Geometric combinatorics of paths and deformations of convex polytopes

19 October 2023

- \rightarrow Mon site : "Germain Poullot" dans Google
- \rightarrow Onglet "Petit jeu"
- \rightarrow Suivez les indications, mot de passe : 0000
- \Rightarrow Amusez-vous !

Only in French, sorry ...

Merci Guillaume !!!

Geometric combinatorics of paths and deformations of convex polytopes

19 October 2023

Directeurs / Advisors

Arnau PADROL

Vincent PILAUD

Jury

Fu LIU Jesús DE LOERA Martina JUHNKE-KUBITZKE Lionel POURNIN Frédéric MEUNIER Vic REINER

1 What is "Combinatorics of Polytopes"?

2 Generalized permutahedra

- Deformations
- Submodular Cone
- Ongoing work

3 Max-slope Pivot Polytopes

- Max-slope pivot rule
- Poset of slopes
- Pivot rule polytope of products of simplices

What is "Combinatorics of Polytopes"?

Polytope: convex hull of finitely many points in \mathbb{R}^n

Representing polytopes

Dodecahedron the Universe

Icosahedron Water

Representing polytopes

Tetrahedron Fire

Dodecahedron the Universe

Icosahedron Water

Representing polytopes

Tetrahedron Fire

ø

Dodecahedron the Universe

ø

Hexahedron Earth

Octahedron

12

Water

2

ø

$$\textit{Face:} \ \mathsf{P}^{\textit{c}} := \left\{ \textit{\textit{x}} \in \mathbb{R}^{n} \ ; \ \left< \textit{\textit{x}}, \textit{\textit{c}} \right> = \mathsf{max}_{\textit{\textit{y}} \in \mathsf{P}} \left< \textit{\textit{y}}, \textit{\textit{c}} \right> \right\}$$

$$\textit{Face:} \ \mathsf{P}^{\textit{c}} := \left\{ \textit{\textit{x}} \in \mathbb{R}^{\textit{n}} \ ; \ \left< \textit{\textit{x}}, \textit{\textit{c}} \right> = \mathsf{max}_{\textit{\textit{y}} \in \mathsf{P}} \left< \textit{\textit{y}}, \textit{\textit{c}} \right> \right\}$$

$$\textit{Face:} \ \mathsf{P}^{\textit{c}} := \left\{ \textit{\textit{x}} \in \mathbb{R}^{\textit{n}} \ ; \ \left< \textit{\textit{x}}, \textit{\textit{c}} \right> = \mathsf{max}_{\textit{\textit{y}} \in \mathsf{P}} \left< \textit{\textit{y}}, \textit{\textit{c}} \right> \right\}$$

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice) Other way: Take a combinatorial family \rightarrow embed it as a polytope

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

Other way: Take a combinatorial family \rightarrow embed it as a polytope

$$\Pi_n = \operatorname{conv} \left\{ \begin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} ; \ \sigma \text{ permutation of } \{1, \dots, n\} \right\}$$

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

Other way: Take a combinatorial family \rightarrow embed it as a polytope

$$\Pi_n = \operatorname{conv} \left\{ \begin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} ; \ \sigma \text{ permutation of } \{1, \dots, n\} \right\}$$

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

Other way: Take a combinatorial family \rightarrow embed it as a polytope

$$\Pi_n = \operatorname{conv} \left\{ \begin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} ; \ \sigma \text{ permutation of } \{1, \dots, n\} \right\}$$

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

Other way: Take a combinatorial family \rightarrow embed it as a polytope

$$\Pi_n = \operatorname{conv} \left\{ \begin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} ; \ \sigma \text{ permutation of } \{1, \dots, n\} \right\}$$

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

Other way: Take a combinatorial family \rightarrow embed it as a polytope

$$\Pi_n = \operatorname{conv} \left\{ \begin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} ; \ \sigma \text{ permutation of } \{1, \dots, n\} \right\}$$

One way: Take a polytope \rightarrow combinatorial info (e.g. face lattice)

Other way: Take a combinatorial family \rightarrow embed it as a polytope

$$\Pi_n = \operatorname{conv} \left\{ \begin{pmatrix} \sigma(1) \\ \vdots \\ \sigma(n) \end{pmatrix} ; \ \sigma \text{ permutation of } \{1, \dots, n\} \right\}$$

Germain Poullot

Generalized permutahedra
Coarsening: Choose maximal cones and merge them

Definition

Q is a *deformation* of P iff \mathcal{N}_Q coarsens \mathcal{N}_P .

