On fluctuations of Birkhoff sums

Gaétan Leclerc

Abstract
We consider a smooth, transitive, area-preserving Axiom A diffeomorphism f on a surface
M. We fix Q a basic set, and we consider an observable 7 : 2 — R, satisfying a mild smoothness
condition. This condition is satisfied for the geometric potential, and for any C?T* observable.
In these notes, we explain how one can use the ideas found in M. Tsujii and Z. Zhang’s paper

on exponential mixing of mixing 3D Anosov flows to check a non-concentration property for
Birkhoff sums of 7.

1 A bit of context

In a previous paper, we tried to study the Fourier decay properties of equilibrium states for tran-
sitive nonlinear Axiom A diffeomorphisms. Say that we fix an area-preserving diffeomorphism
f: M — M (on some riemannian manifold of dimension 2 (M, g)). Suppose that f is Axiom A
and smooth, fix Q one of its basic sets, and then define, for z € Q: 7¢(z) := Ind, f(x), where we
denoted

Ouf () = [|(dfz) | pu() |-

We can similarly define dsf : Q@ — R, as
05 f(x) == [|(df )| = (a)I]-

The area-preserving hypothesis ensure the cohomology relation 7y ~ —In0;sf. Finally, fix some
Holder potential ¢ :  — R, and denote its associated equilibrium state p € P(Q2) (the set of borel
probability measures supported on 2). Using the “sum-product phenomenon”, we (almost) proved
the following criterion.

Theorem 1.1. Suppose that f is a transitive, area-preserving, Axiom A map acting on a surface
M. Let Q2 be a perfect basic set and p and equilibrium state supported on ). Suppose that there
exists Cy,eq,7v > 0 such that:

Vn >0, Va €R, u(a: €, |Sprs(x) —al < 6_60”) < Cpe™ 7507, (NC)

where S,7¢(z) := Z;é 7¢(f*(x)) is a Birkhoff sum. Then, there exists p > 0 such that, for any
small enough open set U, for any smooth bump function x : M — R supported in U, for any local
chart ¢ : U — R |, there exists Cy such that:

ve € R\ {0}, \ [ e n@anta)| < culel.

In other words, ¢.(xdu) enjoy power decay of its Fourier transform.

The main difficulty is to check the “non-concentration hypothesis” (NC) found in the crite-
rion. In these notes, we show how, in our 2-dimensional, area-preserving context, one can check
theses kind of non-concentration estimates, adapting the ideas of M. Tsujii and Z. Zhang’s paper
[TZ20]. Our nonconcentration estimates will hold under a cohomology condition on some po-
tential @, : Q@ — R constructed from 7, which is essentially a mixed derivative 9,,0s7 along the
stable/unstable direction. In the case of the geometric potential, this cohomology condition can
be thougth as a nonlinearity condition on the dynamics. Our non-concentration theorem will hold
for a class of regular enough potentials that we will call Regfm(Q), which is essentially the space
of functions 7 for which the mixed derivative 9,07 € C* makes sense.

In the following, “0,,7(x)” is the derivative of 7 along the local unstable manifold W}%_(x). This
is locally defined up to some sign (since we are working on a riemannian manifold, paths of velocity
one makes sense). Samely for ds7.
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Definition 1.2. Let 7 : Q — R. We say that 7 € Reg.,™*(2) (“regular in the unstable direction”) for

U

some « € (0,1) if 7 € C***(,R) (in the sense of Whitney), if moreover, for any p € €2, the maps
7 € Wige(p) N2 (957(r),0ut(r)) € R?

are uniformly < and if finally the map (9,0,7, 3,,0,,7) is a-Holder on Q. The norm associated
to this vector space is:

HT”Reg}ﬁ“(Q,R) = ||T|\Cl+a(n) + Slelg ||au7|\01+a(Wg“oc(p)ﬂQ,R)
p

+Sug 1057 cr+a e ne.r) + [10u0sT[|ca@ry + 10u0uT [ ca(aR)-
pe

Notice that C**(Q,R) C Regl,™*(Q,R) C C'T*(Q,R).
The following proposition is proved in Appendix A.

Proposition 1.3. The geometric potential 7¢ is regular in the unstable direction.
Now, we can state our main result. See remark 4.4 for a definition of ®, : Q@ — R.

Theorem 1.4. Let 7: Q. — R be an observable in Reg.t®(Q). Denote by ®, : Q — R its associated
“mized derivative potential”. If &, € C* is not cohomologous to zero (this is a Regfa—generic

condition on T ), then there exists Cy, g9,y > 0 such that:
Vn >0, Va € R, ,u(x €N, |Spr(x) —al < 6_50") < Cpe™7e0m

where p denotes an equilibrium state on Q0 (associated with some Hélder regular potential).

Let me thank Frederic Naud, Semyon Dyatlov, Tuomas Sahlsten, Sebastien Gouezel, Anton
Gorodetski (and many more) for enlightening discussions and for their interest in my work.

2 A temporal distance function

Recall that we fixed a smooth Axiom A diffeomorphism on a surface M. We suppose that f is area-
preserving on a basic set 2. Suppose that (f,2) is transitive. We fix some observable 7 : Q@ — R,
and we suppose that 7 € Reg,t®(9). This contain the case of C?>T® observables, and the case of
the geometric potential (see the appendix).

Suppose also that €2 is not a periodic orbit: in particular, by transitivity of the dynamics, it is
a perfect set. (Typically € is Cantor dust. One could also work in the case where 2 = M with M
a closed surface.) Even better, using the local product structure, for each z € Q, QN W} _(z) and
QN W (z) are perfect sets. Recall that one can modify the riemannian structure on the surface
M so that:
Ve € Q, |A:] :=0.f(z) € (1,00) , |uz|:=0sf(x) € (0,1).

In general, we will denote by 0, and 0, the vector fields defined on € of norm 1 that points in the
stable/unstable direction (defined up to some sign... Hence the modulus in the definition of 9, f).
In our context, E* and E* are C'*?, so that the regularity condition made on 7 ensure that 9,7
restricted to some local unstable manifold is C1+e.

By continuity of x € Q — (A4, 4z) and by compacity of Q, there exists 0 < psr < p— <1 <
A_ < Ay such that:
Ve € Q, pg < pe| S po <1 <AL <A < A4

We can choose our constants so that pi Ay = 1. Notice that our area-preserving hypothesis implies
the cohomology relation In(|py| - [Az|) ~ 0. In particular, we can write, uniformly in n > 0 and
x €k

izl -l = Pal ™ g O,

If 2 is a n-periodic point, then [Ap|... | Aoy ||tte| . .- [ppn (@] = 1.

Denote by f)T/ag C Q2 asmall enough neighborhood of the diagonal, so that for any (p, q) € ]/D_i\/ag,
{lp.dl} == Wi,.(p) " Wise(q) and {[q, pl} := Wi.(a) N Wi (p) are well defined.



Definition 2.1. For (p,q) € ]Si\_/ag, and for any n € Z, define:

To(p,q) == 7(f" () — 7(f"([p,q])) — 7(f"([g, ) + 7(f"(q))-

Define also A, At A~ : ]/DT/ag — R by the formulas:

Alp,q) == Tulp,a) AT (p,q) =) Tulp,0) A (,g) =Y T-n(p,q).

nez n>0 n>0

These functions are all well defined and continuous, since |T;,(p, ¢)| < CTu‘fld(p, q). The point is
that nonconcentration of either A, AT or A~ is enough to ensure the non-concentration estimates
that we want. Notice also that A(p, ¢) is a temporal distance function associated to the suspension
flow of f with roof function 7. First, recall a fact about rectangles. (In the following of theses
notes, we will denote by d® and d* the arclenght distance induced along stable/unstable manifolds.)

Lemma 2.2. Let any Bz > 1 (a “zooming” parameter). There exists ¢ € (0,1) such that, for any
o > 0 small enough, there exists a finite partition (up to a zero-measure set) of Q0 with rectangles

(REU))iel such that each REU) can be written RZ(-U) = [Ui(0), Si(cP2)], with U;i(c) € QN W, (p;)
some unstable curve of unstable diameter diam"(U;(c)) € [co, 0], and S;(cP7) C QNW _(p;) some

stable curve of stable diameter diam®(S;(c%7)) € [coP7,0P7].

Proof. Fix some small Markov partition (R;);es of 2. Recall that the boundary of those rectangles
have zero measure. For each j, write R; = [U;, S;]. Now, for each n > 0, define (Uén))aep as the

partition:
UM = Uq, 0 f 7 (Ray) N0 f T (Ra,).

For almost every x € U,, for each n > 0, there exists a unique a € J" such that = € Ugf). Asn

grows, the diameter of those goes to zero exponentially quickly. Let n(x) be the smallest integer
n > 0 such that x € Ua(ﬁl(i)))) and diam“(U;&(ﬁ)g) < 0. The unstable part of the partition is then
given by (U(z))zeu,v,, where U(x) := Uéfn((?))). This is a finite partition which satisfies the bounds
that we want. To conclude, apply the same construction for the stable part (by reversing the

dynamics), and then define REU) as the rectangles obtained from the unstable and stable parts. [J

From now on, we fix a parameter 8z > 1. It will be chosen large enough later in the text (in
the end of section 4).

