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Abstract

We consider a smooth, transitive, area-preserving Axiom A diffeomorphism f on a surface
M. We fix € a basic set, and we consider a smooth potential 7 :  — R. In these notes, we
explain how one can use the ideas found in M. Tsujii and Z. Zhang’s paper on exponential
mixing of mixing 3D anosov flows to check a non-concentration property for the Birkhoff sums
of T.

1 A bit of context

In a previous paper, we tried to study the Fourier decay properties of equilibrium states for tran-
sitive nonlinear Axiom A diffeomorphisms. Say that we fix an area-preserving diffeomorphism
f: M — M (on some riemannian manifold of dimension 2 (M, g)). Suppose that f is Axiom A
and smooth, fix {2 one of its basic sets, and then define, for x € Q: 7¢(z) := In 9, f(z), where we
denoted

Ouf(z) = H(df:ﬂ)lE“(z)H-

We can similarly define 0, f : @ — Ry as

Osf(z) == |[(df )|+ () II-

The area-preserving hypothesis ensure the cohomology relation 7; ~ —In0sf. Finally, fix some
Holder potential ¢ :  — R, and denote its associated equilibrium state u € P(2) (the set of borel
probability measures supported on ). Using the “sum-product phenomenon”, we (almost) proved
the following criterion.

Theorem 1.1. Suppose that there exists Cy,eq,v > 0 such that:

Vn >0, Va €R, u(m €, |Sprs(x) —al < 6_50"> < Cpe™ 750, (NC)
where SpT¢(z) = Z;é 7¢(f*(x)) is a Birkhoff sum. Then, there exists p > 0 such that, for any

small enough open set U, for any smooth bump function x : M — R supported in U, for any local
chart ¢ : U — R, there exists C1 such that:

ve € R2\ {0}, \ [ e n@anta)| < culel.

In other words, ¢.(xdu) enjoy power decay of its Fourier transform.

The main difficulty is to check the “non-concentration hypothesis” (NC) found in the criterion.
In these notes, we show how, in our 2-dimensional, area-preserving context, one can check theses
kind of non-concentration estimates, adapting the ideas of M. Tsujii and Z. Zhang’s paper [TZ20].
Our nonconcentration estimates will hold under a cohomology condition on a “longitudinal KAM
cocyle” (defined later in the text: see remark 4.4).

Theorem 1.2. Let 7 : Q — R be any C?T potential. Denote by ®, : Q — R its associated
“longitudinal KAM cocycle”. If ®, € C® is not cohomologous to zero (this is a C*T*-generic
condition on T), then there exists Cy, e,y > 0 such that:

Vn >0, Va €R, ,u(x €N, |Spr(x) —al < 6_60") < Cpe~ e,
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Notice that, in this theorem, the potential has to be C?T®. In our case of interest, this is
not true. So this isn’t quite enough to tackle the case of the geometric potential 7¢, but the
techniques that appear when dealing with this simpler context might have applications or be
interesting enough to justify explaining them in detail here. Moreover, one might be able to adapt
the ideas found in these notes in the case of 77 by lifting the dynamics on the projective tangent
bundle. One would have to replace 7y by (z,[v]) — In(||(df).v||/||v]]) and replace the dynamics
by F(z,[v]) = (f(x),[(df)z(v)]). This idea was given to me by Zhiyuan Zhang (thank you!),
whose help was very important for me to understand the ideas behind their paper and the possible
generalizations of it. This will be explored in future work.

Let me also thank Frederic Naud, Semyon Dyatlov, Tuomas Sahlsten, Sebastien Gouezel, Anton
Gorodetski (and many more) for enlightening discussions and for their interest in my work.

2 A temporal distance function

Recall that we fixed a smooth Axiom A dffeomorphism on a surface M. We suppose that f is
area-preserving on a basic set ). Suppose that (f,Q) is transitive. We fix some smooth (C?*
is enough) potential 7 :  — R. Suppose also that 2 is not a periodic orbit: in particular, by
transitivity of the dynamics, it is a perfect set. (Typically Q is Cantor dust. One could also work
in the case where = M with M a closed surface.) Even better, using the local product structure,
for each z € Q, QN W} (x) and QN W} (x) are perfect sets. Recall that one can modify the
riemannian structure on the surface M so that:

Ve € Q, | M| :=0uf(z) € (1,00) , |ug|:=0sf(x) € (0,1).

In general, we will denote by 0, and 0s the vector fields defined on €2 of norm 1 that points in the
stable/unstable direction (defined up to some sign... Hence the modulus in the definition of 9, f).
By continuity of x € Q + (A, i) and by compacity of Q, there exists 0 < py < p— <1 < A_ < Ay
such that:

We can choose our constants so that u4 A+ = 1. Notice that our area-preserving hypothesis implies
the cohomology relation In(|py| - [Az]) ~ 0. In particular, we can write, uniformly in n > 0 and
x e

|t - iy = el T A gy 7O

If x is a n-periodic point, then [Ag|...[A (||| .- |pn (@) = 1.

Denote by ]ia_g C 92 a small enough neighborhood of the diagonal, so that for any (p, q) € ]Srag,
{lp,ql} =W . .(p) N W (¢) and {[q,p]} :== W .(¢) N W} (p) are well defined.

Definition 2.1. For (p,q) € ]Si\/ag, and for any n € Z, define:

To(p,q) = 7(f"(p)) — 7(f"(p,q])) — 7(f"([g, p])) + 7(f"(q))-

Define also A, A"t A~ : ]/D_i\/ag — R by the formulas:

Alp,q) == Tulp,a) AT (p,q) =) Tulp,q) A (,g) =Y T-n(p,q).

nez n>0 n>0

These functions are all well defined and continuous, since |}, (p, q)| < C’Tu‘,nld(p, q). The point is
that nonconcentration of either A, AT or A~ is enough to ensure the non-concentration estimates
that we want. Notice also that A(p, ¢) is a temporal distance function associated to the suspension
flow of f with roof function 7. First, recall a fact about rectangles. (In the following of theses
notes, we will denote by d® and d* the arclenght distance induced along stable/unstable manifolds.)

Lemma 2.2. Let any Bz > 1 (a “z00ming” parameter). There exists ¢ € (0,1) such that, for any
o > 0 small enough, there exists a finite partition (up to a zero-measure set) of Q0 with rectangles

(REU))iel such that each Rgg) can be written RZ(-U) = [Ui(0), Si(cP2)], with U;i(c) C QN WE,(p;)

some unstable curve of unstable diameter diam"(U; (o)) € [co, 0], and S;(cP%) C QNW} (i) some
stable curve of stable diameter diam®(S;(0%7)) € [coP?,077].



Proof. Fix some small Markov partition (R;);es of 2. Recall that the boundary of those rectangles

have zero measure. For each j, write R; = [U;, S;]. Now, for each n > 0, define (Uén))aejn as the
partition:
U™ o= Uay N 7 (Ray) NN f 7" (Ra,).

For almost every x € U,, for each n > 0, there exists a unique a € J" such that = € U&E:Q). Asn
grows, the diameter of those goes to zero exponentially quickly. Let n(z) be the smallest integer

n > 0 such that x € U;?f(?))) and diam" (U (27((?)))) < 0. The unstable part of the partition is then

given by (U(x))zeu,u,, where U(zx) := U;Zf(?))) This is a finite partition which satisfies the bounds

that we want. To conclude, apply the same construction for the stable part (by reversing the
dynamics), and then define RE”) as the rectangles obtained from the unstable and stable parts. [

From now on, we fix a parameter 8z > 1. It will be chosen large enough later in the text (in
the end of section 4).

In the next lemma, we will denote by Rectg, (¢) the set of nonempty rectangles R ¢ Q of
stable (resp. unstable) diameter ~ ¢%% (resp ~ ¢). In particular, R(*) have nonempty interior for
the topology of €.

Lemma 2.3. Suppose that there exists v > 0 and N € N* such that, for any small enough o > 0,
for all rectangle R\?) € Rectg, (o), for alla €R :

(L@ )((p,q) € (B2, [AT(p,q)] < o) < w(R)? - o7,
Then (NC) (non-concentration) holds.

Proof. Let n > 0 be large enough, and let o ~ e~%°™ where ¢q is a small enough constant (we will
see how small we need it later in the proof). Let a € R. Fix Part(o), a partition of by rectangles
of size ~ o'/N x ¢#2/N_ Then:

ulx e Q|S,r(x) —al <o) = Z uw(x € R, S,7(x) € [a —0,a+ 0])
R(e) ePart(o)

= 3 WR@) (M(Rm)*lu(x € R, Syr(z) €a—o,a+ 0])) .