Coarsening: Choose maximal cones and merge them

Definition

Q is a *deformation* of P iff \mathcal{N}_Q coarsens \mathcal{N}_P .

Coarsening: Choose maximal cones and merge them

Definition

Q is a *deformation* of P iff \mathcal{N}_Q coarsens \mathcal{N}_P .

Braid fan: arrangement of hyperplanes $H_{i,j} := \{ \mathbf{x} ; x_i = x_j \}$

Braid fan

Definition

Braid fan: arrangement of hyperplanes $H_{i,j} := \{ \mathbf{x} ; x_i = x_j \}$

Definition

Generalized permutahedron: deformation of Π_n

i.e. P generalized permutahedron iff \mathcal{N}_{P} coarsens braid fan

Braid fan

Definition

Braid fan: arrangement of hyperplanes $H_{i,j} := \{ \mathbf{x} ; x_i = x_j \}$

Definition

Generalized permutahedron: deformation of Π_n

i.e. P generalized permutahedron iff \mathcal{N}_{P} coarsens braid fan

 $\mathcal{P}(\mathsf{P})$: all the posets associated to faces of P

Deformations of Π_4

Sequence of deformations of Π_4

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

If Q, R deformations of P, then:

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Deformation cone: $\mathbb{DC}(P) := \{Q ; Q \text{ deformation of } P\}$ is a cone.

Parametrization:

height vector: $\boldsymbol{h} = (h_r)_{r \text{ rays}}$

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Deformation cone: $\mathbb{DC}(P) := \{Q ; Q \text{ deformation of } P\}$ is a cone.

Parametrization:

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Deformation cone: $\mathbb{DC}(P) := \{Q ; Q \text{ deformation of } P\}$ is a cone.

Parametrization:

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Deformation cone: $\mathbb{DC}(P) := \{Q ; Q \text{ deformation of } P\}$ is a cone.

Parametrization:

Minkowski sum: $P + Q = \{ \boldsymbol{p} + \boldsymbol{q} ; \boldsymbol{p} \in P, \boldsymbol{q} \in Q \}$

Theorem

for all $\lambda > 0$, λQ deform. of P Q + R deform. of P

Definition

Deformation cone: $\mathbb{DC}(P) := \{Q ; Q \text{ deformation of } P\}$ is a cone.

Parametrization:

Submodular cone: deformation cone of the permutahedron Π_n

	$\mathbb{DC}(\Pi_n)$	
Dim (no lineal)	$2^{n} - n - 1$	
# facets	$\binom{n}{2}2^{n-2}$	
# rays	unknown!	

Submodular Cone for Π_3

Submodular cone: deformation cone of the permutahedron Π_n

	$\mathbb{DC}(\Pi_n)$	
Dim (no lineal)	$2^{n} - n - 1$	
# facets	$\binom{n}{2}2^{n-2}$	
# rays	unknown!	

Submodular cone: deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(\mathsf{P})$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	$\mathbb{DC}(\Pi_n)$
Dim (no lineal)	$2^{n} - n - 1$
# facets	$\binom{n}{2}2^{n-2}$
# rays	unknown!

Submodular cone: deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(\mathsf{P})$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	$\mathbb{DC}(\Pi_n)$	$\mathbb{DC}(Asso_n)$	
Dim (no lineal)	$2^{n} - n - 1$	$\binom{n}{2}$	
# facets	$\binom{n}{2}2^{n-2}$	$\binom{\overline{n}}{2}$	
# rays	unknown!	$\binom{\overline{n}}{2}$	
		is simplicial!	

Submodular cone: deformation cone of the permutahedron Π_n

Theorem (Faces of $\mathbb{DC}(\mathsf{P})$)

If Q deformation of P, then $\mathbb{DC}(Q)$ is a face of $\mathbb{DC}(P)$.