In the next lemma, we will denote by Rectg, (¢) the set of nonempty rectangles R(9) c Q of
stable (resp. unstable) diameter ~ %% (resp ~ ¢). In particular, R(®) have nonempty interior for
the topology of 2.

Lemma 2.3. Suppose that there exists v > 0 and N € N* such that, for any small enough o > 0,
for all rectangle R(?) € Rectg, (o), for alla € R :

(L@ u)((p,9) € (B2, AT (p,q)] < o) < u(R)? - o7,
Then (NC) (non-concentration) holds.

Proof. Let n > 0 be large enough, and let o ~ e~%°™, where ¢ is a small enough constant (we will
see how small we need it later in the proof). Let a € R. Fix Part(o), a partition of Q by rectangles
of size ~ o'/N x ¢#2/N_ Then:

iz e |Sr()—al<o)= > pl@eR, Syr(z)€la—o,a+0))
R(o) ePart(o)

= > R (uRO) e € RO, Syr(@) € [a— g,a+0]))
R(?) ePart(o)

Now, notice the following. If we fix any (small enough) rectangle R = [U, S| of nonzero measure
(fixing U and S, some reference unstable and stable curves in R), then the local product structure



of the equilibrium state p (see [C120] for example) allows one to write, for some measures p* defined
on U and some measure p° defined on S:

w(x € R, h(z //11 ([z,y]))du® (y)du*(2),
where we defined h(z) := S,7(x), and I, := [a — 0,a + ¢]. One then can write, using Cauchy-
Scwhartz: ,
b € B, Sy (//SU D ) 0))
ws) [ | /U ) D)L, (2 ) (™ 2)de ()

S) /S //UXU 1[*20,20] (h([z, y]) — h([g,y]))(d'u“)2(27 Z)d/.ts(y)

Then, using Fubini and Cauchy-Schwartz again yields:

poe kS e 1) < w7 ([ [ 1ananin 1)h([z,m))dm(y)(du“)%z,z>>2

<wisior ff //ss 112,201 (2, 5) B2 9) 120,201 (2, 3) B2, T) (" 20, ) (™) (=, 2)
R)* ////mes Loy (M([2,9]) — R([Z,9]) — h([2, 9]) + h([Z,9))(du")? (2, 2)(dp®)* (y, §)

R [ an(b) = lp.a) ~ blla.p]) + h(@)du(p)du(a).
R2

In other words, denoting by H(p,q) := h(p) — h([p,q]) — h([¢,p]) + h(¢) (defined only on a neih-
borhood of the diagonal !), we have:

) ! , , 1/4
mﬂ(x S R7h(x) € IO') < (,uz(]:iQ)N ((p7 Q) ER ) H(p, Q) € [_40? 40])) .

In our particular case, h(x) = S, 7(z), so we get the expression

1

H(p,q) = Tu(p,q) = ) (r(£*p) = 7(f*([p, @) — 7(f*(lg.p)) + 7(f*(2)))-

0

S
|

™~
Il

Injecting this estimate in our sum from the beginning of the proof yields:

plz e QlSur@)—al <o) = > uRD) (WRO) (e € RO, Sur(@) € la- 0,0+ 0]))

R(?) ePart(o)

< > wR9) <Mu2((p,q) € (R)?

R(9) ePart(o)

n—1 1/4
ZTk(p,q)‘ <4o)> .
k=0

To conclude, notice that

n—1

Vp,q € R, ‘A+(p,q) - ZTk(p,q)‘ Sut<o
k=0

since €g is small in front of |Inp_|, and o ~ e~¢°™. Hence:

n—1 1/4
Z pu(R) (MHQ(( € (R\))? ‘ ZTk D.q ‘ < 40’))

R(9) ePart(o)

< ) wRY) (Mﬁ((n) € (R)2, ‘A+pq)‘<50)>1/4

R(9) ePart(o)
< Z (R - (50)V/ (N4 < 957/ (AN)
R(?)ePart(o)

and we are done. O



Remark 2.4. Using the invariance of p by f at the very beginning of the proof yields
e € Q,|S,7(x)—a| < 0) = p(z € Q, |S,7(f " () —al < 0) = u(x € Q,|S,7(f/*(x))—a| < 7).

Starting from the middle term or the last term and then following the previous proof shows that
non-concentration holds also if one replaces AT by A~ or A.

Lemma 2.5. Suppose that there exists N € N* and v > 0 such that, for any small enough o > 0,
for all p € Q, for all rectangle Rz(,g) € Rectg, (o) containing a ball [B,(p,/10), Bs(p, %% /10)] N Q:

(g € R](DU)’ AT (p,q)| < o) < MR}()U))UW'
Then (NC) holds.

Proof. We are going to check that the previous lemma applies. Let R(?) be some rectangle of
stable/unstable diameter ~ o. Then:

/f((p, q) € R |A(p,q)| < oN) = /( )u(q € R, |A(p,q)| < o™)du(p)
RG

= /< mlae RO |A(p, q)] < o™)dpu(p),
R o

where we denoted RSO”) some rectangle containing R(°) in its center, with unstable (resp stable)
diameter 10 times larger (resp 10°# larger). Now, we can use the hypothesis, since p is sufficiently
close to the center of the square. We find:

/R( ulg € R(M) . |A(p,q)| < o™)dp(p) < p(R7)u(RS7)) - 10707

The fact that the measure p is doubling [Do98] gives us some constant C' > 0 such that u(R(log)) <
Cu(Rg), and this allows us to check the condition of the previous lemma. O

Now we know that, to conclude, it suffices to understand the oscillations of A(p,q), for any
fixed p, when ¢ gets close to p. To do so, we will introduce some coordinate systems associated to
the dynamics.

3 Construction of adapted coordinates.

In this section, we construct a family of adapted coordinates in which the dynamics is going to be
(almost) linearized. We also define templates (linear form version, and vector field version).

Lemma 3.1. There exists a family of uniformly smooth maps (93),cq, such that for all x € Q
®5 . R — W*(x) is a smooth parametrization of W*(z), ®2(0) = z, [(®%)'(0)| = 1, and:

where g = €3 |uy|, with |pg| == 0sf(x) € (u4,1s) C (0,1) and €5 € {—1,1} is some sign that
depends on x. The dependence in x of (95).cq is Holder.

Proof. The proof is taken from [KK07]. The idea is to first define ®% on W} () (on which 0, f(x)
makes sense and is smooth along W (), even if = ¢ ), and then to extend our maps on W?*(x)
using the conjugacy relation that we want. Define, for any z € 2, and for any y € W _(x), the
function p,(y) by the formula:

o0

px(y) = Z [(lnasf)(fny) - (lnasf)(fnx)] :

n=0

This is well defined and smooth along W} («) (and this, uniformly in € Q). We can then define,
for y € W*(z):

s (y) == / epm(y')dy/
[ Wy, ()



in the sense that we integrate from z to y, following the local stable manifold W} (z) (w.r.t.
the arclenght). This function is smooth along W} (), and is obviously invertible since its stable
derivative is positive. We denote by ®2 : (—e,&) — W"(z) its inverse. (One can choose a uniform
¢ for all these maps, but this is not very important.)

We check that the dynamics is linearized in these coordinates. Notice that, since 3 (z) = 0,
the desired relation is equivalent to:

Vy € Wite(), 05950 (f(1))0s f(y) = |12l 0s V3 (y).

But this is obviously true, by construction of ¥%. It follows that, for all y € W (x), ¥ ( (f(y) =
fn

(v)) =

) Wiy
1 U5(y). In particular, notice that iterating this relation yields, for y € W (z), \I'jm(w)(
Poprn—ig - Vs (y).

To conclude the proof, we need to extend ¥ on the whole stable manifold of x € 2. We proceed
as follow. Let y € W¥(z). If n is large enough (depending on y), one sees that f"y € W (f"z).
Hence, it makes sense to define:

Wa(y) = a5 U (£ ():

The previous discussion ensure that this is well defined. Moreover, it is easy to check that the map
Us . W9 (z) — R is a smooth diffeomorphism (when we see W#(z) as a manifold equipped with
the arclenght.) The inverse of ¥ is defined to be ®3 : R — W#*(z). The commutation relation is
then easy to check. The Holder regularity in x is tedious to detail but shouldn’t be surprising. [

Lemma 3.2. There ezists a family of uniformly smooth maps (P%),cq, such that for all x € Q
QY : R — WH(x) is a smooth parametrization of W"(z), ®%(0) =z, [(®Y)(0)] =1, and:

Vz € Q,Vz €R, f(P;(2)) = PF(,)(Aa2),

where Ay := €%|Ag|, with |Ag| = Ouf(x) € (A_,A4) C (1,00) and ¥ € {—1,1} is some sign that
depends on x. The dependence in x of (DY) is Héolder.

Definition 3.3. These parametrizations often goes outside €2, but we are only interested by what’s
happening inside €. So let us define:

Q= (@) Q) CR Q)= (82) Q) CR.
Notice that, for all z € €, 0 € €23. Moreover:
Ve e Q,Vz e QY, \yz € Q?(w) cR.
A similar statement hold for QF.