R(9) ePart(o)

Now, notice the following. If we fix any (small enough) rectangle R = [U, S| of nonzero measure
(fixing U and S, some reference unstable and stable curves in R), then the local product structure
of the equilibrium state p (see [C120] for example) allows one to write, for some measures p* defined
on U and some measure p° defined on S:

w(z € R, h(x //11 ([z, y]))dp® (y)dp* (2),

where we defined h(z) := S,7(z), and I, := [a — 0,a + 0]. One then can write, using Cauchy-

Scwhartz: ,
u(z € R, Sur(a) ( JI bt @aem)

5) /S / /U (), () D )

S) /S' /~/U><U 1[—20,20](h([zay]) - h([g’y]))(d:u'u)Q(Z,Z)dlus(y)

Then, using Fubini and Cauchy-Schwartz again yields:

w(x € R, Syr(x) € I,)* (//UXU/ 1 90201 (R([2,y]) — h([ivy]))dus(y)(du“)z(&5’)>2

SuS(S)Q/J“(U)?//UXU//S S1[_za,za](h([2,y])—h([iy]))l[—zo,za](h([z,17])—/1([5,z?]))(dusf(y,ﬂ)(du“)Q(«Z»E)



// // sy (b2 ) — h(E ) — Bz 31) + B(E 1) () (2 ) ()2 (. )
UxUxSxS

R[] s (00) =l ) = hlla 1)+ h)n(p)o)

In other words, denoting by H(p,q) := h(p) — h([p, q]) — h([g,p]) + h(q) (defined only on a neih-
borhood of the diagonal !), we have:

. L, ) 1/4
mu(m € R, h(z)el,) < (mu ((p,q) € R*, H(p,q) € [—4o, 40])) .

In our particular case, h(z) = S, 7(z), so we get the expression

|
-

n

H(p,q) =Tn(p,q) = > _ (r(f*p) = 7(f*(lp,q))) — 7(f* (g p])) + 7(f*(0))).

0

=~
Il

Injecting this estimate in our sum from the beginning of the proof yields:

plz e lSur@)—al <o) = > uR?) (WRO) @ € RO, Syr(2) € [a— 0,0+ 0]))

R(9) ePart(o)
1/4
‘ < 40)) .

1 2 o
< Z (R <u(R(U))2M (( € (R

R(9) ePart(o)
To conclude, notice that

n—1

¥p,q € R, ‘A+(p, q) = > Ti(p, q)’ Sut <o
k=0
since g is small in front of |Inp_|, and o ~ e~“°™. Hence:

1/4
> wR?) (Muz((p, € (R“))? ‘ZTk p.q ‘ < 40))

R(9) ePart (o)

A*(p, q)‘ < 50)) v

< ) p(RY) (MMQ((p,q)G(R(”))Q,

R(9) ePart(o)

< Z W(R@) - (50)V/ (N4 < 957/(4N)
R(9) ePart(o)

and we are done. O
Remark 2.4. Using the invariance of p by f at the very beginning of the proof yields
e € Q,|S,7(x)—a| < 0) = p(x € Q,[Sp7(f () —a| < 0) = p(x € Q,|SpT(f () —a| < 0).

Starting from the middle term or the last term and then following the previous proof shows that
non-concentration holds also if one replaces AT by A~ or A.

Lemma 2.5. Suppose that there exists N € N* and v > 0 such that, for any small enough o > 0,
for allp € Q, for all rectangle R(U) € Rectg, (o) containing a ball [B,(p,o/10), Bs(p, aP% /10)] N Q:

o + N g
ulg € RY), |AT(p,q)l < o) < u(RY))o”

Then (NC) holds.



Proof. We are going to check that the previous lemma applies. Let R(?) be some rectangle of
stable/unstable diameter ~ o. Then:

(.)€ B 1Aa)l <o) = [ pla e R, (8@ < a¥)duto)
R o

< /( )u(q € R |A(p, )| < o™)dpu(p),
R o
where we denoted R,(,mg) some rectangle containing R(°) in its center, with unstable (resp stable)
diameter 10°# times larger (resp 10 larger). Now, we can use the hypothesis, since p is sufficiently
close to the center of the square. We find:

/R (g € RS, [A(p.0)] £ 0 )du(p) < (RO (L) 10707,

The fact that the measure y is doubling [Do98] gives us some constant C' > 0 such that p(RA)) <
Cu(R7), and this allows us to check the condition of the previous lemma. O

Now we know that, to conclude, it suffices to understand the oscillations of A(p,q), for any
fixed p, when ¢ gets close to p. To do so, we will introduce some coordinate systems associated to
the dynamics.

3 Construction of adapted coordinates.

In this section, we construct a family of adapted coordinates in which the dynamics is going to be
(almost) linearized. We also define templates (linear form version, and vector field version).

Lemma 3.1. There ezists a family of uniformly smooth maps (®3).cq, such that for all x € Q
®2 : R — W?(x) is a smooth parametrization of W*(z), ®2(0) = z, [(®%)'(0)| = 1, and:

where pig 1= 3|z, with |py| == 0sf(x) € (4, pe) C (0,1) and €5 € {—1,1} is some sign that
depends on x. The dependence in © of (P2),cq is Holder.

Proof. The proof is taken from [KKO07]. The idea is to first define ®2 on W () (on which 9, f(x)
makes sense and is smooth along W} (), even if = ¢ 1), and then to extend our maps on W?*(x)
using the conjugacy relation that we want. Define, for any z € 2, and for any y € W _(x), the
function p,(y) by the formula:

o0

p2(y) ==Y [(I0s f)(f"y) — (IO f)(f )]

n=0

This is well defined and smooth along W («) (and this, uniformly in z € Q). We can then define,
for y € W#(z):
Vs (y) ;:/ epm(y')dy/
[z y]CW},.(z)

in the sense that we integrate from z to y, following the local stable manifold W} (z) (w.r.t.
the arclenght). This function is smooth along W} (z), and is obviously invertible since its stable
derivative is positive. We denote by ®2 : (—e,e) — W"(z) its inverse. (One can choose a uniform
¢ for all these maps, but this is not very important.)

We check that the dynamics is linearized in these coordinates. Notice that, since U3 (x) = 0,
the desired relation is equivalent to:

Vy € Wli)c(x)a 8sqjj‘(z)(f(y))asf(y) - ‘:U'z|as\lli(y)

But this is obviously true, by construction of ¥%. It follows that, for all y € W (x), Ui (f(y) =
WS f’n

(y)) =

)
pz V3 (y). In particular, notice that iterating this relation yields, for y € Wi, .(z), ¥4, ,)(



fifn=tig - Bz U5 (Y).

To conclude the proof, we need to extend ¥ on the whole stable manifold of x € 2. We proceed
as follow. Let y € W*(z). If n is large enough (depending on y), one sees that f"y € WS (f"z).
Hence, it makes sense to define:

WS (y) = pig e i W (F" ()

The previous discussion ensure that this is well defined. Moreover, it is easy to check that the map
Us . W3(z) — R is a smooth diffeomorphism (when we see W#(z) as a manifold equipped with
the arclenght.) The inverse of ¥ is defined to be ®2 : R — W#(z). The commutation relation is
then easy to check. The Holder regularity in x is tedious to detail but shouldn’t be surprising. [

Lemma 3.2. There exists a family of uniformly smooth maps (P%),cq, such that for all x € Q
QY : R — W*(x) is a smooth parametrization of W"(z), ®%(0) =z, [(P%)(0)] =1, and:

where Ay = €%|Az|, with |Ag| = Ouf(x) € (A_,A4) C (1,00) and ¥ € {—1,1} is some sign that
depends on x. The dependence in x of (DY) is Hélder.

Definition 3.3. These parametrizations often goes outside €2, but we are only interested by what’s
happening inside €. So let us define:

Q= (@) Q) CR L Q5= (3)H(Q) CR.
Notice that, for all x € 2, 0 € Q. Moreover:
Ve e Q,Vz e QY \yz € Q‘;(I) CcR.
A similar statement hold for QF.

Remark 3.4. Let us define some further notations. Define, for n € Z and = € Q:
M= 0u(f") (@) e ] = 0 (@).

Notice that |)\,§50>| = |u;<60>| =1, |)\§fn>\ = |)\jﬁ>n(z)|_1 and \u§;7n>| = |u§ﬁ>n(z)|_1. Moreover, we can

write some relations involving (®%) and (®:). Foralln € Z, x € Q, y € Q%, z € Q¥, we have:

FU@U(2) = Oy (A2) 5 FH(@L(Y)) = By (1S y),

where A\ (resp. uém) is |)\§n>| (resp. |,ufcn>|) multiplied by the obvious associated sign.

