
y1−→ n+1 ∈ S(P ). Moreover, the projected path

(
(n+1, y1), (n+1, y2), . . . , (n+1, ym−1), (n+

1, n− 1)
)
is parallel and higher than the projected path

(
(n, y1), (n, y2), . . . , (n, ym−1), (n, n− 1)

)
,

thus yi
n+1−−−→ yi+1 ∈ S(P ) for i ∈ [1,m− 2]. As τω(ym−1 → n− 1) < τω(x → n) ≤ τω(n− 1 → n)

in P ′, Lemma 4.25 ensures that ym−1
n+1−−−→ n ∈ S(P ).

Case (ii)(c): To obtain P with L (P ) of form (ii)(c) in Theorem 4.32, note that in the previous
sub-case there is no point (i, n) in P except from (n, n+1). So lowering the value of ωn (with the
same fixed ωn+1 as in the previous sub-case) will not affect the path except in the last triangle
(ym−1, n + 1), (n − 1, n + 1), (n, n + 1). Taking ωn low enough to satisfy τω(ym−1 → n − 1) >

τω(n − 1 → n), we obtain a path P̃ with S(P ) ∖ {ym−1
n+1−−−→ n} ⊂ S(P̃ ) and {ym−1

n+1−−−→
n− 1, n− 1

n+1−−−→ n} ∈ S(P̃ ).
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Case (iii) Suppose that the last steps of L′ are x
n−→ y, y

n−→ n− 1. Then for i /∈ {x, y, n}:

τω(y → n− 1) < τω(y → n) < τω(x → n) < τω(i → n)

Indeed, τω(y → n) < τω(x → n) otherwise x
y−→ n /∈ S(P ′), and τω(y → n − 1) < τω(y → n)

as already τω(y → n− 1) < τω(n− 1 → n).
Case (iii)(a): To obtain P with L (P ) of form (iii)(a) in Theorem 4.32, choose ωn+1 small

enough to satisfy τω(n → n+1) < τω(y → n− 1), then S(P ′) ⊂ S(P ) and n− 1
n−→ n+1 ∈ S(P ).

Case (iii)(b): To obtain P with L (P ) of form (iii)(b) in Theorem 4.32, choose ωn+1 to satisfy

τω(y → n − 1) < τω(n → n + 1) < τω(y → n), then S(P ′) ∖ {y n−→ n − 1} ⊂ S(P ), and as

τω(n → n+ 1) < τω(y → n), Lemma 4.25 ensures y
n−→ n+ 1 ∈ S(P ).

Case (iii)(c): To obtain P with L (P ) of form (iii)(c) in Theorem 4.32, choose ωn+1 to

satisfy τω(y → n) < τω(n → n + 1) < τω(x → n), then S(P ′) ∖ {y n−→ n − 1} ⊂ S(P ), and as

τω(n → n+ 1) > τω(y → n), Lemma 4.25 ensures {n y−→ n+ 1, y
n+1−−−→ n} ⊂ S(P ).

Case (iii)(e): To obtain P with L (P ) of form (iii)(e) in Theorem 4.32, choose ωn+1 to satisfy

τω(x → n) < τω(n → n + 1) < mini/∈{x,n} τω(i → n), then S ′ ∪ {x y−→ n + 1} ⊂ S(P ), and

y
n−→ n+ 1 ∈ S(P ) as τω(y → n− 1) < τω(n− 1 → n).
Case (iii)(d): To obtain P with L (P ) of form (iii)(d) in Theorem 4.32, from the previous

value of ωn+1, we lower the value of ωn until τω(y → n− 1) > τω(n− 1 → n). As no other point

of the form (i, n) belongs to P , this new ω captures a path P̃ with S(P ) ∖ {y n+1−−−→ n} ⊂ S(P̃ )

and {y n+1−−−→ n− 1, n− 1
n+1−−−→ n} ⊂ S(P̃ ).

We have proven that in all 12 cases, if the restriction of L is the image by L of a coherent
path on ∆(n − 1, 2), then L is the image by L of a coherent path on ∆(n, 2). This shows the
surjectivity of L .