	$\mathbb{DC}(\Pi_n)$	$\mathbb{DC}(Asso_n)$	$\mathbb{DC}(Z_G)$	$\mathbb{DC}(N_B)$
Dim (no lineal)	$2^{n} - n - 1$	$\binom{n}{2}$	Ν	N
# facets	$\binom{n}{2}2^{n-2}$	$\binom{\overline{n}}{2}$	Е	E
# rays	unknown!	$\binom{\overline{n}}{2}$	Х	Х
		is simplicial!	Т	Т

$$G = (V, E)$$
 a graph, $n = |V|$

Definition

Graphical zonotope
$$Z_G := \sum_{(i,j) \in E} [e_i, e_j]$$

 Z_G deformation of $\Pi_n \implies \mathbb{DC}(Z_G)$ is a face of $\mathbb{DC}(\Pi_n)$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Corollary

 $dim \mathbb{DC}(Z_G) = \# cliques of G$ # facets of $\mathbb{DC}(Z_G) = \sum_{(i,j)\in E} 2^{|\{k : (i,k), (j,k)\in E\}|}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet-description of $\mathbb{DC}(Z_G)$

Corollary

$$dim \mathbb{DC}(Z_G) = \# cliques of G$$

facets of $\mathbb{DC}(Z_G) = \sum_{(i,j)\in E} 2^{|\{k ; (i,k), (j,k)\in E\}|}$

Corollary

 $\mathbb{DC}(Z_G)$ simplicial iff G without triangle

NB: Recover facet-description of $\mathbb{DC}(\Pi_n)$

Definition

Building set $B \subseteq 2^{[n]}$ with: $X_{1,2} \in B, X_1 \cap X_2 \neq \emptyset \Rightarrow X_1 \cup X_2 \in B$

Definition

Nestohedron $N_B := \sum_{X \in B} \Delta_X$ where $\Delta_X = \text{conv}\{e_i ; i \in X\}$

 N_B deformation of $\Pi_n \implies \mathbb{DC}(N_B)$ is a face of $\mathbb{DC}(\Pi_n)$

Elementary blocks $X \in \varepsilon(B)$ iff X is not a union Maximal block $\mu(X) := \max\{Y \in B ; Y \subsetneq X\}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of $\mathbb{DC}(N_B)$

Elementary blocks $X \in \varepsilon(B)$ iff X is not a union Maximal block $\mu(X) := \max\{Y \in B ; Y \subsetneq X\}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of $\mathbb{DC}(N_B)$

Corollary

dim $\mathbb{DC}(N_B) = |B| - \#$ singletons # facets of $\mathbb{DC}(N_B) = |\varepsilon(B)| + \sum_{X \in B \setminus \varepsilon(B)} {|\mu(X)| \choose 2}$

Elementary blocks $X \in \varepsilon(B)$ iff X is not a union Maximal block $\mu(X) := \max\{Y \in B ; Y \subsetneq X\}$

Theorem (Padrol, Pilaud, P., '23)

Explicit facet description of $\mathbb{DC}(N_B)$

Corollary

dim $\mathbb{DC}(N_B) = |B| - \#$ singletons # facets of $\mathbb{DC}(N_B) = |\varepsilon(B)| + \sum_{X \in B \setminus \varepsilon(B)} {|\mu(X)| \choose 2}$

Corollary

 $\mathbb{DC}(N_B)$ simplicial iff B has no non-elementary block with 3 maximal subblocks

NB: Recover facet-description of $\mathbb{DC}(\Pi_n)$

Ongoing work - Hypergraphic polytopes

Definition

Hypergraphic pol $\mathsf{P}_H := \sum_{X \in H} \Delta_X$ with $H \subseteq 2^{[n]}$

Ongoing work - Quotientopes

Definition

Quotientopes: Minkowski sum of shard polytopes

Max-slope Pivot Polytopes

Linear optimization

Simplex method

Linear optimization in dimension 2 (simplex method): EASY !

Convention: choose upper

Optimization in higher dimension: make it 2-dimensional !

Max-slope pivot rule: take (improving) neighbor with best slope

Optimization in higher dimension: make it 2-dimensional !