Lemma 3.5 (change of parametrizations). Let = € Q and let £ € QN W} (z). Then the real map
affy , = (P%) "o ®Y : R — R is affine. Moreover, there exists C > 1 and a > 0 such that
In|aff; ' (0)] < Cd(x, ).

Proof. Notice that, for all z € R, and for all n > 0:

(87 (@4) = A (2 0)) (B0 (A2)).

In particular, without loss of generality, we see that we can reduce our problem to show that aff; ;
is affine on a neighborhood of zero, and this property should spread. In this case, we can compute
the log of the absolute value of the differential of ((I)g)’l o dY, and we get:

!/
i (|(@n o) )
= p(25(2)) = pa (3 (2)) = pz(2),
which is constant in z. The proof is done: the bound on aff, ;'(0) follows from an easy bound on
pi (). [




These coordinates are interesting but only linearize the dynamics along the stable or unstable
direction. Of course, we can’t expect to fully linearize the dynamics in smooth coordinates, but we
can still try to introduce coordinates that will linearize the dynamics in a weaker sense, in some
particular places. This construction is directly taken from [TZ20], appendix B.

Lemma 3.6 (Nonstationary normal coordinates). The exists two small constants p1 < po < 1, and
a family of uniformly smooth coordinates charts {15 : (—po, po)? — M}rcq such that:

e For every x € Q), we have
12(0,0) =z, 10(2,0) = 93(2), 1a(0,y) = P5(y),
e the map f, := L;(lw)OfOLw : (—p1,p1)% — (=po, po)? is smooth (uniformly in x) and satisfies

Ty (0y f2(2,0)) = pz,  72(0:f2(0,9)) = s,
where 7, (resp. m,) is the projection on the first (resp. second) coordinate.
Furthermore, one can assume the dependence in x of (t;)zcq to be Holder regular.

Proof. Since the stable/unstable manifolds are smooth, and since they intersect uniformly trans-
versely, we know that we can construct a system of smooth coordinate charts (i,).cq such that,
for all x € €,
ZI(Ovo) =, Zr(zv 0) = @:(z), ZI(O, y) = Cbi(y)

One can also assume the dependence in = of these to be Holder regular, since the stable/unstable
laminations are Holder (in our context, they are even C'*). Define fo = l;(lw) o folig. Thisis
a smooth map defined on a neighborhood of zero, with a (hyperbolic) fixed point at zero. Notice
also that (d fz)o is a diagonal map with coefficients (A, ). Those coordinates won’t do, but we
can straighten them into doing what we want. Define:

paz) = > (B, fron ey O 2,0)] = 1t o)
n=1

and -
IHOESY (hﬂ |720= fn () (0, 1™ y)| — In |/\f"(z)|) :
n=0

Finally, set D¥(z,y) := (z,yel= (), Di(2,y) := (ze W) y), D, := D¥oD? and 1, := i, 0 D,. Let
us check that f, := L;({L,) o f o, satisfies the desired relations. First of all, notice that p% and pZ

are smooth and satisfy p(0) = p5(0) = 0. In particular, D,, D¥ and D3 are smooth, and coincide
with the identity on {(z,y) , 2 =0 or y = 0}. Moreover,

Py Aez) = I |my 0 fi (2,0)] — I |pa| + pi(2)
and
P (y) = W |m.0- o (0,9)| = In [ Xa| + 5 () (1t)-
Now let us write f, in terms of f,: we have
fo = L;(lw) o fouy=(D}yy) o (DY) ' ofeoDyoDj.
Hence:

(df2) (2,0) = A(Dfay) ™D nez0) © AP ay) ™ D=0 © (df)(2,0) © (AD%) 2,0y © (dD) (200

Abusing a bit notations, we can write in matrix form:

1 (%)) (1 0 Ne 0, fx(2,00\ (1 0 1 (%
= (3 D) o) (TR G )G )

(e 0 (v
— 0 6_‘3;(2)()\mz)'f'/};(z)']ryayfm(za0) a 0 Hz 7

which implies in particular that 7,0, fz(2,0) = p5. A similar computation shows that

Ae O
@00 = (05 )
In particular, 7,0, f.(0,y) = As. O
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Remark 3.7. Notice the following pretty convenient property. As soon as the quantity writen down
makes sense, we have the identities:

(n) (n)

Az (%) Az 0
drin Loy = : drin) _
(df; )( ,0) ( 0 N{n)) (df >(07y) (+) (n)

T M

where f{" := Lpn(z) © S0tz : (—(p1/po)™po, (p1/po)"po)® — (—po, po)?.

This coordinate system is not “canonically attached” to the dynamics, since the behavior of
L, outside the “cross” {(z,y) , zy = 0} might be completely arbitrary. But the behavior of those
coordinates near the cross seems to give rise to less arbitrary objects. Those objects will be called
“templates” in these notes. They are inspired from the “templates” appearing in [TZ20].

Definition 3.8 (Templates, dual version). Let x € Q2. A template based at x is a continuous 1-form
&t WE (z) — QY(M) such that:

Vz e Wi.(x), Ker(&), D E%(2).
We will denote by E(z) the space of templates based at x.

Remark 3.9. Notice that, since E"(z) moves smoothly along the unstable local manifold W} _(z),
it makes sense to consider smooth templates. Notice further that, since (df).E"%(z) = E“(f(2)),
the diffeomorphism f acts naturally on templates by taking the pushforward. This yields a map

fe i E(@) = E(f(2))-

Lemma 3.10 (Some interesting templates.). There exists a family (£2).cq of smooth templates,
where £5 € Z(x), that satifies the following invariance relation:

Vz € Wige(@), (f(€D)s() = hz ' (€2 5(2)-
(Moreover, the dependence in x of (£2) is Hélder.)

Proof. For all x € Q, define £ := (15)«(dy). It is clear that this defines a smooth template at .
Furthermore, using remark 3.7 for n = —1:

Fe&o = Fol(ta)e(dy)) = (L)« (f)(dy)) = (150 (dlmy fo 1)) = (g (15 dy) = 117 €50
The dependence is Holder because (i) depends on z in a Hélder manner. O

It is natural to try to find a "vector field” version of those templates. We suggest a way to
proceed in the following.

Definition 3.11 (Templates, vector version). Let x € §2. A (vector) template based at z is a
continuous section of the line bundle TM/E" along W} _(x). We will denote by I'(z) the space of
(vector) templates at x.

Remark 3.12. If X is some continuous vector field defined along W} (x), we can take its class
modulo E* to get a (vector) template [X]. Notice also that it makes sense to talk about smooth
(vector) templates. Notice further that f acts naturally on (vector) templates, since (df),E"(z) =
E*(f(2)). This define a map fi : I'(z) — T'(f(z)).

Lemma 3.13 (Some interesting templates.). There exists a family ([0%])zcq of smooth (vector)
templates, where [0%] € T'(z), such that:

vz € Wige(w), (105D 1) = 1el0] ).
(Moreover, the dependence in x of ([0%]) is Hélder.)

Proof. For all x € Q, define 07 := (15).(0/0y) along W} (). This is smooth. Moreover, using
remark 3.7, we find:

f+0, = f*(%)*(ay) = (Lf(m))*((fx)*ay) = (Lf(x))*(ﬂzay +(%)0.) = ﬂxag(w) + (%) 0y.

Hence, taking the class modulo E*, we find
f05] = Mw[ag(x)]

which is what we wanted. The dependence in x is then Holder because of the properties of ¢,,. [



Remark 3.14 (A quick duality remark). We can define a sort of “duality bracket”
E(z) x I'(z) = CO(WE (z),R) by the following formula:

(& [X]) == &(X).

Our special templates (£3)zecq and (0F) can be chosen normalised so that (£5,07) = 1. This will
not be usefull, but this is an indication that Z(x) and I'(z) could countain the same informations.