Remark 3.4. Let us define some further notations. Define, for n € Z and = € Q:
A= 0u () (@) 5 [l ] = 0s(f") ().

Notice that [\| = || =1, A& = |)\jfn,>n(w)|_1 and |pi™| = |M§ﬁ>n(r)|_1- Moreover, we can

write some relations involving (®%) and (®:). Foralln € Z, x € Q, y € Q2, z € Q¥, we have:

FH@U) = oy (AV2) 5 L) = Py (1),

where A" (vesp. p&™) is |AS™] (vesp. i |) multiplied by the obvious associated sign.

Lemma 3.5 (change of parametrizations). Let z € Q and let £ € QN W} (z). Then the real map
affz e = (®%)~t o ®¥ : R — R is affine. Moreover, there exists C > 1 and o > 0 such that

In |aﬁi7wl(0)| < Cd(z,2)“.

Proof. Notice that, for all z € R, and for all n > 0:

(@) (@2() = A (Phonry)  (@niy(AT2)).



In particular, without loss of generality, we see that we can reduce our problem to show that aff, ;
is affine on a neighborhood of zero, and this property should spread. In this case, we can compute
the log of the absolute value of the differential of (@gf1 o @Y. and we get:

i (|((@1)700) 2)])
= 05(B2(2)) — pa(4(2)) = pi(),

which is constant in 2. The proof is done: the bound on aff, ;'(0) follows from an easy bound on
pz(x). O

These coordinates are interesting but only linearize the dynamics along the stable or unstable
direction. Of course, we can’t expect to fully linearize the dynamics in smooth coordinates, but we
can still try to introduce coordinates that will linearize the dynamics in a weaker sense, in some
particular places. This construction is directly taken from [TZ20], appendix B.

Lemma 3.6 (Nonstationary normal coordinates). The exists two small constants p1 < pg < 1, and
a family of uniformly smooth coordinates charts {tz : (—po, po)? — M }req such that:

o For every x € ), we have
Lm(0,0) =7, Lz(zv 0) = (I)g(z)v LI(O’y) = (I)i(y)v

e the map f, := L;(lx) ofoty: (—p1,p1)2 — (—po, po)? is smooth (uniformly in x) and satisfies

ﬂ'y(ayfx(za 0)) = Mz, WZ(aZfr(Oa y)) = Az,
where 7, (resp. m,) is the projection on the first (resp. second) coordinate.
Furthermore, one can assume the dependence in x of (tz)zcq to be Hélder regular.

Proof. Since the stable/unstable manifolds are smooth, and since they intersect uniformly trans-
versely, we know that we can construct a system of smooth coordinate charts (i,).cq such that,
for all z € €,

12(0,0) =z, 1.(2,0) = ®7(2), 1.(0,y) = P5(y).

One can also assume the dependence in x of these to be Holder regular, since the stable/unstable
laminations are Hélder (in our context, they are even C'*t%). Define f, := Z;(lz) o foli, Thisis
a smooth map defined on a neighborhood of zero, with a (hyperbolic) fixed point at zero. Notice
also that (dfy)o is a diagonal map with coefficients (A, z1,;). Those coordinates won’t do, but we
can straighten them into doing what we want. Define:

paz) = > (Wm0, fron ey O™ 2,0)] = I 1t e
n=1

and

pa) = > (01702 Froa (0, 1p)] — 1 Aga])
n=0

Finally, set DY (z,) := (z,ye= (), D3(2,y) := (ze= W) y), D, := Do D and 1, := i, 0 D,. Let
us check that f, := L;(lx) o f o, satisfies the desired relations. First of all, notice that p% and p3

are smooth and satisfy 5%(0) = 5(0) = 0. In particular, D,, D and D? are smooth, and coincide
with the identity on {(z,y) , 2 =0 or y = 0}. Moreover,

Py (Naz) =m0, fo(2,0)] = In || + p5(2)

and 5
P2(y) = In |70, f2(0,y)| — In[Az] + pj"(z)(/‘xy)'

Now let us write f, in terms of f,: we have

fo= L]T(lm) ofou, = (ﬁ;(x))71 o (Zv)?(x))71 o fy 07.3; 07.3;.
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Hence:

(df2) (=,0) = A(D3ay) ™ rez0) © AP )™z © (df)(2,0) © (dD%)(z,0) © (dD) (20

Abusing a bit notations, we can write in matrix form:

1 (%)) (1 0 Ao T0,fx(2,00\ (1 0 1 (%
= (3 D) o) (TR G )G )

i V ) (e (%)
B 0 e_pf(w)()‘wz)+ﬂw(Z)Wyayfw<za0) a 0 Ha 7

which implies in particular that 7,0, fz(z,0) = f1z. A similar computation shows that

Ae O
0= (05 )
In particular, 7,0, f.(0,y) = Az. O

Remark 3.7. Notice the following pretty convenient property. As soon as the quantity writen down
makes sense, we have the identities:

A (%) A0
where f{") := Lpn(z) © f™ o ta : (=(p1/po)™pos (p1/P0)™po)* — (—po, po)?.

This coordinate system is not “canonically attached” to the dynamics, since the behavior of
1, outside the “cross” {(z,y) , zy = 0} might be completely arbitrary. But the behavior of those
coordinates near the cross seems to give rise to less arbitrary objects. Those objects will be called
“templates” in these notes. They are inspired from the “templates” appearing in [TZ20].

Definition 3.8 (Templates, dual version). Let z € 2. A template based at x is a continuous 1-form
&t WE (z) — QY(M) such that:

Vz e Wi (x), Ker(&), D E“(z).
We will denote by =Z(z) the space of templates based at x.

Remark 3.9. Notice that, since E"(z) moves smoothly along the unstable local manifold W} _(z),
it makes sense to consider smooth templates. Notice further that, since (df).E%(z) = E“(f(2)),
the diffeomorphism f acts naturally on templates by taking the pushforward. This yields a map

fe i E(@) = E(f(2))-

Lemma 3.10 (Some interesting templates.). There exists a family (£3)zcq of smooth templates,

where &5 € Z(x), that satifies the following invariance relation:

Vz € Wi(2), (F(€))5x) = 1z ' (€2 (o)-
(Moreover, the dependence in x of (£3) is Hélder.)

Proof. For all x € Q, define £ := (15)«(dy). It is clear that this defines a smooth template at .
Furthermore, using remark 3.7 for n = —1:

62 = £l(a)dy) = (tp@))« (fo)x () = (b)) (dlmy £57)) = (Lp)s (3 dy) = 15" €5 -
The dependence is Holder because (¢) depends on z in a Holder manner. O

It is natural to try to find a "vector field” version of those templates. We suggest a way to
proceed in the following.

Definition 3.11 (Templates, vector version). Let x € 2. A (vector) template based at z is a
continuous section of the line bundle TM/E" along W} _(x). We will denote by I'(z) the space of
(vector) templates at x.



Remark 3.12. If X is some continuous vector field defined along W} (x), we can take its class
modulo E* to get a (vector) template [X]. Notice also that it makes sense to talk about smooth
(vector) templates. Notice further that f acts naturally on (vector) templates, since (df),E"(z) =
E*(f(2)). This define a map f, : I'(z) = T'(f(z)).

Lemma 3.13 (Some interesting templates.). There exists a family ([0%])zcq of smooth (vector)
templates, where [0%] € T'(x), such that:

V2 € Wige(), (fo[02D) () = 10l pco)-
(Moreover, the dependence in x of ([07]) is Hélder.)

Proof. For all z € Q, define 97 := (1,).(9/0y) along W} (z). This is smooth. Moreover, using
remark 3.7, we find:

[+0; = f*(bw)*<8y) = (Lf(m))*((fz)*ay) = (Lf(z))*(ﬂway +(%)0:) = Marag(x) + (%) 0y
Hence, taking the class modulo E*, we find
Fu[07) = pa[0] ™)
which is what we wanted. The dependence in x is then Holder because of the properties of ¢,,. [

Remark 3.14 (A quick duality remark). We can define a sort of “duality bracket”
E(z) x I(z) — CO(W} (x),R) by the following formula:

(€, [X]) == &(X).

Our special templates (£5)zeq and (0F) can be chosen normalised so that (¢5,07) = 1. This will
not be usefull, but this is an indication that Z(z) and I'(z) could countain the same informations.

