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Abstract

We consider a smooth, transitive, area-preserving Axiom A diffeomorphism f on a surface
M . We fix Ω a basic set, and we consider a smooth potential τ : Ω → R. In these notes, we
explain how one can use the ideas found in M. Tsujii and Z. Zhang’s paper on exponential
mixing of mixing 3D anosov flows to check a non-concentration property for the Birkhoff sums
of τ .

1 A bit of context

In a previous paper, we tried to study the Fourier decay properties of equilibrium states for tran-
sitive nonlinear Axiom A diffeomorphisms. Say that we fix an area-preserving diffeomorphism
f : M → M (on some riemannian manifold of dimension 2 (M, g)). Suppose that f is Axiom A
and smooth, fix Ω one of its basic sets, and then define, for x ∈ Ω: τf (x) := ln ∂uf(x), where we
denoted

∂uf(x) := ∥(dfx)|Eu(x)∥.

We can similarly define ∂sf : Ω → R+ as

∂sf(x) := ∥(df)|Es(x)∥.

The area-preserving hypothesis ensure the cohomology relation τf ∼ − ln ∂sf . Finally, fix some
Holder potential φ : Ω → R, and denote its associated equilibrium state µ ∈ P(Ω) (the set of borel
probability measures supported on Ω). Using the “sum-product phenomenon”, we (almost) proved
the following criterion.

Theorem 1.1. Suppose that there exists C0, ε0, γ > 0 such that:

∀n ≥ 0, ∀a ∈ R, µ
(
x ∈ Ω , |Snτf (x)− a| ≤ e−ε0n

)
≤ C0e

−γε0n, (NC)

where Snτf (x) :=
∑n−1

k=0 τf (f
k(x)) is a Birkhoff sum. Then, there exists ρ > 0 such that, for any

small enough open set U , for any smooth bump function χ : M → R supported in U , for any local
chart ϕ : U → R , there exists C1 such that:

∀ξ ∈ R2 \ {0},
∣∣∣∣∫

Ω

eiξ·ϕ(x)χ(x)dµ(x)

∣∣∣∣ ≤ C1|ξ|−ρ.

In other words, ϕ∗(χdµ) enjoy power decay of its Fourier transform.

The main difficulty is to check the “non-concentration hypothesis” (NC) found in the criterion.
In these notes, we show how, in our 2-dimensional, area-preserving context, one can check theses
kind of non-concentration estimates, adapting the ideas of M. Tsujii and Z. Zhang’s paper [TZ20].
Our nonconcentration estimates will hold under a cohomology condition on a “longitudinal KAM
cocyle” (defined later in the text: see remark 4.4).

Theorem 1.2. Let τ : Ω → R be any C2+α potential. Denote by Φτ : Ω → R its associated
“longitudinal KAM cocycle”. If Φτ ∈ Cα is not cohomologous to zero (this is a C2+α-generic
condition on τ), then there exists C0, ε0, γ > 0 such that:

∀n ≥ 0, ∀a ∈ R, µ
(
x ∈ Ω , |Snτ(x)− a| ≤ e−ε0n

)
≤ C0e

−γε0n.
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Notice that, in this theorem, the potential has to be C2+α. In our case of interest, this is
not true. So this isn’t quite enough to tackle the case of the geometric potential τf , but the
techniques that appear when dealing with this simpler context might have applications or be
interesting enough to justify explaining them in detail here. Moreover, one might be able to adapt
the ideas found in these notes in the case of τf by lifting the dynamics on the projective tangent
bundle. One would have to replace τf by (x, [v]) 7→ ln(∥(df)xv∥/∥v∥) and replace the dynamics
by F (x, [v]) = (f(x), [(df)x(v)]). This idea was given to me by Zhiyuan Zhang (thank you!),
whose help was very important for me to understand the ideas behind their paper and the possible
generalizations of it. This will be explored in future work.
Let me also thank Frederic Naud, Semyon Dyatlov, Tuomas Sahlsten, Sebastien Gouezel, Anton
Gorodetski (and many more) for enlightening discussions and for their interest in my work.