Remark 3.15 (Templates acting on a space of functions). It is natural to search for a space of
functions on which (vector) templates could acts. A way to do it is as follow. For each x €
define F(x) as the set of functions h defined on a neighborhood of W (z) that are C' along the
stable direction and that vanish along W} (z). In this case, for any point z € W} (x), we know
that dsh,(z) makes sense, and we know that J,h,(z) = 0 also makes sense. So one can make
(vector) templates [X| acts on h by setting:

Vz € Wige(x), ([X]-ha)(2) := (X - ha)(2).
This is well defined. In the particular case where [X]| = [0%], we get the formula:
Vz e (=1,1), ([05] ha)(®3(2)) = Oy(ha © 12)(2,0)

Notice that f acts naturally on these space of functions, by taking a pullback f* : F(f(z)) —
F(x). If we fix hy,y € F(f(x)), and if we set hy := hy(,) o f € F(x), notice finally that one can
write

(03] ha = [02] - [*hyay = [ulO2] hpay = 10101 ] - gy
Lemma 3.16 (Changing basepoint). Let x € Q. For £ € QN W} (), let

o

H(xz,Z) = exp (Z (1n:uf"”(1:) - lnﬂf*”(i)) )

n=0
Then: N
Vz € Wige(@),  ([07]): = H(z, 2)([07])--

Proof. Remember that TM/E"™ is a line bundle, and that [07] doesn’t vanish. In particular, there
exists a function a5 : W% (z) — R such that:

Vz € Wi(x),  (102]): = a,2(2)((02])-.

The main point is to show that a, z is z-constant. Since the familly ([0%]) depends in z in a Holder
manner (and locally uniformly in z), we know that a, z(z) = 1+ O(d(z,Z)®) for some «. The
invariance properties of those (vector) templates yields an invariance property for a, z(z):

(~n)
V2 € Wi (), 02.3(2) = — 5 ap-n(a). 0@ (f " (2))-
//L,.

x

Taking the limit as n — 400 gives the result. O

4 Templates acting on A™.

We return on our study of AT. Recall that AT : ﬁiaz — R is defined as

At (p,q) =Y Tu(p. ),

n=0

where T, (p,q) := 7(f™(p)) — 7(f/™([p,q])) — 7(f™([¢,p])) + 7(f™(q)). Let us fix some p € ), and
set:

Af(q) :=AT(p,q) . Tpn(q) :==Tu(p,q).
For each p and n, T}, ,, is C'*e, and moreover taking the derivative along the local stable lamination
vields: 0,7, 0(q) = —(@s7)(F" ([0, a)) o |Os7p(9) + 7 (£ ()]s |, where m,(q) := [p,q]. Tt



follows that A} is C' along the local stable lamination. Moreover, T}, , vanish on W (p), and so
does A} Tt follows that

A;r € .7'—(]0) 5 Tp,n S ]:(p)a

where F(p) denotes the space of function defined in remark 3.15. This ensure that the next
definition makes sense.

Definition 4.1. For each x € Q, for each z € Q¥ C R, define X, € C*((—po, po), R) by:
Xo(2) = ([07] AD)(23(2)).
The family (X, )zeq depends on z in a Holder manner.

Lemma 4.2 (autosimilarity). We have X,(0) = 0. Moreover, the family (X.).cq satisfies the
following autosimilarity relation:

where T,(2) := ([05] - Ty 0)(PU(2)) € C.
Proof. Notice that T}, ,,11(q) = Tty ,n(f(q)). It follows that:

AF() = Tp0(@) + Y Trmyn((@) = Tpola) + A, (F())-
n=0

Making the vector template [0?] acts on this along W} (p) vields (using the invariance properties
of the family ([07])):

([0%]- &) = (198) - T 0) + ([95) - (A © ) = (108) - To0) + pp((01P)] - AT ) o f:
Testing this equality on ®3(z) gives the desired equality, since f o ®}; = % (Apla)- O

Lemma 4.3 (regularity of 7,). The function 7, is smoother than expected: it is C1T%((—po, po),R).
It vanish at z = 0, and its derivative at zero is:

(?Z)/(O) = 8z8y(7— © Lz)(07 0) + nlz(O)aZ(T © LI)(O, 0)7

where ny(z) € C is defined such that 8y + n,(2)0, € 13 (E*®) points in the stable direction at
coordinates (z,0).

Proof. Let us do an explicit computation of 7,,. By definition of [0%]:
7o(2) = ([05] - T0)(25(2)) = 8y (T 0 © 12)(2,0).
Recall that Ty 0(t4(2,y)) = 7(t2(2,9)) — 7([2, o (2,9)]) — T([ta (2, y), 2]) + 7(x) € C'T*. Define

ma(z.y) =15 (2t (2,9)]) € {(0,9).4" € (—po, po)}

and
W;(Zay) = Lgl([%('zvy%x}) € {(2/70)72/ € (—Poapo)}-

Define also 7, := 7 0 ;. Then:
Tx’O(Lz(%y)) =72(2,9) — (77 (2,9) — 72(72(2,9)) + 72(0).

For each point z € (—po, po), let ]\795(2) be a vector pointing along the direction ¢, 1(E*), and
normalize it so that N, (z) = 9, + n,(2)9,. By regularity of E*, we can choose N, (z) to be C1+2
in z. We can then, for each z, z, find a (smooth) path t — 7, (z,t) such that 7% o v,(z,t) = (2,0)

and such that 0;v,(z,0) = N,(z). (We just follow the stable lamination in coordinates.) Using
this path, we can compute the derivative of T, o o ¢, as follow:

8y(Tz,O 01.)(2,0) = ((ay +n2(2)0z) - (TI,O © Lz))(zv 0) = %TI,O(Lz('Vx(Zat)))\tZO
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= 2 o (F0(50) = ) = a3 (22 0) + 72(0))
= 8@/7—96(’27 0) + nl(z)az'rx(zv 0) - (de)(0,0) o (dﬂ;)(z,o) (Nx(z))
= 0yT2(2,0) + 1z (2)0,72(2,0) — 0y7(0,0)7, (075 (2,0)),

since (dr})(2,0)(02) = 0, as m3(2,0) = (0,0), and since 7, o 75 = 0. In this expression, everything
is C112; except eventually the last term 7, (2) := m,0,75(2,0). Let us prove that n,(z) is, in fact,
constant and equal to one. First of all, the maps (7,,) are at least continuous (and this, uniformly
in x). Moreover, we have m,75(0,y) = y, and hence 7,(0) = 1. To conclude, let us use the fact
that the stable lamination is f invariant. This remark, written in coordinates, yields (as soon as
the relation makes sense):

s _ n) s —-n
T = e O Wm0 S

Taking the differential at (z,0) yields, using remark 3.7:

Vn > 0,Vz € (—po, po), (d73)(z0) = (df;ﬁzk(m))(o,o) 0 (dmF—n(z)) (- 4.0y © (™) (=0

(0 (0 0 ) AT (%) _(0 0 )
0 uf) N0 w2 0 0 gy 2)

It follows that:
Vz,Yn >0, ny(z) = nffn(z)(A;ii’n»Z) — 1.

n—oo

In conclusion, we get the following expression for 7,:
To(2) = 0y (2,0) + ny(2)0,72(2,0) — 0y72(0,0),
which is a C'*® function that vanish at zero. Let us compute its derivative at zero: we have
(%) (0) = 0:9y7(0,0) + 1, (0)0:74(0, 0) + 15 (0) 9274 (0, 0).
The fact that n,(0) = 0 gives us the desired formula. O

Remark 4.4. Recall that, in our area-preserving context, there exists a Hélder map h :  — R such
that Ay pe = exp(h(f(x))—h(x)). Fix one such h for the rest of the paper. For each 7 € C?*%(Q,R),
let us denote by @, € C%(2,R) the map defined by

D,z €Qr— (%) (0™ eR.

The linear map 7 € C?t% s &, € C“ is obviously continuous. Moreover, it is easy to see that,
genericaly in 7 € C?1%, @, is not cohomologous to zero. Indeed, one can take a fixed point py (or
a periodic ordit) and look at the value of ®,(po): if it is zero, then it is easy to C?T*—perturb 7
on a neighborhood of py so that ®.(py) becomes non-vanishing. In the following of these notes,
the potential @, :  — R will have the same kind of role for us as a “longitudinal KAM cocycle”
would. (See [FHO3] for details on this notion.)

Lemma 4.5 (Change of basepoint). Let z € Q. Let £ € W}k _(x) be close enough to x. Then, there
exists Aff, z : R — R, an (invertible) affine map, such that:

Az (Xa(2)) = Xa(affo2(2)),

where aff, ; = (U)o ®Y is the affine change of charts defined in lemma 3.5. Moreover, there
exists C > 1 and oo > 0 such that In|Aff, ;'(0)| < Cd(z, Z)>.