Remark 3.15 (Templates acting on a space of functions). It is natural to search for a space of
functions on which (vector) templates could acts. A way to do it is as follow. For each x €
define F(x) as the set of functions h defined on a neighborhood of W (z) that are C' along the
stable direction and that vanish along W} (x). In this case, for any point z € W% (x), we know
that Osh,(z) makes sense, and we know that 9,h,(z) = 0 also makes sense. So one can make
(vector) templates [X] acts on h by setting:

Vz € Wige(@), ([X]-ha)(2) := (X - he)(2).
This is well defined. In the particular case where [X]| = [07], we get the formula:
vz e (=1,1), ([65]- he)(25(2)) = Oy(ha © 12)(2,0)

Notice that f acts naturally on these space of functions, by taking a pullback f*: F(f(z)) —
F(x). If we fix hy) € F(f(x)), and if we set hy := hy) o f € F(x), notice finally that one can
write

(03] he = (0] F*hpiay = F[O5) - hyiay = pal0L D] gy
Lemma 3.16 (Changing basepoint). Let x € Q. For £ € QN W} (), let

o0
H(xz,Z) = exp <Z (Inpip—n(py —Inprp—n(z)) )
n=0
Then: i
vz € Wige(x),  ([65]): = H(z, )([07])--
Proof. Remember that TM/E" is a line bundle, and that [0%] doesn’t vanish. In particular, there
exists a function a, z : W.(z) — R such that:

Vz € VV;ZC(.')C), ([af])z = az,i(z)<[a§])z

The main point is to show that a, z is z-constant. Since the familly ([0%]) depends in z in a Holder
manner (and locally uniformly in z), we know that a, z(2) = 1+ O(d(z, %)®) for some a. The
invariance properties of those (vector) templates yields an invariance property for a, z(z):

—n)
u lj/ —n
V2 € Wige(2), a2,2(2) = — 5 a5-n(a). - () (f"(2)).

x

Taking the limit as n — 400 gives the result. O



4 Templates acting on A™.

We return on our study of A*. Recall that A+ : Diag — R is defined as

oo

At(p,q) == Tu(p,q),

n=0

where T,,(p, q) := 7(f"(p)) — 7(f"([p,4))) — 7(f"(lg,p))) + 7(f"(q)). Let us fix some p € Q, and
set:

Af(q):=AT(p,q) . Tpn(q) :==Tu(p,q)
For each p and n, T}, ,, is C'*, and moreover taking the derivative along the local stable lamination

vields: 9,T,n(q) = —(@a7)(f™(Ip, @) |10 |Osmp(q) + Os7(f(9)))|1g" |, where ,(q) := [p,q]. Tt
follows that A is C' along the local stable lamination. Moreover, T}, ,, vanish on W} (p), and so
does A}. Tt follows that

A eF(p) , Tpn e Flp),

where F(p) denotes the space of function defined in remark 3.15. This ensure that the next
definition makes sense.

Definition 4.1. For each z € Q, for each z € Q¥ C R, define X, € C*((—po, po), R) by:
Xo(2) = ([05] - AT ) (@3 (2))-
The family (X, ),ecq depends on z in a Holder manner.

Lemma 4.2 (autosimilarity). We have X,(0) = 0. Moreover, the family (X;)zcq satisfies the
following autosimilarity relation:

where T,,(z) := ([02] - Ty,0)(P%(2)) € C°.
Proof. Notice that T}, n11(q) = Ty(p)n(f(q)). It follows that:

AS() = Tpo(@) + Y Tryn(F(@)) = Tpola) + A, (F())-
n=0

Making the vector template [07] acts on this along W} _(p) vields (using the invariance properties
of the family ([0%])):

([02]- AF) = (192 Tyo) + ([02] - (At © 1)) = (02 - Tyo) + 1y ([01P)] - AT, o .
Testing this equality on ®}(z) gives the desired equality, since fo ®p = ®% o (Apla). O

Lemma 4.3 (regularity of 7). The function T, is smoother than expected: it is C*+*((—po, po),R).
It vanish at z = 0, and its derivative at zero is:

(72)'(0) = 0:0y (7 © 14)(0,0) + 1,(0)0: (7 0 12)(0, 0),

where ng(z) € C1T* is defined such that 8y + n,(2)0, € ;' (E*) points in the stable direction at
coordinates (z,0).

Proof. Let us do an explicit computation of 7,.. By definition of [0%]:
72(2) = ([05] - Tr,0)(®5(2)) = 0y(Ti 0 © 12) (2, 0).
Recall that Ty 0(t0(2,y)) = T(ta(2,9)) — 7([2, ta(2,9)]) — T([t2(2,y), x]) + 7(x) € C'T*. Define
ma(z,y) = iz ([2,00(2,9)]) € {(0,5), 5" € (—po, po)}

and
Ws(z’y) = Lgl([%('zvy)vﬂ) € {(2/,0),2’/ € (_p07p0)}'
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Define also 7, := 7 0 t,. Then:
To0(ta(2,9)) = 7a(2,y) — T2(73(2,9)) — 72(73(2,9)) + 72(0).

For each point z € (—po, o), let N,(z) be a vector pointing along the direction ¢;'(E*®), and
normalize it so that Ny(z) = Oy + nz(2)0.. By regularity of E°, we can choose N,(2) to be CFe
in z. We can then, for each z, z, find a (smooth) path t — 7, (z,t) such that 7% o v,(z,¢t) = (z,0)
and such that 9;v,(z,0) = N,(z). (We just follow the stable lamination in coordinates.) Using

this path, we can compute the derivative of T}, ¢ o ¢; as follow:
d
0,(Tei0 012)(2,0) = ((9y +na(2)02) - (T 0 02) ) (2,0) = Lot ()0
_d
~ dtj=o
= 9y7(2,0) + 14 (2)0.74(2,0) — (A7) 0,0y © (A72) 2.0y (Na(2))
= 0yTx(2,0) + 1y (2)0,72(2,0) — 0y7(0,0)m, (075 (2,0)),

(7o (a2, 8)) = 7o (a2, 8))) = 7 (73 (2 (2, 6))) + 7 (0))

since (dr})(2,0)(0.) = 0, as m3(2,0) = (0,0), and since 7, o 75 = 0. In this expression, everything
is C'T* (since 7 € Regp™); except eventually the last term 7, (z) := m,0,7(2,0). Let us prove
that 7,(z) is, in fact, constant and equal to one. First of all, the maps (7,) are at least continuous

(and this, uniformly in z). Moreover, we have m,73(0,y) = y, and hence 1,(0) = 1. To conclude,
let us use the fact that the stable lamination is f invariant. This remark, written in coordinates,
yields (as soon as the relation makes sense):

s _ pln) s -n
To = f i n(a) © Ti—n(a) © fim,
Taking the differential at (z,0) yields, using remark 3.7:

Vn > 0,Vz € (—po,po); (dm})0) = (dfﬁz(x))(o,o) o (dﬂff—n(m))@;fmzo) o (dféfw)(z,o)

(w0 (0 0 ) M L (0 0 )
0 1) O mpe@OE) o 0 npnim(As™2)

It follows that:
Vz,¥n >0, n,(z) = nffn(z)()\ﬁfmz) — 1.

n—oo

In conclusion, we get the following expression for 7,:
To(2) = 0yT2(2,0) + 1y (2)0.72(2,0) — 9y74(0,0),
which is a C'*® function that vanish at zero. Let us compute its derivative at zero: we have
(72)'(0) = 920, 74(0,0) +n;,(0)9:72(0,0) + 1 (0)927(0,0).
The fact that n,(0) = 0 gives us the desired formula. O

Remark 4.4. Recall that, in our area-preserving context, there exists a Holder map h : 2 — R
such that Aypu, = exp(h(f(z)) — h(x)). Fix one such h for the rest of the paper. For each
7 € Regt T (Q, R), let us denote by ®, € C*(Q,R) the map defined by

U
D, iz € Qi (7)) (0)e"™) e R.
The linear map 7 € Reg:t®(Q,R) = &, € C*(Q,R) is obviously continuous. Moreover, it is easy
to see that, genericaly in 7 € Reg}f”‘, the map @, is not cohomologous to zero. Indeed, one can
take a fixed point pg (or a periodic ordit) and look at the value of ®.,(po): if it is zero, then it is

easy to Reg}f‘l—perturb 7 on a neighborhood of pg so that ®.(pg) becomes non-zero.
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Lemma 4.5 (Change of basepoint). Let z € Q. Let & € W}k (x) be close enough to x. Then, there
exists Aff, z - R — R, an (invertible) affine map, such that:

A (Xa(2)) = Xa(af2(2)),
where aff, ; = (®4)~! o ®Y is the affine change of charts defined in lemma 3.5. Moreover, there
exists C > 1 and o > 0 such that In|Aff, ;'(0)| < Cd(z,z)>.

Proof. Let x € Q and let £ € W} _(x) be close enough to . We have, for p in a neighborhood of Z:
AT (Z,q) = AT(2, [z, q) + AT (2,q).
We differentiate (w.r.t. ¢) with the vector template [0%] along W} (%) to find:
Xa(2) = 03] (AF o [z, )(@%(2)) + ([07] - AD)(@E(2)).