2 A temporal distance function

Recall that we fixed a smooth Axiom A dffeomorphism on a surface M . We suppose that f is
area-preserving on a basic set Ω. Suppose that (f,Ω) is transitive. We fix some smooth (C2+α

is enough) potential τ : Ω → R. Suppose also that Ω is not a periodic orbit: in particular, by
transitivity of the dynamics, it is a perfect set. (Typically Ω is Cantor dust. One could also work
in the case where Ω = M with M a closed surface.) Even better, using the local product structure,
for each x ∈ Ω, Ω ∩ Wu

loc(x) and Ω ∩ W s
loc(x) are perfect sets. Recall that one can modify the

riemannian structure on the surface M so that:

∀x ∈ Ω, |λx| := ∂uf(x) ∈ (1,∞) , |µx| := ∂sf(x) ∈ (0, 1).

In general, we will denote by ∂u and ∂s the vector fields defined on Ω of norm 1 that points in the
stable/unstable direction (defined up to some sign... Hence the modulus in the definition of ∂uf).
By continuity of x ∈ Ω 7→ (λx, µx) and by compacity of Ω, there exists 0 < µ+ < µ− < 1 < λ− < λ+

such that:
∀x ∈ Ω, µ+ ≤ |µx| ≤ µ− < 1 < λ− ≤ |λx| ≤ λ+.

We can choose our constants so that µ±λ± = 1. Notice that our area-preserving hypothesis implies
the cohomology relation ln(|µx| · |λx|) ∼ 0. In particular, we can write, uniformly in n ≥ 0 and
x ∈ Ω:

|µx| . . . |µfn(x)| = |λx|−1 . . . |λfn(x)|−1eO(1).

If x is a n-periodic point, then |λx| . . . |λfn(x)||µx| . . . |µfn(x)| = 1.

Denote by D̃iag ⊂ Ω2 a small enough neighborhood of the diagonal, so that for any (p, q) ∈ D̃iag,
{[p, q]} := W s

loc(p) ∩Wu
loc(q) and {[q, p]} := W s

loc(q) ∩Wu
loc(p) are well defined.

Definition 2.1. For (p, q) ∈ D̃iag, and for any n ∈ Z, define:

Tn(p, q) := τ(fn(p))− τ(fn([p, q]))− τ(fn([q, p])) + τ(fn(q)).

Define also ∆,∆+,∆− : D̃iag −→ R by the formulas:

∆(p, q) :=
∑
n∈Z

Tn(p, q) ,∆+(p, q) :=
∑
n≥0

Tn(p, q) ,∆−(p, q) :=
∑
n≥0

T−n(p, q).

These functions are all well defined and continuous, since |Tn(p, q)| ≤ Cτµ
|n|
− d(p, q). The point is

that nonconcentration of either ∆,∆+ or ∆− is enough to ensure the non-concentration estimates
that we want. Notice also that ∆(p, q) is a temporal distance function associated to the suspension
flow of f with roof function τ . First, recall a fact about rectangles. (In the following of theses
notes, we will denote by ds and du the arclenght distance induced along stable/unstable manifolds.)

Lemma 2.2. Let any βZ > 1 (a “zooming” parameter). There exists c ∈ (0, 1) such that, for any
σ > 0 small enough, there exists a finite partition (up to a zero-measure set) of Ω with rectangles

(R
(σ)
i )i∈I such that each R

(σ)
i can be written R

(σ)
i = [Ui(σ), Si(σ

βZ )], with Ui(σ) ⊂ Ω ∩ Wu
loc(pi)

some unstable curve of unstable diameter diamu(Ui(σ)) ∈ [cσ, σ], and Si(σ
βZ ) ⊂ Ω∩W s

loc(pi) some
stable curve of stable diameter diams(Si(σ

βZ )) ∈ [cσβZ , σβZ ].
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Proof. Fix some small Markov partition (Rj)j∈J of Ω. Recall that the boundary of those rectangles

have zero measure. For each j, write Rj = [Uj , Sj ]. Now, for each n ≥ 0, define (U
(n)
a )a∈Jn as the

partition:
U (n)
a := Ua1 ∩ f−1(Ra2) ∩ · · · ∩ f−n(Ran).