Max-slope pivot rule: take (improving) neighbor with best slope

 ω^{-}

3

Monotone path polytope

Coherent monotone path: path obtained via max-slope pivot rule

Monotone path fan: Fan with $\omega \sim \omega'$ iff same path

Monotone path polytope

Coherent monotone path: path obtained via max-slope pivot rule

Monotone path fan: Fan with $\omega \sim \omega'$ iff same path

Theorem (Billera, Sturmfels, '92)

The monotone path fan is polytopal. Monotone path polytope $\Sigma_c(P)$: dual to monotone path fan

Monotone path polytope

Coherent monotone path: path obtained via max-slope pivot rule

 $\begin{array}{l} \textit{Monotone path fan: Fan with} \\ \boldsymbol{\omega} \sim \boldsymbol{\omega}' \textit{ iff same path} \end{array}$

Theorem (Billera, Sturmfels, '92)

The monotone path fan is polytopal. Monotone path polytope $\Sigma_c(P)$: dual to monotone path fan

$$\Sigma_{c}(\Delta_{d}) = \mathsf{Cube}_{d-1} \qquad \Sigma_{c}(\mathsf{Cube}_{d}) = \Pi_{d}$$

Coherent arborescence: arborescence obtained via max-slope pivot rule

Pivot rule fan:

 $oldsymbol{\omega}\simoldsymbol{\omega}'$ iff same arborescence.

Coherent arborescence: arborescence obtained via max-slope pivot rule Pivot rule fan: $\omega \sim \omega'$ iff same arborescence. Pivot rule fan refines monotone path fan

Theorem (Black, De Loeara, Lütjeharms, Sanyal '22)

The pivot rule fan is polytopal.

(Max-slope) pivot polytope Π_c : dual to the pivot rule fan

Theorem (Black, De Loeara, Lütjeharms, Sanyal '22)

The pivot rule fan is polytopal.

(Max-slope) pivot polytope Π_c : dual to the pivot rule fan

$$\Sigma_{\boldsymbol{c}}(\Delta_d) = \mathsf{Cube}_{d-1}$$

 $\Pi_{c}(\Delta_{d}) = \operatorname{Asso}_{d}$

 $\Pi_{\boldsymbol{c}}(\Delta_d) \simeq \mathsf{Asso}_d$

for all **c**

 $\Pi_{\boldsymbol{c}}(\mathsf{Cube}_d) \simeq \Pi_d \qquad \qquad \text{for all } \boldsymbol{c}$

Conjecture (Pilaud, Sanyal)

 ${\sf \Pi}_{m{c}}({\sf \Delta}_{d_1} imes {\sf \Delta}_{d_2})\simeq {\sf Asso}_{d_1}\star {\sf Asso}_{d_2}$

 \star shuffle product

Conjecture (Pilaud, Sanyal)

 ${\sf \Pi}_{m{c}}({\sf \Delta}_{d_1} imes {\sf \Delta}_{d_2})\simeq {\sf Asso}_{d_1}\star {\sf Asso}_{d_2}$

 \star shuffle product

Challenge 1: Prove the conjecture!

Conjecture (Pilaud, Sanyal)

 ${\sf \Pi}_{m{c}}({\sf \Delta}_{d_1} imes {\sf \Delta}_{d_2})\simeq {\sf Asso}_{d_1}\star {\sf Asso}_{d_2}$

 \star shuffle product

Challenge 1: Prove the conjecture! Challenge 2: Give **geometric** proofs!

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important?

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important?

Slopes:
$$au_{\omega}(u,v) = rac{\langle \omega,u-v
angle}{\langle c,u-v
angle}$$

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important?

Slopes:
$$au_{\omega}(u,v) = rac{\langle \omega,u-v
angle}{\langle m{c},u-v
angle}$$

Slope vector: $\theta(\omega) = (\tau_{\omega}(u, v))_{uv \in E(P)}$

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important? Slopes: $\tau_{\omega}(u, v) = \frac{\langle \omega, u - v \rangle}{\langle c, u - v \rangle}$ Slope vector: $\theta(\omega) = (\tau_{\omega}(u, v))_{uv \in E(P)}$

 $\theta: \mathbb{R}^d \to \mathbb{R}^m$, injective linear map

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important? Slopes: $\tau_{\omega}(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$ Slope vector: $\theta(\omega) = (\tau_{\omega}(u, v))_{uv \in E(P)}$

 $\boldsymbol{\theta}: \mathbb{R}^d \rightarrow \mathbb{R}^m$, injective linear map

What is **really** important??