The first thing to recall is that 3 = @7 o (@)~ o ®Y = ¥ oaff, z, and moreover, by lemma 3.16,
[07] = H(z,Z)[0F]. From this, we see that the last term is H(x, %)X, (aff; 3(2)). To conclude, we
only need to show that

(031 (A o[w,]) = H(z,)[05] - (A o [z, ])

x

is constant along W} (z). In coordinates, we see that:
(051 (AF o[z, D(@a(2)) = 0y (A o [z, ] 0 ta)(2,0) = 0y (AT 0 1q 0 m3)(2,0),

where 7 is defined in the proof of lemma 4.3. Recall from this proof that we have

. 0 0

is constant in z (and in z). It follows that: [0%] - (AT o [-,2])(®.(2)) = 9, (AL 01,)(0,0), which is
a constant expression in z. The proof is done. O

We conclude this section by showing that one can reduce the study of the oscillations of A} to
the study of the oscillations of X,. The proof is in two parts: we first establish a proper asymptotic
expansion for Af, and then we reduce (NC) to a statement about (X, ).cq-

Theorem 4.6. Let p,q € Q be close enough. We will denote ﬂg(q) =[p,ql =15 QNWS_ (p), and

75 (q) = [g,p) = r € QN W (p). We have q = [r,s]. These “coordinates” are C'**. Suppose

that d*(p, s) < 0?7 and d*(p,r) < o for o > 0 small enough. If Bz > 1 is fized large enough, then
the following asymptotic expansion hold:
+ _ + s 1+Bz+a
AJ([r, 8]) = £0AT (r)d*([r, 8], 1) + O(o"T72T%),
where Oy denotes the derivative in the stable direction.

Proof. Let us introduce some notations. Define, for any p € Q, the C'** map V,, : W _(p) — R

as
e’}

Vpls) =D (r(f" () = 7(f"())) s

and notice that

A Taylor expansion yields:
V() = Vyu(p) £9:V,(p)d°(p, s) + O(d* (p, S)H_a)

= :tasvp(p)ds(pa S) + O(U(1+a)ﬁz)
= £0,V,(p)d*(p, s) + O(cToFF7)
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as soon as fSza > 1+ a. Hence,
AF (@) = £ (0sVp(p)d*(p, 5) = 05V, (r)d*(r, 5)) + O(a'FF52),
Now, we want to make GSA;' (r) appear. We compute it and find out that
D] (1) = 0.V, (p)dary (r) = V(7).
We can make this term appear in our asymptotic expansion like so:

d*(p, s)
d(r,q)

N :l:(aSA;(S) + S01”5(71))6#9(7“7 (I) + O(al+a+ﬂz)

A;(Q) = :l:(asvp(p) — asvr(’r))ds(T, q) + O(Jl+a+ﬂz)

where

ona)i= 0.5, (S~ 0,55

To conclude, it suffice to show that ¢, s(r) = O(c'T®), and we are done (since in this case
©p.s(r)d*(r,q) = O(c1T2FF2)). To do so, notice the following. The holonomy is (uniformly in ) a
C* map W (r) N — Wi _(p) NQ. A taylor expansion at ¢ = r yields:

d(s,p) _ (@), () _ dsmy (r) + O(d(g,7)") = Dy () + O(0*77).

d*(r, q) d*(q,r)
If 5 is chosen so large that a8z > 1 4+ a again, then we find the expansion:
d*(s, p) S 1
L = O O(c't?),
(0.1 T, (1) +0(a77%)
which is what we wanted to find. O

Remark 4.7. Recall again that p has a local product structure [C120], in the following sense. For all
x € Q, there exists ¥ and pf two measures supported on U, := QNWE _(z) and S, := QNW} (z)
such that, for all measurable h : M — C supported in a small enough neighborhood of x, we have

e /U w /g (e s () 2.

Notice in particular that, for some rectangle R, = [Up, Sp] > p, and for any borel set I C R :

uq € Ry, hllq.p)) € 1) = w(S,)ut(z € Uy h(z) € 1)),

The family of measures (uY),cq satisfies some invariance properties under f that will prove usefull
later. In the following lemma, we will denote U? := B(z,0) NU, and S? := B(x,0) N S,.

Lemma 4.8. Denote by mo= (PUY*uk, the measure pl seen in the coordinates ®%. Suppose

that the family (X,), satisfies the following (uniform) non-concentration estimates: there exists
a,v,00 > 0 such that, for all z € Q and for all 0 < 0 < 0¢, and for any a € R:

w2 € [-o,0], 1Xo(2) — az] < 0402) < 07 o ([=0,0]).
Then (NC) holds.
Proof. Recall that, by lemma 2.5, to check (NC), it suffices to establish the following bound:
p(q € Ry, |AS (g)] < o' T0FP2) < o7 u(Ry)
where the bound is uniform in p, and where Ry = U, S;"BZ)] is a rectangle with p in its center

of stable (resp. unstable) diameter 0”# (resp. o). Let us check this estimate by using the Taylor
expansion of A; . We can write, using the local product structure of u:

o 1+« z\
i (g € BT, |A(q)] < ot+o+? )_/

u o —+
iz, M (1" ely, |A
Sp

5 ([rysD] < 02 dpig (s)
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< /S((,/iz) Fy (7” SHUAS |33A;(7’)d8([r, slym)| < C’Ul+ﬁz+o¢) i (s)-
It is easy to see, using Gibbs estimates, that there exists d,.; > 0 such that
y(Blp, 0?2 712) 0 5770 < 0 0res 2 (577,

It follows that one can cut the integral over S, in two parts: the part where r is oBzte/2_close to
p, and the other part. We get, using the aforementienned regularity estimates:

o A+ I+at
1 (q € RS, |AT ()] < o' TotP7)

<atuelu(mg)+ [ s (re UL 10.85(0] £ Cot ) dugls). (1)

B
sy %)

We just have to control the integral term to conclude. To do so, notice that, for all s, we can write:

uy (re g, 10,85 () < Co™+2)

= ((@Z)*u;f) (z € ((I)Z)—l(Ug), |85A;‘((I)p(z))‘ < Co_1+a/2)
< (@) pgy) (z € [~C0,Co), |00 (Dy(2))] < Cotto/?).

Now, since TM/E" is a line bundle, and since ds; and 97 are C1T% there exists a nonvanishing
C* function a,(z) such that [Os]on(2) = ap(2)[OF]ou(.). We have ap(z) = @M, Hence:

(@p)* i) (z € [-Co,Col, [0,AF(D,(2))| < Ca_l+(x/2>

= ((2)"ny) (z € [~Co,Co), |ay(2)X,(2)| < Colte/?)
(@212) (= € [-Co.Cal, 1X,(2)] < C'a+r2)

< (@) ) ((C'o, Clo) o7,

where the last control is given by the nonconcentration hypothesis made on (X,)cq. To conclude,
notice that by regularity of the parametrizations ®,, and since the measure p7 is doubling (thus
constants can be neglected), we get ((@g)*,u;;) ([-Co,Ca]) < Cuy(Uy). Injecting this estimate in
(*) yields

i (a € RY, A (q)] < 01+9750) < € (0700/ 4 07) p(RY),
which is what we wanted. O

We see that we are reduced to understand oscillations of z — X, (z) (modulo linear maps: this
wasn’t necessary here, but this claim will be natural after reading the next section). The next
section will be devoted to proving a “blowup” result on the family (X,)zcq, which will help us
understand deeper the oscillations of those functions. This “blowup” result will allow us to exhibit
a rigidity phenomenon. The final section is devoted to proving the non-concentration estimates in
the hypothesis of lemma 4.8, under our generic condition defined in remark 4.4.

5 Autosimilarity, polynomials, and rigidity

Let us recall our setting. We are given a family of Holder maps (X;)zcq, where X, : Q¥ N
(—=p,p) — R is defined only on a (fractal) neighborhood of zero and vanish at z = 0. Recall that
QU= (®%)~1(Q) 3 0. We have an autosimilarity relation: for any x € 2, and any z € Q“N(—p, p),
we have

Xo(2) = To(2) + pa X5y (222),

where 7, : QN (—p,p) — R is a C1T* map (in the sense of Whitney) that vanish at zero. Recall

that, Reg}ﬁ'“—generically in the choice of 7, we can suppose that the function

D,z e Qs (7) (0™ eR
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is not cohomologous to zero (where h : Q@ — R is such that p;A\, = exp(h(f(z)) — h(x))). We
will establish quantitative estimates on the oscillations of (X,) under the cohomology condition
®. » 0. To do so, we start by proving a “blowup” result, inspired from Appendix B in [TZ20].
The point of this lemma is to only keep, in the autosimilarity formula of (X,),cq, the germ of 7,
(in the form of its Taylor expansion at zero at some order). Depending on the contraction/dilation
rate on the dynamics, the order of this Taylor expansion is different: in our area-preserving case,
it is enough to approximate 7, (z) by (7,,)'(0)z.

Lemma 5.1 (Blowup ?). There exists two families of functions (Yu)zeq, (Zz)zecq such that:

o Forallz € Q and z € Q%N (—p,p),
Xz(2) = Yo (2) + Zu(2).

o The map Yy : Q4N (—p,p) = R is C**, and there exists C > 1 such that, for all x € Q and
z € QN (=p,p):
Va(2)] < Clatte.

o The family (Zy)zeq satisfies an autosimilarity formula: for any x € Q, z € Q%N (—p, p)
Zo(2) = (72)"(0)2 + paZp(a) (2Aa).-
Moreover, the dependence in x of (Xz)zeq, (Ya)zeq and (Z;)zcq is Holder.