For almost every x ∈ Ua, for each n ≥ 0, there exists a unique a ∈ Jn such that x ∈ U
(n)

a(n) . As n
grows, the diameter of those goes to zero exponentially quickly. Let n(x) be the smallest integer

n ≥ 0 such that x ∈ U
(n(x))

a(n(x)) and diamu(U
(n(x))

a(n(x))) ≤ σ. The unstable part of the partition is then

given by (U(x))x∈∪jUj
, where U(x) := U

(n(x))

a(n(x)) . This is a finite partition which satisfies the bounds
that we want. To conclude, apply the same construction for the stable part (by reversing the

dynamics), and then define R
(σ)
i as the rectangles obtained from the unstable and stable parts.

From now on, we fix a parameter βZ > 1. It will be chosen large enough later in the text (in
the end of section 4).

In the next lemma, we will denote by RectβZ
(σ) the set of nonempty rectangles R(σ) ⊂ Ω of

stable (resp. unstable) diameter ≃ σβZ (resp ≃ σ). In particular, R(σ) have nonempty interior for
the topology of Ω.

Lemma 2.3. Suppose that there exists γ > 0 and N ∈ N∗ such that, for any small enough σ > 0,
for all rectangle R(σ) ∈ RectβZ

(σ), for all a ∈ R :

(µ⊗ µ)((p, q) ∈ (R(σ))2, |∆+(p, q)| ≤ σN ) ≤ µ(R(σ))2 · σγ .

Then (NC) (non-concentration) holds.

Proof. Let n ≥ 0 be large enough, and let σ ∼ e−ε0n, where ε0 is a small enough constant (we will
see how small we need it later in the proof). Let a ∈ R. Fix Part(σ), a partition of Ω by rectangles
of size ∼ σ1/N × σβZ/N . Then:

µ(x ∈ Ω, |Snτ(x)− a| ≤ σ) =
∑

R(σ)∈Part(σ)

µ(x ∈ R(σ), Snτ(x) ∈ [a− σ, a+ σ])

=
∑

R(σ)∈Part(σ)

µ(R(σ))
(
µ(R(σ))−1µ(x ∈ R(σ), Snτ(x) ∈ [a− σ, a+ σ])

)
.

Now, notice the following. If we fix any (small enough) rectangle R = [U, S] of nonzero measure
(fixing U and S, some reference unstable and stable curves in R), then the local product structure
of the equilibrium state µ (see [Cl20] for example) allows one to write, for some measures µu defined
on U and some measure µs defined on S:

µ(x ∈ R, h(x) ∈ Iσ) =

∫
U

∫
S

1Iσ (h([z, y]))dµ
s(y)dµu(z),

where we defined h(x) := Snτ(x), and Iσ := [a − σ, a + σ]. One then can write, using Cauchy-
Scwhartz:

µ(x ∈ R, Snτ(x) ∈ Iσ)
2 =

(∫∫
S×U

1Iσ (h([z, y]))dµ
u(z)dµs(y)

)2

≤ µs(S)

∫
S

∫∫
U×U

1Iσ (h([z, y]))1Iσ (h([z̃, y]))(dµ
u)2(z, z̃)dµs(y)

≤ µs(S)

∫
S

∫∫
U×U

1[−2σ,2σ](h([z, y])− h([z̃, y]))(dµu)2(z, z̃)dµs(y).

Then, using Fubini and Cauchy-Schwartz again yields:

µ(x ∈ R, Snτ(x) ∈ Iσ)
4 ≤ µs(S)2

(∫∫
U×U

∫
S

1[−2σ,2σ](h([z, y])− h([z̃, y]))dµs(y)(dµu)2(z, z̃)

)2

≤ µs(S)2µu(U)2
∫∫

U×U

∫∫
S×S

1[−2σ,2σ](h([z, y])−h([z̃, y]))1[−2σ,2σ](h([z, ỹ])−h([z̃, ỹ]))(dµs)2(y, ỹ)(dµu)2(z, z̃)
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≤ µ(R)2
∫∫∫∫

U×U×S×S

1[±4σ](h([z, y])− h([z̃, y])− h([z, ỹ]) + h([z̃, ỹ])(dµu)2(z, z̃)(dµs)2(y, ỹ)

= µ(R)2
∫∫

R2

1[±4σ](h(p)− h([p, q])− h([q, p]) + h(q))dµ(p)dµ(q).