Proof. Let x € Q and let £ € W} _(x) be close enough to . We have, for p in a neighborhood of Z:
AJF('i’ q) = AJF('i’ [l‘, Q]) + A+(l‘7 Q)'
We differentiate (w.r.t. ¢) with the vector template [0%] along W} (%) to find:

Xa(2) = [07] - (A o o, ])(@5(2)) + ([05] - AT)(P5(2))-

11



The first thing to recall is that ®% = ®% o (®%)~! o % = d%oaff, 7, and moreover, by lemma 3.16,
[0%] = H(x,%)[0%]. From this, we see that the last term is H(z, %)X, (aff; z(2)). To conclude, we
only need to show that

07 (AF o[z, ]) = H(2,2)[0] - (AF o [z, ])
is constant along W} _(z). In coordinates, we see that:
071 (AL o[z, N(@a(2)) = 0y(AF o [2,] 0 ta)(2,0) = 8y (AT 015 0 73)(2,0),

where 77 is defined in the proof of lemma 4.3. Recall from this proof that we have

0 0

is constant in z (and in z). It follows that: [9%] - (AT o [-,2])(®,(2)) = 9, (AL 01,)(0,0), which is
a constant expression in z. The proof is done. O

We conclude this section by showing that one can reduce the study of the oscillations of A} to
the study of the oscillations of X,. The proof is in two parts: we first establish a proper asymptotic
expansion for A, and then we reduce (NC) to a statement about (X;)zeq-

Theorem 4.6. Let p,q € Q be close enough. We will denote ﬂg(q) =1[p,ql =15 QNWS (p), and

7 (q) == [q,p] = r € QN WL (p). We have q = [r,s]. These “coordinates” are C't*. Suppose
p loc

that d*(p, s) < 0”2 and d*(p,v) < o for ¢ > 0 small enough. If Bz > 1 is fized large enough, then
the following asymptotic expansion hold:

+ _ + s 1+Bz+a
AJ ([rys]) = +0sA) (r)d*([r, s],r) + O(c" P77,
where Oy denotes the derivative in the stable direction.

Proof. Let us introduce some notations. Define, for any p € Q, the C**® map V,, : W (p) — R

as
e}

Vols) =Y (r(f*(0) = 7(S"(5)),

n=0

and notice that

A Taylor expansion yields:
1
Vi(s) = Vp(p) £ 0:V,(p)d* (p, 5) + 50;Vp(p)d*(p, 5)° + O(d(p, 5)* ")
1
= 20V, (0)d* (p,5) + 502V, (0)d* (p, 5)° + O TP%)

1
+0:V,(p)d®(p, s) + §aszvp(P)ds(p7 )% 4 O(Ul+a+ﬁz)

since 8z > 1. Hence,

AT (q) = £ (0sV,(p)d® (p, 8) — sV (r)d* (1, 5))

p
1
+§ (afvp(p)ds(p7 5)2 - azvr(?")ds(’r, q)Z) 4 O(O,l+oz+5z)_

Then, notice the following. The function

ds([r,s], )
r,s) € Q2N (WE(p) x Wi (p) — —————~cR
(r.8) € 0% 1 (Wiko(p)  Wielr)) > 312
is C1*%, Indeed, in our 2 dimensionnal hyperbolic context, the bracket [-, -] is (since the holonomies

are C17%) and the distance “arclenght” functions d* have the same regularity than E*, which is
also C'*+®. A Taylor expansion in the s variable around p yields:

d*(q,7)
d*(s,p)

= 8S7r§(r) +O0(d*(s,p)*) = 85775(7“) + O(U"’BZ).
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If Bz is chosen so large that a5z > 1 4 «a, then we find the expansion:

d*(g,r)
d*(s, p)
Next, notice that r € W (p) — 837r5 (r) is actually C1T2. This can be seen as follow. We at least

know that this function is Holder, and moreover, that In 337r5 (¢) = O(d*(p,q)*). Invariance by
the dynamics yields, if ¢ is close enough to W} (p) depending on n :

T5(q) = [T p-n(py (f " (a))-

Taking the derivative in the stable direction, taking the limit as n — oo and taking the log yields
the formula:

= 8S7T§(7') + O(a' ).

o0

I demy(r) = > (0 f)(f"p) — (0 f)(f ")) -

n=0

This expression is clearly C1*® on r € WE.(p). A corollary of all this discussion is the expansion:
d*(q,7)

d*(s,p)

In particular d*(p, s)* = d*(¢,7)*(1 + O(0)) = d*(q,7)* + O(c"7?77) = d*(q,r)> + O(o*+*177).
Hence

=1+ 0(0)

02V, (p)d®(p, 5)* — D2V, (r)d° (r,q)* = (92Vp(p) — DIV, (r)) d°(r,q)* + O(c" 77 +).

Finally, the map
2V4(q) =Y O2r(f™ (@)D f"(@)* + a7 (£ (2)02(f™(a))
n=0

being Holder regular, we get 92V, (p) — 82V ,.(r) = O(¢®). In particular, we find that
(92V,(p) — 02V, (r)) d*(r,q)* = O(0?Pz+*) = O(s'te+Pz). All of this discussion gives us the
following expansion:

Al (q) = £V (p)d* (p, s) — D5V (r)d* (r, q)) + O(a P2 F).

We want to make 8SA;‘ (r) appear. We compute it and find out that
050 (r) = 05V (p)0sy (1) = Vi (r).
We can make this term appear in our asymptotic expansion as follow:

d*(p, s)
ds(r,q)

- (8SA;’F(S) + s01%8(7”)>6l5(7"7 Q) + O(c"+oth7)

AF (@) = (.Y 0) ooy — 9uVelr) ) (1) + O +45)

where

S(p. s s(xS(r ,775 r, s
ona) = 05,00 (G2~ 0.55() ) = 0.9, (d( (7). 7y (Ir, ) —asmf(r)).

ds(r,q) 7 d*(r, [r, s])

Now recall that we already proved that ¢, (1) = O(cT%). Hence ¢, s(r)d*(r,q) = O(c'To+5z)
and we are done. O

Remark 4.7. Recall again that p has a local product structure [C120], in the following sense. For all
x € Q, there exists ¥ and u two measures supported on U, := QNWE (z) and S, := QNW} (x)
such that, for all measurable h : M — C supported in a small enough neighborhood of x, we have

e /U w /g (= s () 2.
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Notice in particular that, for some rectangle R, = [Up, Sp] 3 p, and for any borel set I C R :

1(q € Ry, h(lg;pl) € I) = 1y (Sp) (2 € Up, h(2) € 1)).

The family of measures (uY),cq satisfies some invariance properties under f that will prove usefull
later. (Written like that, its interesting to see the possible similarities with the idea of templates...
Since those measures lives on some local unstable manifold at x.) In the following lemma, we will
denote U?Z := B(z,0) NU, and S? := B(x,0) N S,.

Lemma 4.8. Denote by no= (PUY*ul, the measure pl seen in the coordinates ®%. Suppose
X

that the family (X,), satisfies the following (uniform) non-concentration estimates: there exists
a,y,00 > 0 such that, for all x € Q and for all 0 < o < g, and for any a € R:

m (2 € [0,0], |Xo(2) —az| < olte/?y < o7 m ([=o,0]).
Then (NC) holds.
Proof. Recall that, by lemma 2.5, to check (NC), it suffices to establish the following bound:

1 (q € RS, |AS (@) < o' HP2) < o7 u(RY)

8
where the bound is uniform in p, and where R} = [UZSJ), S,(;U Z)] is a rectangle with p in its center
of stable (resp. unstable) diameter 0% (resp. o). Let us check this estimate by using the Taylor
expansion of A;‘ . We can write, using the local product structure of u:

o 14+« z\ __
1 (g € RS, |A (g)] < o1+o+s )_/

v(reug, |AF
S;(Daﬁz)'up (T P 7‘

s ([rysD] < o 02) dyig (s)

< /S(Uﬁz) 1 (r € US, 10.A () ([r, s],7)| < Cot+B+e) dus (s).
P
It is easy to see, using Gibbs estimates, that there exists ., > 0 such that
s « o? Qbreg s o
1 (B(p, 0?7422y 0 S(777)) < gOreal s (S777).

It follows that one can cut the integral over S, in two parts: the part where r is oBzte/2_close to
p, and the other part. We get, using the aforementienned regularity estimates:

1 (q € RS, |A (q)] < o' Toth7)

< o2 p(RY) + / i (r € UL 1088 ()] < Co™*/2) dps(s). (v)

B
Séa Z)

We just have to control the integral term to conclude. To do so, notice that, for all s, we can write:
i (r € U, 1087 0] < € ol2)
— ((@Z)*ug) (z IS ((I)?)—l(Ug), |35A;(<I>p(z))‘ < Co_1+a/2)

< ((®5)" pgy) (z € [-Co,Col, [0, (®p(2))| < Co'to/2).