Proof. In the original proof, there is an implicit argument used, which is the fact that polynomials
(of order one, here) are maps with vanishing (second order) derivative. In our fractal context,
this is not true, as Q% may not be connected: so we have to replace this derivative with a notion
adapted to our fractal context. For 8 < «, define a “(1 4+ §)-order fractal derivative” as follows:
if h: Q%N (—p,p) — Ris C< in the sense of Whitney, then its Taylor expansion at zero makes
sense, and we can consider the function:

h(z) = h(0) = W(0)z

SR (2) == =

This is a continuous function on Q¥ N (—p,p), and it is bounded and vanish at zero at order
|2(@=F)=|. Moreover, notice that 6'*7(h) = 0 is equivalent to saying that h is affine. Notice further
that

514 (h(X)) (2) = (uAT+7) - 6142 () (2.

Now, let us begin the actual proof. Consider the autosimilarity equation of (X ), and formaly take
the (1 + (3)-th fractal derivative. We search for a C1T< solution (V) of this equation:

FHO(Ya)(2) = 610 (7) (2) + pady ™7 - 81 (Vo) (2a).

Notice that s, := A\ behaves like a greater-than-one multiplier. Indeed, if we denote, for
reNandn e Z,

Iii,n> = KRg... K)fn—l(w)
(if n > 0, and similarly if n < 0 as in the definition of /\g<Cn>), we see that Kfﬁm > (A")# where
A_ > 1. We can wolve this equation by setting

SV (2) 1= =D 0P (Fpmn () (AT - wET =1 Yo (2).
n=1

This is defines a continuous function that vanishes at zero. We then define Y, as the only C' 1ta
function such that Y,(0) = Y/(0) = 0 and §'*#(Y,) = Y,. In other words, Y,(z) := 2! *AY,(2).

~ Tx
Using the sum formula of Y,, we find the autosimilarity formula:

Yo(2) = 72 (2) = (72)'(0)2 + pa Y (a) (2Aa)-

We can then conclude by setting Z, := X, — Y. O
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The idea now is to consider the distance from Z, to the space of affine maps. By the autosim-
ilarity formula of (Z,), there is going to be some invariance that will prove usefull.

Definition 5.2. For any p > 0 small enough, consider the function D, : 2 — R, defined as

D,(z) := inf sup | Z.(z) —az—1|.
a,beR zeQUN(—p,p)
This function is continuous, since z € Q + Z, € C° is, and since we are computing a distance to
a finite-dimensional vector space.

Lemma 5.3. We have the following criterion. Are equivalent, for some fized x € Q and p > 0:

e D,(x)=0

o Foralln>0, Zs-ne) € clte (Q}‘.,n(m) N (—pA§7n>,pA;7">), R), and there exists C > 1 such
that, for allm >0,

||61+a(fon(m)) S O.

”L“(ﬂ;: N(=pAE™™ pAE™))

(=)

0, there exists a € R such that Z,(z) = az on

Proof. Suppose that D,(xz) = 0. Since Z,(0) =
= (72)'(0)z + paZf(z)(Ae2) gives, with a change of

(=p,p). The autosimilarity relation Z,(z)
variable,

Zpa(y (AT NS = (Fp1) (OAT V2 + Za(2).
Iterating this yields

fon(z)(z)\i*m)uf[m = linear + Z,(z2).

In particular, if Z, is linear on Q%N (—p, p), then Zy—n(,) is linear on Q)N (—p)\é_m , p)\fv_m)).
In particular, it is C'* and the bound on 51+Q(Z‘f—n(‘z)) = 0 holds. Reciprocally, if the second
point hold, then we can write, on Q% N (—p, p):

|61 Z0) (2)] = [l A 8N (Z o () (AT < (A ) — 0,

n—o0

where we used the fact that uém)\im = ¢9(M by our area-preserving hypothesis made on the
dynamics f. Hence §'7%(Z,) = 0 on Q¥ N (—p, p), which means that Z, is linear on this set. [J

Lemma 5.4 (Rigidity lemma). Suppose that there exists o € Q such that D,(xo) = 0.
Then D, =0 on .

Proof. The proof is in three steps. Suppose that D,(x¢) = 0 for some p > 0 and zy € .

o We first show that there exists 0 < p’ < p and a set w C W} (xo) N Q which is an open
neighborhood of z for the topology of W} (z9) N2, such that D, (%) =01if & € w.

So suppose that D, (o) = 0. Since Z,, vanish at zero, this means that Z,, is linear on (—p, p) N2 .
In particular, since Y, is 1% we know that X, is C'* on (—p, p) N . Now, recall that, by
Lemma, 4.5, we know that if € W}%_ N Q is close enough to =, we can write

Affyg,z (X5 (2)) = Xay 0z 2(2)),

where Aff;) ; and aff,, ; are affine function (that gets close to the identity as £ — x(). If follows
that Xz is C1** on some (smaller) open neighborhood of zero, (—p’, p') N QY. In particular, Zz
is also C1T°. Let us show that D, (&) = 0 by checking the criterion given in the previous lemma.
We have:

Z3(2) = Xa(2) = Yi(2) = Al o (X, (aff, 2(2))) = Y3 (2)

= AL (Zoo (Al 3(2)) ) + AR (Vo (i 2(2)) ) = Ya(2)

By hypothesis, Aff_ (Zxo(affmoj(z))) is affine in 2, and so its (1 + a)-th derivative is zero. We

wo,i

can then write, for all n > 0 and z € (—p’/\;_m, p'/\i_m) N Q?,n(w):

5N Zpn(@)(2) = Apniag) fr@0 T (Vin(a)) (@l o (ag). f-n(2) (2)) = 8T (Vion(a))(2),

where g, z := (Affg,io)’(0)(&&5@0)’(0)1*0‘ =1+ O0(d“(xo,%)). Since [6'F*(Y,)| < ||Yallcr+e, the
criterion applies.
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e Second, we show that if D, () = 0 for some = and small p’, then Dyin(pa,,p) (f(2)) = 0.
This directly comes from the autosimilarity formula. We have, for z € (—p, p) N Q%
Zp(2) = (72)'(0)2 + e Zg(a) (2A0)-
In particular, if Z; is linear on (—p', p') V€23, then Zy () is linear on (—p'Ag, p'As) N (=p, p) N )
e We conclude, using the transitivity of the dynamics and the continuity of D,,.
We know that D,(zo) = 0, by hypothesis. By step one, there exists w, some unstable neighborhood

of g, and p’ < p such that D,y = 0 on w. Step 2 then ensures that Dmin(p,)\m )= 0 on f™(w).

Choosing N large enough, we conclude that
vz e | fw), Dy(z) =0.
n>N

Since the dynamics f is transitive on €2, we know that (J,,~ v f™(w) is dense in Q. The function
D, being continuous, it follows that D, = 0 on Q. - O
Lemma 5.5 (Oscillations everywhere in ). Under the Regl™-generic condition ®, » 0, the fol-
lowing hold. There exists k € (0,p/10) such that, for all x € Q, for all a,b € R, there exists
20 € QYN (—p/2,p/2) such that

Vz e Q2N (20 — K, 20 + K), |Zs(2) —az—0b] > k.

Proof. Our previous lemma gives us the following dichotomy: either D, > 0 on €2, or either D, = 0
on €. Suppose the later. In this case, for all z, Z, € C'**. Write the autosimilarity relation and
take the (usual) first derivative in z. We find:

Z,(0) = (72)"(0) + paAe Z}(2(0).

Recall that, since f is area preserving, we can write A\, = exp(h(f(z)) — h(z)) for some Holder
function A : 2 — R. Our previous relation can then be rewritten as

Z4,(0)e"®) = " (7,)(0) + Zj4 (0)e" @),

which implies that ®; ~ 0. So our generic condition ®, ~ 0 ensures that D, > 0 on . By
continuity of D,, and by compacity of {2, there exists some x > 0 such that D,(z) > & for all
x € . One can do the same proof replacing p with p/2, so we can directly says that D, /s(z) > &,
taking x smaller if necessary. Now, this means the following: for every a,b € R, for every = € ,
there exists zo(x,a,b) € Q¥ N (—p/2, p/2) such that

|Z:(20) — azo — b| > k.
We still have to show that this doesn’t only hold for some point zp, but on a whole small interval.

The proof is different, depending if a, b are small or large.

First of all, since Q¥ is perfect (and by compacity of ), there exists ko > 0 such that Q¥N{2ky <
|z| < p} # 0. Define M := sup,cq | Zz | co@un(—p,p).r), and then define M = 4k;' (k + M). In
the case where |a| < M, then we consider the associated zy € Q¥ from before, and we define
% = min((rk/4M)'/* k/4M). We then find:

Vz e Qy N (20 —R,20 + R), |Zz(2) —az—D
= |(Zz(20) —az0 — b) + (Zx(2) — Z2(20)) + a(z0 — 2|
>k —|ZylcaRY — aRk > K/2.
If |a| > M, we look at the value of b. If |b| < |a|ko/2 , then:
Vz € Oy, 2| > ko, |Zu(2) —az—0b] > |alko — |b] — || Zz]lco = -
If |b] > |a|ko/2, then:
Vz ey, [2] < kofd, |Ze(2) —az = b 2 [b] = |alko/4 = || Za]|co = &

This proves what we wanted: for all a,b € R, there exists some open interval of positive diameter
(bounded from below uniformly in a,b and z), centered at a point lying in Q¥ N (—p/2, p/2), on
which Z,(z) is far away from az + b. O
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Lemma 5.6 (Oscillation everywhere in x, at all scales in z). Under the generic condition ®, ~ 0,
the following hold. There exists k > 0 such that, for all x € Q, for all a,b € R, for all n > 0, there
exists zo € Q¥ N (—p/2,p/2) such that

Vz e QYN (20 — Ky 20 + k), |2 (2) — az — b > &,

where ngm(z) = uéﬁTL)fon(m)(z)\ifm). The family (ngn)) is a (n-th times) zoomed-in and rescaled
version of (Z).