In other words, denoting by H(p, q) := h(p) − h([p, q]) − h([q, p]) + h(q) (defined only on a neih-
borhood of the diagonal !), we have:

1

µ(R)
µ(x ∈ R, h(x) ∈ Iσ) ≤

(
1

µ2(R2)
µ2((p, q) ∈ R2, H(p, q) ∈ [−4σ, 4σ])

)1/4

.

In our particular case, h(x) = Snτ(x), so we get the expression

H(p, q) = Tn(p, q) =

n−1∑
k=0

(
τ(fkp)− τ(fk([p, q]))− τ(fk([q, p])) + τ(fk(q))

)
.

Injecting this estimate in our sum from the beginning of the proof yields:

µ(x ∈ Ω, |Snτ(x)−a| ≤ σ) =
∑

R(σ)∈Part(σ)

µ(R(σ))
(
µ(R(σ))−1µ(x ∈ R(σ), Snτ(x) ∈ [a− σ, a+ σ])

)

≤
∑

R(σ)∈Part(σ)

µ(R(σ))

(
1

µ(R(σ))2
µ2
(
(p, q) ∈ (R(σ))2,

∣∣∣ n−1∑
k=0

Tk(p, q)
∣∣∣ ≤ 4σ

))1/4

.

To conclude, notice that

∀p, q ∈ R(σ),
∣∣∣∆+(p, q)−

n−1∑
k=0

Tk(p, q)
∣∣∣ ≲ µn

− ≤ σ

since ε0 is small in front of | lnµ−|, and σ ∼ e−ε0n. Hence:

∑
R(σ)∈Part(σ)

µ(R(σ))

(
1

µ(R(σ))2
µ2
(
(p, q) ∈ (R(σ))2,

∣∣∣ n−1∑
k=0

Tk(p, q)
∣∣∣ ≤ 4σ

))1/4

≤
∑

R(σ)∈Part(σ)

µ(R(σ))

(
1

µ(R(σ))2
µ2
(
(p, q) ∈ (R(σ))2,

∣∣∣∆+(p, q)
∣∣∣ ≤ 5σ

))1/4

≤
∑

R(σ)∈Part(σ)

µ(R(σ)) · (5σ)γ/(N ·4) ≤ 2σγ/(4N),

and we are done.

Remark 2.4. Using the invariance of µ by f at the very beginning of the proof yields

µ(x ∈ Ω, |Snτ(x)−a| ≤ σ) = µ(x ∈ Ω, |Snτ(f
−n(x))−a| ≤ σ) = µ(x ∈ Ω, |Snτ(f

−n/2(x))−a| ≤ σ).

Starting from the middle term or the last term and then following the previous proof shows that
non-concentration holds also if one replaces ∆+ by ∆− or ∆.

Lemma 2.5. Suppose that there exists N ∈ N∗ and γ > 0 such that, for any small enough σ > 0,

for all p ∈ Ω, for all rectangle R
(σ)
p ∈ RectβZ

(σ) containing a ball [Bu(p, σ/10), Bs(p, σ
βZ/10)]∩Ω:

µ(q ∈ R(σ)
p , |∆+(p, q)| ≤ σN ) ≤ µ(R(σ)

p )σγ .

Then (NC) holds.
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Proof. We are going to check that the previous lemma applies. Let R(σ) be some rectangle of
stable/unstable diameter ∼ σ. Then:

µ2
(
(p, q) ∈ R(σ) , |∆(p, q)| ≤ σN

)
=

∫
R(σ)

µ(q ∈ R(σ), |∆(p, q)| ≤ σN )dµ(p)

≤
∫
R(σ)

µ(q ∈ R(10σ)
p , |∆(p, q)| ≤ σN )dµ(p),

where we denoted R
(10σ)
p some rectangle containing R(σ) in its center, with unstable (resp stable)

diameter 10βZ times larger (resp 10 larger). Now, we can use the hypothesis, since p is sufficiently
close to the center of the square. We find:∫

R(σ)

µ(q ∈ R(10σ)
p , |∆(p, q)| ≤ σN )dµ(p) ≤ µ(Rσ)µ(R(10σ)

p ) · 10γσγ .