Now, since TM/E" is a line bundle, and since d; and 9? are C1*% there exists a nonvanishing
C'*e function ay(2) such that [Os]au(z) = ap(2)[0F]pu(z). We have a,(z) = e©M) . Hence:

((@5) 1) (Z € [-Co,Col, [0,A7(®p(2))| < Co'T/?)
= ()" ppy) (z € [~Co,C0l, |ap(2)X,(2)| < Co'*o/?)

(@212) (= € [=Co.Cal, 1X,(2)] < C'a+or2)

< (@) ) ((C'o, Clo]) o,
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where the last control is given by the nonconcentration hypothesis made on (X,).cq. To conclude,
notice that by regularity of the parametrizations @, and since the measure py is doubling (thus
constants can be neglected), we get ((®4)*pt) ([-Co, Co]) < Cpui(Ug). Injecting this estimate in
() yields

u(g € RY,IAS ()] < o' tP7H) < C (o‘””a” + U”) u(Ry),

which is what we wanted. O

We see that we are reduced to understand oscillations of z — X, (z) (modulo linear maps: this
wasn’t necessary here, but this claim will be natural after reading the next section). The next
section will be devoted to proving a “blowup” result on the family (X,).ecq, which will help us
understand deeper the oscillations of those functions. This “blowup” result will allow us to exhibit
a rigidity phenomenon. The final section is devoted to proving the non-concentration estimates in
the hypothesis of lemma 4.8, under our generic condition defined in remark 4.4.

5 Autosimilarity, polynomials, and rigidity

Let us recall our setting. We are given a family of Holder maps (X;)zcq, where X, : Q¥ N
(=p, p) — R is defined only on a (fractal) neighborhood of zero and vanish at z = 0. Recall that
QU = (®%)~1(Q) 3 0. We have an autosimilarity relation: for any = € Q, and any z € Q%N (—p, p),
we have

Xo(2) = Tu(2) + e X g2 (2A2),

where 7, : QN (—p,p) — R is a C1T* map (in the sense of Whitney) that vanish at zero. Recall
that, C?T-generically in the choice of 7, we can suppose that the function

D,z e (7)) (0)"® eR

is not cohomologous to zero (where h :  — R is such that u, A\, = exp(h(f(z)) — h(z))). Let
us call this cohomology condition (C'). We will establish quantitative estimates on the oscillations
of (X;) under the cohomology condition (C). To do so, we start by proving a ”blowup” result,
directly inspired/taken from Appendix B in [TZ20]. The point of this lemma is to only keep, in the
autosimilarity formula of (X,).cq, the germ of 7, (in the form of its Taylor expansion at zero at
some order). Depending on the contraction/dilation rate on the dynamics, the order of this Taylor
expansion is different: in our area-preserving case, it is enough to approximate 7,(z) by (7)'(0)z.

Lemma 5.1 (Blowup ?). There exists two families of functions (Yz)zeq, (Zz)zeq such that:

e Forallz € Q and z € Q¥ N (—p,p),
X2 (2) =Y (2) + Z,(2).

e The map Yy : Q4N (—p,p) = R is C**, and there exists C > 1 such that, for all x €  and
2 € Qg N (=p,p):
Ya(2)| < Clzf' ™

o The family (Z,)zcq satisfies an autosimilarity formula: for any x € Q, z € Q%N (—p, p)
Z.(2) = (72)'(0)z + usz(w)(z/\x).
Moreover, the dependence in x of (Xy)zeq, (Ya)zca and (Z;)zeq is Holder.

Proof. In the original proof, there is an implicit argument used, which is the fact that polynomials
(of order one, here) are maps with vanishing (second order) derivative. In our fractal context,
this is not true, as 2% may not be connected: so we have to replace this derivative with a notion
adapted to our fractal context. For 8 < «, define a “(1 4+ f)-order fractal derivative” as follows:
if h: QYN (—p,p) = Ris C in the sense of Whitney, then its Taylor expansion at zero makes
sense, and we can consider the function:

h(z) = h(0) = I'(0)z

S (z) = M

15



This is a continuous function on Q¥ N (—p,p), and it is bounded and vanish at zero at order
|2(@=F)=|. Moreover, notice that 6'*#(h) = 0 is equivalent to saying that h is affine. Notice further
that

577 (h(3)) (2) = (A7) - 5745 () (2.

Now, let us begin the actual proof. Consider the autosimilarity equation of (X ), and formaly take
the (1 + (3)-th fractal derivative. We search for a C1T< solution (V) of this equation:

YL (2) = 82 (7) (2) + Ay ™7 8P (Vo) (2A).

Notice that s, := u,A\.*# behaves like a greater-than-one multiplier. Indeed, if we denote, for

reNandn e Z,

()

x| = K)x...lﬁ)fn—l(w)

(if n > 0, and similarly if n < 0 as in the definition of )\;M

A_ > 1. We can wolve this equation by setting

), we see that ke > (A")# where

SV (2) = =Y 8 ) (A - T = V().
n=1

This is defines a continuous function that vanishes at zero. We then define Y, as the only C Ita
function such that Y;(0) = Y/(0) = 0 and §'7%(Y;) = Y;. In other words, Y, (2) 1= 2" AV, ().
Using the sum formula of Y, we find the autosimilarity formula:

Ya(2) = To(2) = (72)"(0)2 + pa Yy() (2Aa).
We can then conclude by setting Z, := X, — Y. O

The idea now is to consider the distance from Z, to the space of affine maps. By the autosim-
ilarity formula of (Z,), there is going to be some invariance that will prove usefull.

Definition 5.2. For any p > 0 small enough, consider the function D, : 8 — R, defined as

D,(x) := inf sup |Z.(2) —az = ).
bER 2eQuN(—p,p)

This function is continuous, since z € Q — Z, € C? is, and since we are computing a distance to
a finite-dimensional vector space.

Lemma 5.3. We have the following criterion. Are equivalent, for some fized x € Q and p > 0:
° Dp(x) =0

o Foralln>0, Zy—n € Clte (Q“

Fon(a) N (—p)\§;”>,p>\§;">), R), and there exists C > 1 such
that, for allm >0,

<C.

1+«
||6 + (Zf77l(93)) m(_p)\;*">7p/\ﬂ<c*n))) =~

Proof. Suppose that D,(x) = 0. Since Z,(0) = 0, there exists a € R such that Z,(z) = az on
(=p,p). The autosimilarity relation Z,(z) = (7,:)'(0)z + peZs(y)(Ae2) gives, with a change of
variable,
Zyr@y (AT = Fpoa() (OASTVpl 2 + Zu(2).
Iterating this yields
fon(z)(z/\y"))uﬁ;m = linear + Z,(z).

In particular, if Z, is linear on QN (—p, p), then Zy—n(yy is linear on Q)N (—p)\;_m, p)\;_m)).

In particular, it is C'* and the bound on 61+a(Zf—n(a;)) = 0 holds. Reciprocally, if the second
point hold, then we can write, on Q% N (—p, p):

1614 (Za) ()] = il AL 6 (Z pon ) (AT < Ol ) — 0,

n—roo
where we used the fact that ,ué"))\ém = e by our area-preserving hypothesis made on the
dynamics f. Hence 6'7%(Z,) = 0 on Q%N (—p, p), which means that Z, is linear on this set. [
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Lemma 5.4 (Rigidity lemma). Suppose that there exists xo € Q such that D,(x¢) = 0.
Then D, =0 on §.

Proof. The proof is in three steps. Suppose that D,(zq) = 0 for some p > 0 and z¢ € €.

e We first show that there exists 0 < p’ < p and a set w C W} _(z9) N Q which is an open
neighborhood of x for the topology of W% (x¢) N (2, such that D,/ (Z) =0 if & € w.