4.2.4 Counting the number of coherent monotone paths on ∆(n, 2)

The induction process of Theorem 4.32 allows us to count precisely the number of coherent lattice
paths, which is the number of vertices of M(n, 2) thanks to Theorem 4.33.

Let tn be the number of coherent paths L of size n such that the last step of L is x
n−1−−−→ n

(i.e. of type (i) in Theorem 4.32). Let qn be the number of these finishing by steps x
y1−→ n, y1

n−→
y2, . . . , ym−1

n−→ n − 1 with m ≥ 3 (i.e. of type (ii) in Theorem 4.32). Let cn be the number of

these finishing by x
y−→ n, y

n−→ n− 1 (i.e. of type (iii) in Theorem 4.32).
Observing the induction process of Theorem 4.32 gives the following:

Proposition 4.34. The sequences tn, qn and cn satisfy the following recursive formula:

∀n ≥ 4,



tn+1

qn+1

cn+1


 = M



tn
qn
cn


 with M =



1 2 2
0 2 1
2 0 2


 and



t4
q4
c4


 =



3
1
4




Proof. The values for t4, q4 and c4 follow from Example 4.29.
Looking at the induction process in Theorem 4.32, for each case (i)(a) to (iii)(e), one can

identify if the created coherent path of size n + 1 is of the type of case (i), (ii) or (iii). For

example, if L′ of size n ends by a step x
n−1−−−→ n, then there are three L of size n+ 1 that restrict

to L′: in case (i)(a), L ends with y
n−→ n+ 1 (with y = n− 1) so it belongs to type (i). The case

analysis is summarized in the following table:

(a) (b) (c) (d) (e)
(i) (i) (iii) (iii)
(ii) (i) (i) (ii) (ii)
(iii) (i) (i) (iii) (ii) (iii)

Reading off the table gives the matrix M .
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Theorem 4.35. For n ≥ 4, there are 1
3

(
25× 4n−4 − 1

)
coherent paths of size n.

Proof. By definition, the total number of coherent paths of size n is tn + qn + cn.
A quick analysis of M shows that Sp(M) = {0, 1, 4} with (2,−2,−1)M = (0, 0, 0). Thus

for all n: 2tn = 2qn + cn. It follows that if cn = tn + 1, then tn = 2qn + 1 and thus cn+1 =
2tn + 2cn = tn + 2qn + 2cn + 1 = tn+1 + 1. By induction: ∀n ≥ 4, cn = tn + 1. This gives:
tn+1 + qn+1 + cn+1 = 4(tn + qn + cn) + 1

With t4 + q4 + c4 = 8, this recursive formula gives the number of coherent paths of size n.

This formula solves the question we started with: determine the vertices of M(n, 2) and count
them. Notwithstanding, one can go even further in the analysis of the induction process. Let tn,ℓ

be the number of coherent path of size n and length ℓ that end with a step x
n−1−−−→ n and let

qn,ℓ, cn,ℓ be the counterparts for the two other main cases of the induction. Let Tn =
∑

ℓ tn,ℓz
ℓ,

Qn =
∑

ℓ qn,ℓz
ℓ and Cn =

∑
ℓ cn,ℓz

ℓ be the associated generating polynomials, then observing
Theorem 4.32 gives the following:

Proposition 4.36. The sequences of polynomials Tn, Qn and Cn satisfy the following recursive
formula:

∀n ≥ 4,



Tn+1

Qn+1

Cn+1


 = M



Tn

Qn

Cn


 with M =




z 1 + z 1 + z
0 1 + z z

z + z2 0 1 + z


 ,



T4

Q4

C4


 =




z4 + 2z3

z4

2z4 + 2z3




Remark 4.37. Note that evaluating the previous relation at z = 1 gives back Proposition 4.34.

Proof of Proposition 4.36. The values for T4, Q4 and C4 have been explored in Example 4.29.
Looking at the induction process, for each case (i)(a) to (iii)(e), one can identify the length of

the created coherent path of size n + 1. For example, if L′ of size n and length ℓ ends by a step

x
n−1−−−→ n, then there are three L of size n + 1 that restricts to L′: in case (i)(a), L contains 1

step more than L′ so it has length ℓ+ 1. The case analysis is summarized in the following table,
assuming the restricted path is of length ℓ:

(a) (b) (c) (d) (e)
(i) ℓ+ 1 ℓ+ 2 ℓ+ 1
(ii) ℓ+ 1 ℓ ℓ+ 1 ℓ
(iii) ℓ+ 1 ℓ ℓ+ 1 ℓ+ 1 ℓ

Reading off this table together with the one of the proof of Proposition 4.34 yields M.