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important? Slopes: $\tau_{\omega}(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$ Slope vector: $\theta(\omega) = (\tau_{\omega}(u, v))_{uv \in E(P)}$

 $\theta: \mathbb{R}^d \to \mathbb{R}^m$, injective linear map

What is really important?? The comparisons of slopes!

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important? Slopes: $\tau_{\omega}(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$ Slope vector: $\theta(\omega) = (\tau_{\omega}(u, v))_{uv \in E(P)}$

 $\theta: \mathbb{R}^d \to \mathbb{R}^m$, injective linear map

What is **really** important?? The comparisons of slopes! Compare coordinates of $\theta(\omega)$

Max-slope pivot rule: take (improving) neighbor with best slope

For ω , what is important? Slopes: $\tau_{\omega}(u, v) = \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}$ Slope vector: $\theta(\omega) = (\tau_{\omega}(u, v))_{uv \in E(P)}$

 $\theta : \mathbb{R}^d \to \mathbb{R}^m$, injective linear map

What is **really** important?? The comparisons of slopes! Compare coordinates of $\theta(\omega)$ Where is $\theta(\omega)$ in the braid fan \mathcal{B}_m ?

Too many edges

Too many edges, **but** parallelism saves us!

Too many edges, **but** parallelism saves us!

Geometric proof of $\Pi_c(\text{Cube}_d) = \Pi_d$

Too many edges

Too many edges, but affine independence saves us!

Too many edges, **but** affine independence saves us! Geometric proof of $\Pi_c(\Delta_d) = \text{Asso}_d$

Shuffles

```
Shuffle: (E, \leq) and (F, \preceq) posets, then \trianglelefteq is a shuffle when:
groud set : E \sqcup F
relations : all relations of \leq ; all relations of \preceq ;
for each e \in E, f \in F, choose if e \trianglelefteq f or e \trianglerighteq f
(+ \text{ transitive closure})
```

Shuffles

Shuffle: (E, \leq) and (F, \preceq) posets, then \trianglelefteq is a shuffle when: groud set : $E \sqcup F$ relations : all relations of \leq ; all relations of \preceq ; for each $e \in E$, $f \in F$, choose if $e \trianglelefteq f$ or $e \trianglerighteq f$ (+ transitive closure)

Theorem (Chapoton, Pilaud '22)

P, Q: generalized permutahedra. Exists polytope P * Q s.t.

 $\mathcal{P}(\mathsf{P} \star \mathsf{Q}) = \{ all \ shuffles \ between \ \leq \in \mathcal{P}(\mathsf{P}) \ and \ \leq \in \mathcal{P}(\mathsf{Q}) \}$

Combine parallelism & affine independence:

Combine parallelism & affine independence:

TheoremFor
$$\Delta_{d_1} \times \cdots \times \Delta_{d_r}$$
, all (generic) direction: $\Pi_{\boldsymbol{c}}(\Delta_{d_1} \times \cdots \times \Delta_{d_r}) \simeq \operatorname{Asso}_{d_1} \star \cdots \star \operatorname{Asso}_{d_r}$

Example

(a)
$$\Pi_{\boldsymbol{c}}(\Box_d) \simeq \operatorname{Perm}_d$$

(b) $\Pi_{\boldsymbol{c}}(\Box_m \times \Delta_n) \simeq (m, n)$ -multiplihedron
(c) $\Pi_{\boldsymbol{c}}(\Delta_m \times \Delta_n) \simeq (m, n)$ -constrainahedror
- 1) For which P, $\Pi_c(P)$ is a generalized permutahedron? \longrightarrow a priori, only products of simplices, but no proof
- 2) Is $\Pi_{c}(\mathsf{P})$ projection of a generalized permutahedron? \longrightarrow pivot fan sent inside $\operatorname{Im}(\theta) \cap \mathcal{B}_{m}$
- 3) When $\Pi_{c}(P)$ and $\Pi_{c}(Q)$ **not** generalized permutahedra, what happen to $\Pi_{c}(P \times Q)$?
- \longrightarrow not equivalent to $\Pi_{c}(\mathsf{P}) \star \Pi_{c}(\mathsf{Q})$, but "embeds" in it