So suppose that D, (o) = 0. Since Z,, vanish at zero, this means that Z,, is linear on (—p, p) N .
In particular, since Y, is 1% we know that X, is C'T on (—p, p) N . Now, recall that, by
Lemma 4.5, we know that if £ € W% N Q is close enough to =, we can write

Affy5 (Xa(2)) = Xy (affrya(2)),

where Aff,, ; and aff,, ; are affine function (that gets close to the identity as & — xg). If follows
that Xz is C1T* on some (smaller) open neighborhood of zero, (—p/, p') N QY. In particular, Zz
is also C'T°. Let us show that D,/ (Z) = 0 by checking the criterion given in the previous lemma.
We have:

Z3(2) = X3 (2) = Ya(2) = Ay 5 (Xa, (3t 5(2)) ) = Ya(2)

= AR (Zag (il 5(2)) ) + AR (Yoo (ally 5(2)) = Ya(2)

By hypothesis, Aff;ol’i (Zxo(affmo’j(z))) is affine in z, and so its (1 + a)-th derivative is zero. We
can then write, for all n > 0 and z € (—p’/\;_m, p'/\i_m) N Q?,n(w):

SN Zyn@)(2) = apn(ag), g (@0 (Vir(a0) (@ (og),fn(3) (2) = 8T (Von(a)) (2),

where a,, 5 := (Aff; 2 ) (0)(affz ., ) (0)'+* = 1 4+ O(d"(z0, %)). Since [5'T* (V)| < ||Yalc1te, the

criterion applies. o
e Second, we show that if D,/ (x) = 0 for some x and small p', then Dyin(pia, 0 (f(2)) = 0.
This directly comes from the autosimilarity formula. We have, for z € (—p, p) N Q%
Zo(2) = (72)'(0)2 + pa Zp(a) (22)-
In particular, if Z, is linear on (—p', p’) N, then Zy(,) is linear on (—p'Az, p'As) N (=p, p) NG ).
e We conclude, using the transitivity of the dynamics and the continuity of D,,.

We know that D,(x¢) = 0, by hypothesis. By step one, there exists w, some unstable neighborhood

of zo, and p’ < p such that D, = 0 on w. Step 2 then ensures that Dmin(p,)\w) 0 = 0 on f*(w).

Choosing N large enough, we conclude that

Vo e | f*(w), Dy(z) =0.

n>N

Since the dynamics f is transitive on €2, we know that (J,,~ v f™(w) is dense in Q. The function
D, being continuous, it follows that D, = 0 on . - O

Lemma 5.5 (Oscillations everywhere in ). Under the C**®-generic condition ®, ~ 0, the following
hold. There exists & € (0,p/10) such that, for all x € Q, for all a,b € R, there exists zy €
Q4N (—p/2,p/2) such that

Vz € Qy N (20 — K, 20 + K), |Zz(2) —az —b| > k.

Proof. Our previous lemma gives us the following dichotomy: either D, > 0 on €2, or either D, = 0
on €. Suppose the later. In this case, for all z, Z, € C'*®. Write the autosimilarity relation and
take the (usual) first derivative in z. We find:

Z,(0) = (72)"(0) + paAe Z(2(0).
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Recall that, since f is area preserving, we can write pz Ay = exp(h(f(z)) — h(z)) for some Holder
function A : © — R. Our previous relation can then be rewritten as

Z;(O)eh(””) - eh(x)(g:z)/(o) + Z}(z) (0)€h(f(x))’

which implies that ®, ~ 0. So our generic condition ®, ~ 0 ensures that D, > 0 on €. By
continuity of D,, and by compacity of 1, there exists some x > 0 such that D,(z) > & for all
x € Q. One can do the same proof replacing p with p/2, so we can directly says that D, »(z) > &,
taking « smaller if necessary. Now, this means the following: for every a,b € R, for every x € ,
there exists zo(x,a,b) € Q¥ N (—p/2, p/2) such that

|Z:(20) — azo — b| > k.

We still have to show that this doesn’t only hold for some point zp, but on a whole small interval.
The proof is different, depending if a, b are small or large.

First of all, since (2 is perfect (and by compacity of (), there exists r¢ > 0 such that Q%N{2ko <
|z| < p} # 0. Define M := sup,cq | Zzllco@un(=p,p),r), and then define M := dkgt (k 4+ M). Tn

the case where |a| < M, then we consider the associated zp € Q from before, and we define
% := min((k/4M)Y k/4AM). We then find:

Vz e Qy N (20— Ry20 + R), |Zz(2) —az—D
= [(Zz(20) = azo = b) + (Za(2) = Za(20)) + alz0 — 2)|
>k — |Zslca RS — ak > K/2.

If |a| > M, we look at the value of b. If |b| < |a|ko/2 , then:
Vz € QY. |z| > ko, |Zu(2) —az—0b| > |alko — |b] — || Zz]|co = K-
If |b] > |a|ko/2, then:
Vz € QY. |z2| < ko/4, |Zx(2) —az —b|] > |b] — |alko/4 — || Zz]|co = K-

This proves what we wanted: for all a,b € R, there exists some open interval of positive diameter
(bounded from below uniformly in a,b and z), centered at a point lying in Q¥ N (—p/2, p/2), on
which Z,(z) is far away from az + b. O

Lemma 5.6 (Oscillation everywhere in z, at all scales in z). Under the condition ®, ~ 0, the
following hold. There exists k > 0 such that, for all x € Q, for all a,b € R, for all n > 0, there
exists zo € Q%N (—p/2,p/2) such that

Vz e QYN (20 — Ky 20 + K), |2 (2) — az — b > &,

x

where chm(z) = uﬁ;ﬁn)fon(x)(z)\f;m). The family (Zém) is a (n-th times) zoomed-in and rescaled

version of (Zy).

Proof. We know that z{m (2) = linear + Z;(z) on (—p,p) N Q% The result follows from the
previous lemma. U

Lemma 5.7. Under the generic condition ®, ~ 0, the following hold. There exists k > 0 and ng > 0
such that, for all x € Q, for all a,b € R, for all n > ny, there exists zg € Q%N (—p/2,p/2) such
that

Vz e Q¥N (20 — K, 20 + k), | XSV (2) —az —b] > &,

T
where XM (z) 1= /zé*mefn(z)(z)\f[n)).
Proof. Recall that X, =Y, + Z,, and that |Y,(z)| < C|z|**®. Zooming in, we find, for all n > 0:
X (2) = Y, (2) + 20 (=),
where V3" (2) == ;Lé—")Yf%(w)(z)\é_n)) = O((Aé_w)a). Taking ng large enough so that this is less

than /2 for the x given by the previous lemma allows us to conclude. O
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We conclude this section by establishing what we will call the “Uniform Non Integrability
condition” (UNI) in our context.

Proposition 5.8 (UNI). Under the generic condition ®, ~ 0, the following hold. There exists
0 < kK < 1/10 and o9 > 0 such that, for all € Q, for all a,b € R, for all 0 < o < 0y, there exists
z0 € Q¥ N (—0/2,0/2) such that

Vz € QYN (20 — ko, 20 + ko) C (—0,0), | Xz(2) —az — b > ko.

Proof. For each o small enough, define n,(c) as the largest positive integer such that o <
p)\é_nm(a)). We then have o ~ A\, ~ (,ué_””(a)))’l, and we see that we can deduce our
statement written with o by our statement written with n, (o). O

6 Nonconcentration under (UNI)

In this last section, we establish our last estimate, given by the following lemma. We call (UNI)
the estimate given by Lemma 5.8.

Proposition 6.1. Under (UNT), there exists v > 0 and « > 0 such that for all o > 0 small enough,
for all z € Q, for all a € R, we have

m, (2 € [~o.0), 1Xu(2) - a2 < 0'4°) < 07y (=0, 0)),
where m = (PU)* .

Once this proposition is proved, lemma 4.8 will ensure that the nonconcentration estimates
(NC) are true under the generic condition ®, ~ 0. Let us begin by strenghtening a bit the
conclusion of (UNI): we will go from a statement about oscillations of (X)) at zero to a statement
about oscillations of (X,) everywhere.

Lemma 6.2 (Oscillations everywhere !). Under the generic condition ®, ~ 0, the following hold.
There ezists 0 < k < 1/10 and o9 > 0 such that, for all x € Q, for all a,b € R, for all 0 < 0 < 0y,
for any zo € Q¥ N (—p, p), there exists z1 € QLN (20 — 0/2, 20 + 0/2) such that

V2 e QYN (21 —ko,z1 + ko) C (20 — 0,20 + 0), |Xz(2) —az—b| > ko.

Proof. Let us fix the x and o¢ from Proposition 5.8. Let z € Q, let o < 09, and let 2y € QY. Define
Z := ®Y%(z9). Recall that, by lemma 4.5, there exists Aff, ; and aff, z, two affine functions with
e©M linear coefficients, such that

Furthermore, aff, ; = (®%)~! o (®%). Notice that aff, ;(0) = zy. Since (Aff,;)'(0) = e®()| the
previous lemma applied to Xz gives us some 25 € (—0/2,0/2) such that:

Vz € (22 — Ko, 20 + K0), |Afl; 2(Xz(2)) — az — b > ko,
choosing  smaller if necessary. Setting 21 := (aff, z) ! (22) yields the desired result. O

We do a little break by proving a clean cutting lemma (as clean as I can right now). The
difficulty here is a to cut 2} into “equal” pieces, but the fractal nature of 2% makes it a bit subtle
(especially because I prefer not to use Markov partitions). This is nothing new, though.