The matrix M (over the polynomial ring) has three eigenvalues λ0 = 0, λ+ = 1 + 3
2z +

1
2z

√
4z + 5, and λ− = 1 + 3

2z − 1
2z

√
4z + 5 with associated (left) eigenvectors:

x0 =
(−1 1 1

1+z

)
, x+ =

(
1

√
4z+5−1
2z

z
√
4z+5+z+2
2(z2+z)

)
, x− =

(
1 −

√
4z+5+1
2z

−z
√
4z+5+z+2
2(z2+z)

)

Unfortunately, the square roots in the eigenvalues and eigenvectors make it very difficult to
derive an explicit formula as simple as in Theorem 4.35, but we can prove two very interesting
properties on the number of coherent paths of a given length.

Theorem 4.38. For a fixed size n with n ≥ 4, the longest coherent path of size n is of length
ℓmax =

⌊
3
2 (n− 1)

⌋
. The number of coherent paths of size n and length ℓmax is 1 if n is odd, and⌊

3
2 (n− 1)

⌋
if n is even.

Proof. We will prove by induction the slightly stronger following statement on the degrees and
leading coefficients of Tn, Qn and Cn. Denote νn =

⌊
3
2 (n− 1)

⌋
:

{
if n odd, Tn = (νn − 2)zνn−1 + o(zνn−1), Qn = O(zνn−1), Cn = zνn + o(zνn)
if n even, Tn = zνn + o(zνn), Qn = zνn + o(zνn), Cn = (νn − 2)zνn + o(zνn)
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This statement holds for n = 4 as ν4 = 4, T4 = z4 + o(z4), Q4 = z4 and C4 = 2z4 + o(z4).
Now, it is just a matter of multiplying by M. Suppose n is odd and the statement holds, then:

Tn+1 = zTn + (1 + z)Qn + (1 + z)Cn

= O(zνn) +O(zνn) + zνn+1 + o(zνn+1)
= zνn+1 + o(zνn+1) as νn+1 = νn + 1

Qn+1 = (1 + z)Qn + zCn

= O(zνn) + zνn+1 + o(zνn+1)
= zνn+1 + o(zνn+1) as νn+1 = νn + 1

Cn+1 = (z2 + z)Tn + (1 + z)Cn

= (νn − 2)zνn+1 + o(zνn+1) + zνn+1 + o(zνn+1)
= (νn+1 − 2)zνn+1 + o(zνn+1) as νn+1 = νn + 1

Suppose n is even, and the statement holds, then:

Tn+1 = zTn + (1 + z)Qn + (1 + z)Cn

= zνn+1 + zνn+1 + (νn − 2)zνn+1 + o(zνn+1)
= (νn+1 − 2)zνn+1−1 + o(zνn+1−1) as νn+1 = νn + 2

Qn+1 = (1 + z)Qn + zCn

= O(zνn+1) +O(zνn+1)
= O(zνn+1−1) as νn+1 = νn + 2

Cn+1 = (z2 + z)Tn + (1 + z)Cn

= zνn+2 + o(zνn+2) +O(zνn+1)
= zνn+1 + o(zνn+1) as νn+1 = νn + 2

Thus, by induction the polynomial Tn +Qn + Cn has degree νn and leading coefficient 1 if n
is odd, and νn if n is even, which proves the theorem.

Theorem 4.39. For a fixed length ℓ, the number of coherent paths of size n ≥
⌈
2
3ℓ+ 1

⌉
is a

polynomial in n of degree ℓ− 3.