What I have presented

Contents

	Introduction			5
1	Preliminaries			11
1	11	Partie	ally onland sota	11
	1.2	Polen		12
		191	Simpley	15
		100	Calse	15
		6.9.3	Darmitshadron	15
		1.9.4	Association	15
	1.3	Linna	r programming	20
2	Deformations of addresses and semantical meruphishedra			
	-0.4	Defor	mations of polytoper and generation permananeurs	19.0
	10.0	Defer	manufactory of postantial sectors.	
	-	121	Cambind could of graphical fourtopes and a second state of the second state of the	00
		0.0.0	Graphicu zinotopes .	20
		2.2.2	Graphical deformation code	20
		-	The faces of graphical deportantion comes	33
		2.2.8	Sniplicial graphical deformation coors	36
		2.2.5	Perspectives and open questions	37
	3.3	Deton	mation cones of nestohedra	38
		2.3.1	Deformation cones of graphical nested family and a second	39
		2.3.2	Desormation (pnes of arbitrary nested fan)	HT.
		2.3.3	Simplicial deformation comes and interval building sets .	61
		2.3.4	Perspectives and open questions	63
3	Max-slope pivat rule polytopes 6			65
	3.1 Max-slope pixot rale and max-slope pixot polytope		60	
	3.2	Max	slope pixot polytope of cyclic polytopes	70
		3.2.1	Cyclic associahedra and the intrinsic degree	71
		3.2.2	Realization sets and universal arboroscence	76
		323	Paul polytopes of cyclic polytopes of dimension 2 and 3	86
		3.2.4	Perspectives and open questions	92
	3.3	Man	slope pivot polytopis of products of polytopis	30
		3.3.1	Max slope pivot polytopes of the table and the simples	199
		112	Max shore pixet polytons of a modult of simplices	102
		333	Perspectives and open questions	106
4	Filter solutions 10			108
	4.1	Prelie	ninaries on ther polytopes	108
	4.9	Mono	tone path polytanes of the impersimplices	111
		19.1	Monotone rights polytones in general	111
		49.2	A necessary criterion for otherent raths on Ain Ai	510
		49.9	Sufficience of this emission in the case Ata 25	110
		49.4	Counting the number of advanced monotone to the on Alm 20	197
		195	Pointering and that meeting	1.90
	4.2	Tiber.	relations for the projection from for (1) to for (1)	100
	-1.2	1.0.4	training on the haddennin num cle ⁴ (t) to che ³ (t)	1.43
		9.4.1	Experison between triangulations and forn-crossing arborecemees	1.423
		4.4.2	Final polytopes for the projection $cyc_1(t) \rightarrow cyc_2(t)$	145
		4.3.3	Realization sets and universal triangolations for $Cyc_4(t) \rightarrow Cyc_2(t)$	138
		-4.8.4	Perspectives and open questions	143
121	1111	10200	na na shekara na shekara 1999 n	10000

A A Vandermonde-like determinant

Thank you!

Notations: $Sx = S \cup \{x\}$, $(f_X)_{X \subseteq [n]}$ canonical basis of $\mathbb{R}^{2^{[n]}}$

Definition

Submodular vector
$$\mathbf{n}(S, u, v) = \mathbf{f}_{Suv} - \mathbf{f}_{Su} - \mathbf{f}_{Sv} + \mathbf{f}_{S}$$

for $u, v \in S \subseteq [n]$

Notations: $Sx = S \cup \{x\}$, $(f_X)_{X \subseteq [n]}$ canonical basis of $\mathbb{R}^{2^{[n]}}$