Lemma 6.3. Denote by p, k the constant given by Lemma 6.2. There exists Neyt.1, Neut,2 € (0, 1), with
Newt,1 < k/100, such that the following hold. Let x € Q, o €0, p] andn > 1. Let Ul ¢ WE (x)NQ

be such that B(x,o) "W (z)NQ C Ul ¢ B(z,100) "W (x). There exists a finite set A and a
family of intervals (Ia)aGUZ:o Wy where Wy C A¥ is a set of words on the alphabet A, and where
I, C Wi (x) are such that:

1. hnQ=U"
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2. Forallac A¥, 0 < k < n, we have [, N Q = UpeaTap N Q), and this union is disjoint
modulo a zero-measure set.

3. Forallac A*, 0<k< n, there exists o € QN I, such that

W (2) N B(xa, 10~  diam" (1)) C I
4. Forallac A*, 0 <k <n —1, we have for any b € A:

ngut,ldiamu(la) < diamu(lab) < Necut,1 diafmu(la) ’ /JZ(Iab) > 770ut,2,ulzL(Ia)~

Proof. The proof is done in a couple of steps.
e Step 1: We cut, once (n = 1), intervals [~o,0] when o € [pA}?, pl.

First of all, recall that for all €, there exists § > 0 such that for any z € W}

loc
W (x)) > 6. Since, moreover, the measure p is upper regular, that is:

()N Q, p(B(z,e) N

YU € Wi (z), p(U) < Cdiam(U )%,
It follows that reciprocally, if u%(U) > €, then diam(U) > 4.

Consider a finite cover of Ug(ga) by a set of balls E of the formB(x;,e) with z; € U_é"), for €
small enough (for example, € := xpA7>- 10710 should be enough). By Vitali’s lemma, there exists a
subset D C E such that the balls in D are disjoints, and such that Ugpep3B D Uéa). Since W} .(x)
is one-dimensionnal, we can set A := D, and choose B C I, C 3B such that the (I,) have disjoint
union and covers U(?). By construction, the diameter of those intervals is small, but in a controlled
way, the measure of them is greater than some constant, and they all contain a ball of radius e
for some €. This construct our (I,).e.a in this case. Notice that the cardinal of A is uniformly
bounded. We see that it suffice to take € small enough to find other constants 7cyt,1, Neut,2 With
Newt,1 < £/100 that satisfies what we want in this macroscopic context.

e Step 2: We cut, once (n=1), intervals [—o, o] when o > 0 is small.

The idea is to use the properties of p%. If we denote by ¢ : @ — R the potential defining
our equilibrium state p, then we know [C120] that f.du¥ = e“"of_lfp(“")du;(z). Iterating yields
fraud = esnﬁpofﬂl’”P(“")du?n(I). The Holder regularity of ¢ allows us to see that, for all intervals
JCI =W (f"(x))NB(f*(x),p), we have

e (F () _ pal)) o diam(f~"(J)) _ diam(J) .
pe(f= (D) () (1+06) diam(f—(I)) ~ diam(1) (1+06)).

x

So we see that, using the dynamics, (and reducing p if necessary) we can reduce our setting to the
setting of step 1. This might deform a bit the constants though, which is way we chosed the 107!
in point three instead of 671 (which was the constant given by Vitali’s lemma), for example.

e Step 3: We iterate this construction to the subintervals I,.

We consider U(?) as in the statement of the lemma. We use step 2 to construct (Ia)aca- Then, we
can iterate our construction on each of the I,, since they satisfy the necessary hypothesis to do so.
This gives us intervals (In,a,)aasews, With Wa C A? (taking A with more letters if necessary).
Doing this again and again yield the desired construction. O

Using this partition lemma, we can prove proposition 6.1. Notice that, looking at this lemma
in coordinates ®}, one can get the same construction replacing subintervals of W} . by intervals of
R, Q by Q¥, u¥ by ., ete.

Proof (Proposition 6.1). Let o > 0 be small enough, let a,b € R. Let € Q. Define k(o) € N as
the largest integer such that

o < (5/20) - (mue) -
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We have k(o) ~ C|lno|. By applying the the previous construction to ®%([—o,0]), with depth
k(o), we find a family of intervals (Ia)aeujgkz(g)flj that satisfies some good partition properties.
Then, the heart the proof is as follow: we want to construct (up to renaming some of the I,) a
word b € Wy(s) C AF=(9) such that

{z € [-0,0], |Xp(2) —az —b| < o't} C U I,.
a€Wr(s)
Vi,a;7#b;

This is nothing more than a technical way of keeping track of the oscillations happening at all
scales between o and o'*t®. Notice that, once this is proved, then the conclusion is easy: we will

have
(U )= 3
aEWi(o) a€Wi(o)
Vi,a;#b; Vi,a;#b;
< (]- - 770ut,2) Z 7711(1:—1)
aeEWg(o)-1
Vi,a; #b;
< (1 - ncut,2)2 Z 77lw(-[a)
A€W (o) -2
Vi,a;7#b;

<< (1= ncut,Z)k(U)"Zz([_Ua o]) ~ O'FY"ZI([_O" 4]
for some v > 0, since k(o) ~ In(oc~1). Now, let us construct this word b: the idea is that since

2k (o) )
201 ~ 5 (k/10) - (Neut 2 , for each 4, we can find oscillations at scales ~ on.,,; ; of magnitude

~ 0(K/10)(Neur.1)* > 201+%, and conclude.

Let us begin by the case ¢ = 0. By Lemma 6.2, we know that there exists a point zy €
Q4N (—0/2,0/2) such that:

Vz € (29 £ ko), | Xz(2) —az —b| > ko.
There exists by € A such that zyp € I, Since diam(I,) < neut,10 < 1550, we find
Vz € Iy, |Xz(2) —az —b| > Ko.
Hence:

{z €[~0,0], |Xs(2) —az —b] < o't} C {2z € [~0,0], | Xu(2) —az —b| < 0K/2} C U I,,.
a1€A\{b1}

Now, let a; € A\ {b1}, and work on I,,. We know that there exists z,, € Q¥ such that
|2a, £ 107 diam(I,,)[C I,,. Now, (UNI) applied at this interval yields:

3Z,, € I,, NQL V2 €]2,, £ (k/10)diam (I, )], |Xz(2) —az —b] > (k/10)diam(1,,) > (n/lO)nfut’la.

Since diam(Zy,p) < eyt 1diam(ly, ), with neye,1 < /100, we find, for some by € A (we can say that
this is the same by for any a; € A, up to renaming the intervals),

Vz € Toyby, | Xu(2) —az — b > (/-@/10)7]3%710.

Hence:
I, N{z € [~0,0], | Xs(2) —az —b| < o' T}
C Iy, N{z€[—0,0], | Xz(2) —az —b| < (5/20)7731“5’10} - U Tiias-
az#ba

Hence

{z € [~0,0], | Xu(2) —az—b| < o't} C U U Tojay-
a1#b1 azF#ba
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Let us do the next step, and then we will stop here because the construction will be clear enough.
We could formaly conclude by induction. Take a; # b1 and as # bs. We know that there exists
Zayay € QY such that |24,4, £ 107 diam(Z4,4,)[C Laya,- Applying UNI to this interval yield

Zaras € Taya, N2, V2 €]24,0, £ (k/10)diam (g, 4, )]s

| Xo(2) — az —b| > (k/10)diam(laya,) > (K/10)02¢ 10

There exists b3 € A such that Z4,4, € lojasbs- Since diam(ly,a0b5) < Meur,1diam(ly,q,), with
Newt,1 < £/100, we have

Vz € Ia1a2b37 ‘XIC(Z) —az— b| 2 (“/10)773ut,1‘7 2 201+a'

Hence:
Loya, {2z € [—0,0], | Xo(2) —az —b| < o'} C U Tiiasas
az#bs
and so
{z € [~0,0], | Xu(2) —az—b| < o't} C U U U Toyazas-
a1#£b1 as#bs az#bs

This algorithm is done until the k(o)-th step. This conclude this construction, hence the proof,
(hence our notes !). O

Theorem 1.2 is then proved using Proposition 6.1, Proposition 5.8, and Lemma 4.8.
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