Proof. Let vn,ℓ be the total number of coherent paths of size n and length ℓ, then Vn =
∑

ℓ vn,ℓz
ℓ =

Tn +Qn + Cn. We can compute Vn thanks to the powers of M:

Vn+4 =
(
1 1 1

)
Mn



T4

Q4

C4




With the eigenvalues and eigenvectors given above, one can compute:

Vn+4 =
λn
+ − λn

−√
4z + 5

z5 +

(
2(λn

+ + λn
−) + 6

λn
+ − λn

−√
4z + 5

)
(z4 + z3)

Note that as λ+ and λ− depend on z. Indeed:

λn
+ − λn

−√
4z + 5

=
∑

k

(
n

2k + 1

)(
1 +

3

2
z

)n−(2k+1)(
5

4
+ z

)k

z2k+1

and

λn
+ + λn

− = 2
∑

k

(
n

2k

)(
1 +

3

2
z

)n−2k (
5

4
+ z

)k

z2k
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Not only they are polynomials in z (which was expected as Vn is a polynomial by definition),
but we can investigate their coefficients. It allows us to re-write:

Vn+4 =
∑

(a,b,c)∈N3

αn,a,b,c

(
1 +

3

2
z

)a(
5

4
+ z

)b

zc

where αn,a,b,c is a sum of binomial coefficient
(

n
f(a,b,c)

)
with f a function of a, b and c. This

coefficient is thus a polynomial in n.
By Theorem 4.38, we know that the polynomial Vn has degree

⌊
3
2 (n− 1)

⌋
, thus for a fixed ℓ,

the coefficient of Vn on zℓ is non-zero when n ≥
⌈
2
3ℓ+ 1

⌉
. This coefficient can be seen as (a

multiple of) the evaluation at z = 0 of the polynomial ∂ℓ

∂zℓVn. But this derivative is again a sum of

(products of) powers of
(
1 + 3

2z
)
, of

(
5
4 + z

)
and of z, with no new dependencies in n. Evaluating

at z = 0 gives that vn,ℓ is a sum (which coefficients depend on ℓ) of
(

n
f(a,b,c)

)
: a polynomial in n.

To obtain the degree of this polynomial, we look for the greatest κ such that
(
n
κ

)
appears in the

coefficient of zℓ. In the developments of both
λn
+−λn

−√
4z+5

and
(
λn
+ + λn

−
)
, remark that κ is the power

on the factor z. For a fixed ℓ, the greatest power on the factor z appearing in
λn
+−λn

−√
4z+5

z5 is ℓ − 5,

the greatest in
(
2(λn

+ + λn
−) + 6

λn
+−λn

−√
4z+5

)
(z4+z3) is ℓ−3. Thus, the degree of the polynomial vn,ℓ,

as a polynomial in n, is ℓ− 3.

Example 4.40. With the help of Proposition 4.36, one can compute the number of coherent paths
of size n and length ℓ:

n|ℓ 3 4 5 6 7 8 9 10 11 12 13 14 15
4 4 4
5 4 16 12 1
6 4 28 56 38 7
7 4 40 132 195 129 32 1
8 4 52 240 556 694 448 129 10
9 4 64 380 1205 2250 2496 1571 501 61 1
10 4 76 552 2226 5565 8896 9019 5564 1914 304 13
11 4 88 756 3703 11627 21416 34622 32725 19881 7236 1375 99 1

In this table, one can read out Theorem 4.38 (for n ≤ 11) by looking at the right-most value in
each line. Furthermore, Theorem 4.39 ensures that each column ℓ is a polynomial in n of degree
ℓ− 3, observing the rows given, the following holds for n ≥ 1:

• for ℓ = 3: vn+3,3 = 4 is also the number of diagonal-avoiding paths of length 3.

• for ℓ = 4: vn+3,4 = 12n− 8 is also the number of diagonal-avoiding paths of length 4.

• for ℓ = 5: vn+4,5 = 4n(4n− 1) is not the number of diagonal-avoiding paths of length 5.

• for ℓ = 6: vn+5,6 = 14n3 − 24n2 + 11n.

• for ℓ = 7: vn+6,7 = 1
6 (55n

4 − 2n3 − 34n2 + 23n).

And one can easily continue this list with a computer.