Proof. We know that z{m (z) = linear + Zy(z) on (—p,p) N Q% The result follows from the
previous lemma. O

Lemma 5.7. Under the generic condition ®.. ~ 0, the following hold. There exists k > 0 andng > 0
such that, for all x € Q, for all a,b € R, for all n > ny, there exists zo € Q¥ N (—p/2,p/2) such
that

Vz e Q4N (20 — k20 + K), | XV (2) —az —b] > &,

where X (2) = i X oy (2A™).
Proof. Recall that X, =Y, + Z,, and that |Y(2)| < C|2|"**. Zooming in, we find, for all n > 0:

where V3" (z) i= ué_mefn(w)(z)\g(,;_")) = O((\S™)®). Taking ng large enough so that this is less
than /2 for the x given by the previous lemma allows us to conclude. O

We conclude this section by establishing what we will call the “Uniform Non Integrability
condition” (UNI) in our context.

Proposition 5.8 (UNI). Under the generic condition ®, ~ 0, the following hold. There exists
0 < k < 1/10 and o9 > 0 such that, for all € Q, for all a,b € R, for all 0 < o < 0y, there exists
z0 € Q¥ N (—0/2,0/2) such that

Vz € Qi N (20 — Ko, 20 + ko) C (—0,0), |Xz(2) —az —b| > ko.

Proof. For each o small enough, define n,(c) as the largest positive integer such that o <

p)\é_n”(”». We then have o ~ )\fv_"“(”» ~ (,ué_"”(a)))’l, and we see that we can deduce our
statement written with o by our statement written with n, (o). O

6 Nonconcentration under (UNI)

In this last section, we establish our last estimate, given by the following lemma. We call (UNI)
the estimate given by Lemma 5.8.

Proposition 6.1. Under (UNT), there exists 4 > 0 and « > 0 such that for all o > 0 small enough,
for all x € Q, for all a € R, we have

m, (2 € [~o.0), [Xu(2) — a2l < 0™F°) < 07y (=0 0)),

where 7 = (PUY* k.

Once this proposition is proved, lemma 4.8 will ensure that the nonconcentration estimates
(NC) are true under the generic condition ®, = 0. Let us begin by strenghtening a bit the
conclusion of (UNI): we will go from a statement about oscillations of (X,) at zero to a statement
about oscillations of (X,) everywhere.

Lemma 6.2 (Oscillations everywhere !). Under the generic condition ®, » 0, the following hold.
There ezists 0 < k < 1/10 and o9 > 0 such that, for all x € Q, for all a,b € R, for all 0 < 0 < 0y,
for any zo € Q%N (—p, p), there exists z1 € QLN (20 — 0/2, 20 + 0/2) such that

Vz € QYN (21 — Kko,z1 + ko) C (20 — 0,20 + 0), |Xz(2) —az —b| > ko.
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Proof. Let us fix the x and oy from Proposition 5.8. Let x € 2, let 0 < 09, and let 2y € Q¥. Define
Z := ®¥(2p). Recall that, by lemma 4.5, there exists Aff, ; and aff, z, two affine functions with
€9 linear coefficients, such that

Aff, 3(Xz(2)) = Xa(aff; 2(2)).
Furthermore, aff, ; = (®%)~! o (®%). Notice that aff, z(0) = 2. Since (Aff, ) (0) = M), the
previous lemma applied to Xz gives us some 29 € (—0/2,0/2) such that:
Vz € (22 — ko, 29 + ko), |Affy :(Xz(2)) — az — b| > Ko,
choosing  smaller if necessary. Setting z; := (aff, z) ~!(22) yields the desired result. O

We do a little break by proving a clean cutting lemma (as clean as I can right now). The
difficulty here is a to cut 2} into “equal” pieces, but the fractal nature of Q% makes it a bit subtle
(especially because I prefer not to use Markov partitions). This is nothing new, though.

Lemma 6.3. Denote by p, r the constant given by Lemma 6.2. There exists Neyi,1, Neut,2 € (0,1), with
Newt,1 < k/100, such that the following hold. Let x € Q, o €]0, p] andn > 1. Let Ul ¢ WE (x2)NQ

be such that B(xz,o) "W _ (z)NQ C Ul ¢ B(z,100) "W (x). There exists a finite set A and a
family of intervals (Ia)acyy_, w,, where Wy C AF is a set of words on the alphabet A, and where
I, C Wi (x) are such that:

1. I@ﬂQZUgEU)

2. Foralla e A*, 0 < k < n, we have [, N Q = UpeaTap N Q), and this union is disjoint
modulo a zero-measure set.

3. For alla € A*, 0 < k < n, there exists to € QN I, such that

v o(2) N B(2a, 10" diam®(I,)) C Ia

loc
4. Forallac A*, 0 < k <n —1, we have for any b € A:

Neue,p diam' (Ia) < diam" (Iay) < newr,diam™(Ia) —, pt(Tab) = Newr 210 (1a)-

Proof. The proof is done in a couple of steps.
e Step 1: We cut, once (n = 1), intervals [~o, 0] when o € [pA}2, pl.

First of all, recall that for all e, there exists 6 > 0 such that for any z € W} _(z) N Q, p(B(z,e) N
W (x)) > 6. Since, moreover, the measure p is upper regular, that is:

YU c WE (z), p(U) < Cdiam(U)% s,
It follows that reciprocally, if p%(U) > ¢, then diam(U) > 4.

Consider a finite cover of UL” by a set of balls E of the formB(x;,e) with z; € Uég), for €
small enough (for example, ¢ := ﬁpx\f 10719 should be enough). By Vitali’s lemma, there exists a

subset D C E such that the balls in D are disjoints, and such that Ugpep3B D Um(”). Since W}k ()
is one-dimensionnal, we can set A := D, and choose B C I, C 3B such that the (I,) have disjoint
union and covers U(?). By construction, the diameter of those intervals is small, but in a controlled
way, the measure of them is greater than some constant, and they all contain a ball of radius ¢
for some €. This construct our (I,).e in this case. Notice that the cardinal of A is uniformly
bounded. We see that it suffice to take € small enough to find other constants 7cy 1, Neut,2 With
Newt,1 < /£/100 that satisfies what we want in this macroscopic context.

e Step 2: We cut, once (n=1), intervals [—o, o] when ¢ > 0 is small.
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The idea is to use the properties of pr. If we denote by ¢ : £ — R the potential defining
our equilibrium state p, then we know [C120] that f.du® = e“”of_I*P(W)du?(z). Iterating yields
frdud = esnﬂpof_n’”P(*")du;n(x). The Holder regularity of ¢ allows us to see that, for all intervals
JCI =W (f"(x))NB(f*"(x),p), we have

pe(fD) () o diam(f~"(J)) _ diam(J) N
i)~ e EHOE) Gl = dam(n (L O00)

x

So we see that, using the dynamics, (and reducing p if necessary) we can reduce our setting to the
setting of step 1. This might deform a bit the constants though, which is way we chosed the 107!
in point three instead of 67! (which was the constant given by Vitali’s lemma), for example.

e Step 3: We iterate this construction to the subintervals I.

We consider U(?) as in the statement of the lemma. We use step 2 to construct (I,)ac4. Then, we
can iterate our construction on each of the I, since they satisfy the necessary hypothesis to do so.
This gives us intervals (In,a,)a;asews, With Wa C A? (taking A with more letters if necessary).
Doing this again and again yield the desired construction. O

Using this partition lemma, we can prove proposition 6.1. Notice that, looking at this lemma
in coordinates ®Y, one can get the same construction replacing subintervals of W} = by intervals of
R, Q by Q¥ u¥ by R etc.