Definition

Submodular vector
$$\mathbf{n}(S, u, v) = \mathbf{f}_{Suv} - \mathbf{f}_{Su} - \mathbf{f}_{Sv} + \mathbf{f}_{S}$$

for $u, v \in S \subseteq [n]$

Lemma (Submodular normal)

n(S, u, v) are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

 $u, v, x \notin S \subseteq [n]$ n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

Lemma (Submodular normal)

n(S, u, v) are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

 $u, v, x \notin S \subseteq [n]$ n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

Lemma (Submodular normal)

n(S, u, v) are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

 $u, v, x \notin S \subseteq [n]$ n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

Lemma (Submodular normal)

n(S, u, v) are the facet's normals of $\mathbb{DC}(\Pi_n)$

Lemma (Cubic relation)

 $u, v, x \notin S \subseteq [n]$ n(Suvx, u, v) + n(Sux, u, x) = n(Suv, u, v) + n(Suvx, u, x)

Monotone path polytope and pivot rule polytope

Let $\mathsf{P} \subset \mathbb{R}^d$ be a polytope.

Max-slope pivot rule:
$$A^{\omega}(v) = \operatorname{argmax} \left\{ \frac{\langle \omega, u-v \rangle}{\langle c, u-v \rangle}; u \text{ impr. neig. of } v \right\}.$$

Coherent monotone path: A monotone path that can be obtained via the max-slope pivot rule.

Monotone path polytope $\Sigma_c(P)$ [?]: Fiber polytope of $P \xrightarrow{\pi} Q$ with Q a segment. (Can be seen as a Minkowski sum of sections of P.) The vertices of $\Sigma_c(P)$ are all coherent monotone paths.

Coherent arborescence: An arborescence that can be obtained via the max-slope pivot rule.

Pivot rule polytope $\Pi_{c}(P)$: Polytope which vertices are all coherent arborescences.

$$\Pi_{\boldsymbol{c}}(\mathsf{P}) = \operatorname{conv}\left\{\sum_{\nu \neq v_{opt}} \frac{1}{\langle \boldsymbol{c}, \mathcal{A}(\nu) - \nu \rangle} (\mathcal{A}(\nu) - \nu); \mathcal{A} \text{ coherent arbo. of } \mathsf{P}\right\}$$

Monotone path polytope and pivot rule polytope

Coherent arborescence: An arborescence that can be obtained via the max-slope pivot rule.

Pivot rule polytope $\Pi_{c}(P)$: Polytope which vertices are all coherent arborescences. Can also be seen as a Minkowski sum of sections:

 $\sum_{v \in V(P)}$ (section between v and its improving neighbors)

Idea 1:

Fix a polytope P, and direction c, n vertices, m edges.

 $\theta : \mathbb{R}^d \to \mathbb{R}^m$ sends the pivot fan inside $\operatorname{Im}(\theta) \cap \mathcal{B}_m$ Problem: This is not a braid fan as $d \ll m...$

If m' classes of parallelism: $\overline{\theta} : \mathbb{R}^d \to \mathbb{R}^{m'}$ sends the pivot fan inside $\operatorname{Im}(\theta) \cap \mathcal{B}_{m'}$ *Problem*: This is not a braid fan as $d \ll m' \ll m...$

We need to go lower dimensional!

Idea 2: Fix a polytope P, direction *c*, <u>*n* vertices</u>, *m* edges.

Fix A arborescence: $\vartheta_A(\omega) = (\tau_{\omega}(u, A(u)); u \text{ vertex})$

 ϑ_A : linear, injective, $\mathbb{R}^d \to \mathbb{R}^{n-1}$ **but** if ω does not capture A, then $\vartheta_A(\omega)$ have no meaning... Adapted slope map: $\vartheta(\omega) = \vartheta_{A^{\omega}}(\omega)$ i.e. take ω and look at the slope of the edges it selects.

Case of the *d*-simplex

 $d = n - 1 \iff \mathsf{P}$ is a simplex For $\Delta_d: \vartheta: \mathbb{R}^d \to \mathbb{R}^d$ piece-wise linear, ker $\vartheta = \{\mathbf{0}\} \Rightarrow$ bijection ϑ sends the pivot fan of Δ_d inside \mathcal{B}_d .