4.2.5 Perspectives and open questions

Computational remarks As usual, all the objects present in this section have been implemented
with Sage. Namely, I am able to compute monotone path polytopes and label their vertices by
the corresponding monotone paths and their normal cones (i.e. the cone of ω that captures the
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Figure 69: Number of coherent paths on ∆(50, 2) for length ℓ ∈ [3, 73]

corresponding monotone path). Monotone path polytopes are computed as a Minkowski sum of
sections, one at each vertex, however the same remark as for max-slope pivot rule polytopes holds:
computing Minkowski sums in high dimension and with a lot of vertices takes time.

Furthermore, in the case of the monotone path polytope of the hypersimplices ∆(n, 2), all
numerical statements have been checked by (i) constructing the monotone path polytope and
counting its vertices (up to dimension 8); (ii) constructing all possible monotone paths and solving
the linear system to know whether it can be captured or not (up to dimension 9); (iii) generating
all paths that respect the criterion of Theorem 4.24 and verifying if they are coherent (up to
dimension 12); (iv) implementing the matrix recursion (up to dimension 300). Fortunately, all
these methods lead to the same result. We also have implemented similar methods for counting
the paths by their length.

Besides, the diagonalization of matrices were done with the help of Sage (and latter checked
by hand and with Wolfram Alpha), which benefits from excellent and easy-to-use tools to deal
with matrices over any rings (especially the ring of symbolic expressions, i.e. of polynomials and
more).

Assets and limits of the current approach, open questions We have detailed the behavior of
vn,ℓ for a fixed length ℓ. But on the other side, for a fixed size n, one can look at the sequence(
vn,ℓ ; ℓ ∈ [3,

⌊
3
2 (n− 1)

⌋
]
)
. Jesús De Loera conjectured the following for all polytopes:

Conjecture 4.41 (De Loera). For any polytope P and generic objective function c, the sequence(
Nℓ ; ℓ ≥ 1

)
of the number of coherent monotone paths on P of length ℓ is a log-concave sequence.

Especially, in our case, this conjectures states that for a fixed dimension n, the sequence(
vn,ℓ ; ℓ ≥ 3

)
is log-concave. Thanks to Proposition 4.36, we can compute these sequences for

large n, for example n = 50 in Figure 69. All the computations done so far tend to confirm this
conjecture, in particular it holds true for all n ≤ 150. Moreover, note that the archetypal sequence((

n
ℓ

)
; ℓ ∈ [0, n]

)
is log-concave and shares a property similar to Theorem 4.39: for a fixed ℓ,

the value
(
n
ℓ

)
is a polynomial in n of degree ℓ. Even though we have not been able to prove this

conjecture for hypersimplices ∆(n, 2), there may be a way to extract this property from the matrix
recursion presented in Proposition 4.36.
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Moreover, one can count the number of monotone path according to their length (without
restricting to coherent monotone paths), which amounts to counting the total number of diagonal-
avoiding lattice paths. This exercise of enumerative combinatorics will be carried out in the future.
Given the type of combinatorics at stake, it does not seem senseless to think that the sequence of
total number of monotone paths will be log-concave, although it remains non-trivial to prove it is.

Besides, Theorem 4.24 gives a necessary criterion for a monotone path on ∆(n, k) to be coher-
ent. We have shown that this criterion is sufficient for the case k = 2, but computer experiments
shows that is it no longer sufficient when k ≥ 3. The encoding of monotone paths on ∆(n, k)
through lattice paths on the grid [n]k seems a good framework for studying this problem further.

Last but not least, we only give here a description of the vertices ofM(n, 2), it would be of prime
interest to investigate the (higher-dimensional) faces of it. A first idea to do so is to introduce a
notion of adjacencies between coherent lattice paths in order to describe the edges of M(n, 2), but
the drawings this notion gives birth to are not easy to interpret. A second idea would be to use
the fact that faces of the hypersimplex are again hypersimplices (of lower dimensions): one could
try to “see”M(n− 1, k) inside M(n, k), and recover (properties of) the face lattice of M(n, k) from
there. A glimpse of this is depicted in Figures 59 and 60: the 5 octagons appearing in the polytope
of the second figure shall be thought of as 5 copies of the octagon on the right of the first figure
(but it remains hard to explain where the 16 squares come from, and how the faces fit together).
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