Proof (Proposition 6.1). Let o > 0 be small enough, let a,b € R. Let « € Q. Define k(o) € N as

the largest integer such that
2k(o)
0% < (/20) - (M2

We have k(o) ~ C|lno|. By applying the the previous construction to ®%([—o,o]), with depth
k(o), we find a family of intervals (Ia)aeuj <1, (A7 that satisfies some good partition properties.
Then, the heart the proof is as follow: we want to construct (up to renaming some of the I,) a
word b € Wy(5) C AF=(9) such that

{z € [~0,0], |Xo(2) —az—b| < '™} C U I,.
aEWk(g)
Vi,ai7#b;

This is nothing more than a technical way of keeping track of the oscillations happening at all
scales between ¢ and o'*t®. Notice that, once this is proved, then the conclusion is easy: we will

have
TIZa:( U Ia) - Z 77lw(1a)
aEWk(,) aEWk(g)
Vi,aﬁébi \V/llh#bb
S (1 - ncut,Q) Z 77Zw(Ia)
aEWk(G),l
Vi,a;7b;
S (1 - 77cut,2)2 Z 77Zx(Ia)
aEWMg),g
Vi,a;#b;

< S (1 - ncut,2)k(g)"lm([_o-a 0]) = O"YTTZI([—O', 0])
for some v > 0, since k(o) ~ In(oc~1). Now, let us construct this word b: the idea is that since

2k (o) ,
2017 ~ 0(k/10)- (ncut,g) , for each i, we can find oscillations at scales ~ o1, ; of magnitude

~ 0(£/10)(Neut,1)* > 201, and conclude.

Let us begin by the case ¢ = 0. By Lemma 6.2, we know that there exists a point zy €
Q4N (—0/2,0/2) such that:

Vz € (29 £ ko), | Xy(2) —az —b| > ko.
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There exists by € A such that zy € I,. Since diam(Ip) < neyr,10 < o, we find

100
Vz € Iy, |Xz(2) —az —b| > Ko.
Hence:

{z € [~0,0], |Xs(2) —az—b| < o't} C {2z € [~0,0], | Xu(2) —az —b| < oK/2} C U I,.
aleA\{bl}

Now, let a; € A\ {b1}, and work on I,,. We know that there exists z,, € Q¥ such that
|2a, £ 107 diam(I,,)[C I,,. Now, (UNI) applied at this interval yields:

3Z,, € I,, NQL V2 €]2,, £ (k/10)diam (I, )], |Xz(2) —az —b] > (k/10)diam(1,,) > (n/lO)nfut’la.

Since diam(Zy,p) < eyt 1diam (L, ), with neyr,1 < £/100, we find, for some by € A (we can say that
this is the same by for any a; € A, up to renaming the intervals),

Vz € Ialbza |X1(Z) —az— bl > (ﬁ/lo)ngut,lo-'

Hence:
I, N{z € [~0,0], | Xs(2) —az —b| < o' T}
C Iy, N{z€|—0,0], | Xz(2) —az—b| < (/@/20)773%10} - U Tiias-
az#ba

Hence

{z €[~0,0], |Xp(2) —az—b| < o'T*} C U U Ioias-
a1#b1 azF#ba

Let us do the next step, and then we will stop here because the construction will be clear enough.
We could formaly conclude by induction. Take a; # b; and as # ba. We know that there exists
Zayas € QY such that |24, 4, £ 107 diam(Z4,4,)[C Laya,- Applying UNI to this interval yield

zayas € Taja, NQAE V2 €]24,0, £ (k/10)diam (Lo, 4, )]s

| Xo(2) — az = b = (k/10)diam(Ia,a,) 2 (K/10)024 10

There exists b3 € A such that Z4,0, € lajasbs- Since diam(lg,gob5) < Meur,1diam(Zly,q,), with
Newt,1 < £/100, we have

Vz € Tnyasbs, | Xu(2) —az—b] > (m/lO)nﬁut’la > 201,

Hence:
Tavas N {2 € [—0,0], |Xo(2) —az = b < o™} € | Tarazas
a3#b3

and so

{z € [~0,0], | Xu(2) —az—b| < o't} C U U U T azas-

a1#b1 az#bs azF#bs

This algorithm is done until the k(c)-th step. This conclude this construction, hence the proof. [

Theorem 1.4 is then proved using Proposition 6.1, Proposition 5.8, and Lemma 4.8.

Appendix A Some regularity for the geometric potential

In this section, we prove that (in our 2-dimensionnal, Axiom A, area-preserving context) even
though the geometric potential 7¢(z) := In||(df)gu(y)| is only CT(Q,R), for any p € Q, the
family of functions

057y : Wii.(p) N — R

are C1T*(W _(p),R) (and this, uniformly in p). Moreover, the differential of 74 varies (at least) in a
C'** manner along local unstable manifolds, and 9,,0,7¢ is Holder on Q. In fact, 7; € Reg,t*(Q).
Let us introduce some notations.
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Definition A.1. For any x € Q and (z,y) € (—p, p)? N1,(Q) 71, denote by 6%(z,y) € R the only real
number such that

(1) (B (12 (2, ))) = Span (0- + 62(2,1)9, ),

where (t3)zcq is the family of smooth coordinates defined in lemma 3.6. The real valued map 6
is C1**, and this, uniformly in = € Q.

Remark A.2. Notice that, for all z, 8%(z,0) = 0. In particular, z — 9,0%(z,0) = 0 is smooth.
Lemma A.3. The map z — 9,0%(z,0) is C*T*((—p, p) N, R), and this, uniformly in x.

Proof. Recall that f, := Lf( o f o, denotes the dynamics in coordinates, and that f,(z,0) =
(Az2,0). Let us introduce four families of smooth functions a,, b, ¢z, ds : (—p, p)? — R such that

e = (200 EED)
Recall that, by Remark 3.7, we have the following properties:
az(2,0) = Ay, €x(2,0)=0, d.(2,0)=p
Now, the invariance relation (df)(E"(x)) = E*(f(z)), written in coordinates, yields

Ca(2,y) + du(2,9)05(2,y)
ax(2,y) + ba (2, )03 (2, y)
Taking the derivative in y and choosing y = 0 gives, for the LHS:
0
aTI/IyZO

eﬁ(z)(fz(z,y)) = 8z91f‘($)(fw(z, 0))bz(2,0) + 8y91f(x)(fw(za 0))dz(z,0) = 8119}5(30)()\3637 0) 1

(6ycw(z, 0) + dx(2,0)0,0% (=, 0))%(,2,0) — (ayam(z,O) + b$(2,0)6y9§(z,0))c$(z70)

az(z,0)?
_ (Oycz(2,0) + p120,02(2,0)) Az
A2 ’
and so: |
9y0% (1) (Apz,0) = ayzﬂ(i’()) +A;10,0.(z,0).

Now, set ¢, (2) := a,;:ig\zjo) This is a smooth function of z. A change of variable then yields

81197;(2, 0) = (ﬁf—l(r) (Z)\J:,ll(w)) + A;,ll(x)ayef—l(r) (Z)\J:,ll(w), 0),
and so we find that

ZA>@M@MM)

This expression is clearly smooth in z, and varies in a Hélder manner in x. Its derivative at zero,

0:0,02(0,0) = > (AS™)?¢) 0, (0)

n=1
varies in a Holder manner in x. O

Definition A.4. Let P'M denote the projective tangent blundle of M, defined as the quotient of
the unit tangent bundle 7" M under the action of the antipodal map v € T M + —v € T} M. We
consider the map:

s“:Q— P'M

defined by s*(z) := E“(r) € PLM. This is a section of the bundle P1M: in other words, if
mpips ¢ PYM — M denotes the projection on the basepoint, we have mp1y, o s* = Idq.
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Corollary A.5. The map s : Q — P'M is C1+*. Moreover, for any p € Q, the map
r e We.(p) NQ = 9,8%(r) € T(P'M)
is C1T (and this, uniformly in p). Moreover, 8,0,8% and 0,0,s* are Hélder regular.

Proof. We use the coordinate chart ¢, : (—1,1)2 — M to create an associated coordinate chart
T : (1,1)3 = P*M as follow:

T:(2,y,0) := Span((bm)*(az + 0(%)) € P}m(z’y)M.
Using these coordinates, we see that

s“(te(2,9)) = B (1a(2,9)) = (1)« (0= + 03(2,9)02) = Ta(2,y,07(2,9))-

In other words, s* can be written, through the coordinates ¢, and 7, as (z,y) — (z,y,0%(z,y)).
We know that 0, (z,y) is C'7*, and that z — 9,0%(z,0) is smooth (and varies in a Holder manner
in ). We also know that z — 0.0%(2,0) = 0 is smooth. Hence, z — (df).,0) is smooth, and
varies in a Holder manner in . It follows that » € W} (p) + (ds™), is also smooth. finally, E* is
C'™e, and so

r € Wit(p) — 0,5"(r) = (ds"),(3,) € T(P' M)

is also C17. The Hoélder property of 9,0ss* and 9,,0,8% also follows from the behavior of % in
coordinates. O

Theorem A.6. Define, for p € Q, 7/(p) := 1n||(df)p‘Eu(p)H. In our area-preserving, Aziom A,
2-dimensionnal context, T € C'T* (U, R). Moreover, for all p € Q, the map

re Wi (p)NQ — Os14(r) €R
is C1T*, and this, uniformly in p € Q. Finally, the map 8,0s7¢ is Holder reqular on .
Proof. Let Q denote a small enough open neighborhood of s%(Q2) € P*M. Then
7r:VeQ— ()| eR
is smooth. Moreover, 7y = 77 o s“. It follows that
97y (r) = (dT ) su(r) (958" (7))

is C1T(WE _(p),R). Moreover, 9,0s7¢(p) is Holder regular for p € , since T is smooth, and
s%, 0s8Y, Oys™, 0,0,8* are Holder on €. O
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