The fact that the measure µ is doubling [Do98] gives us some constant C > 0 such that µ(R(Aσ)) ≤
Cµ(Rσ), and this allows us to check the condition of the previous lemma.

Now we know that, to conclude, it suffices to understand the oscillations of ∆(p, q), for any
fixed p, when q gets close to p. To do so, we will introduce some coordinate systems associated to
the dynamics.

3 Construction of adapted coordinates.

In this section, we construct a family of adapted coordinates in which the dynamics is going to be
(almost) linearized. We also define templates (linear form version, and vector field version).

Lemma 3.1. There exists a family of uniformly smooth maps (Φs
x)x∈Ω, such that for all x ∈ Ω

Φs
x : R −→ W s(x) is a smooth parametrization of W s(x), Φs

x(0) = x, |(Φu
x)

′(0)| = 1, and:

∀x ∈ Ω,∀y ∈ R, f (Φs
x(y)) = Φs

f(x)(µxy),

where µx := εsx|µx|, with |µx| := ∂sf(x) ∈ (µ+, µx) ⊂ (0, 1) and εsx ∈ {−1, 1} is some sign that
depends on x. The dependence in x of (Φs

x)x∈Ω is Hölder.

Proof. The proof is taken from [KK07]. The idea is to first define Φs
x on W s

loc(x) (on which ∂sf(x)
makes sense and is smooth along W s

loc(x), even if x /∈ Ω), and then to extend our maps on W s(x)
using the conjugacy relation that we want. Define, for any x ∈ Ω, and for any y ∈ W s

loc(x), the
function ρx(y) by the formula:

ρx(y) :=

∞∑
n=0

[(ln ∂sf)(f
ny)− (ln ∂sf)(f

nx)] .

This is well defined and smooth along W s
loc(x) (and this, uniformly in x ∈ Ω). We can then define,

for y ∈ W s(x):

Ψs
x(y) :=

∫
[x,y]⊂W s

loc(x)

eρx(y
′)dy′

in the sense that we integrate from x to y, following the local stable manifold W s
loc(x) (w.r.t.

the arclenght). This function is smooth along W s
loc(x), and is obviously invertible since its stable

derivative is positive. We denote by Φs
x : (−ε, ε) → Wu(x) its inverse. (One can choose a uniform

ε for all these maps, but this is not very important.)

We check that the dynamics is linearized in these coordinates. Notice that, since Ψs
x(x) = 0,

the desired relation is equivalent to:

∀y ∈ W s
loc(x), ∂sΨ

s
f(x)(f(y))∂sf(y) = |µx|∂sΨs

x(y).

But this is obviously true, by construction of Ψs
x. It follows that, for all y ∈ W s

loc(x), Ψ
s
f(x)(f(y)) =

µxΨ
s
x(y). In particular, notice that iterating this relation yields, for y ∈ W s

loc(x), Ψ
s
fn(x)(f

n(y)) =

5



µfn−1x . . . µxΨ
s
x(y).

To conclude the proof, we need to extend Ψs
x on the whole stable manifold of x ∈ Ω. We proceed

as follow. Let y ∈ W s(x). If n is large enough (depending on y), one sees that fny ∈ W s
loc(f

nx).
Hence, it makes sense to define:

Ψs
x(y) := µ−1

x . . . µ−1
fn−1xΨ

s
fnx(f

n(y)).

The previous discussion ensure that this is well defined. Moreover, it is easy to check that the map
Ψs

x : W s(x) → R is a smooth diffeomorphism (when we see W s(x) as a manifold equipped with
the arclenght.) The inverse of Ψs

x is defined to be Φs
x : R → W s(x). The commutation relation is

then easy to check. The Holder regularity in x is tedious to detail but shouldn’t be surprising.

Lemma 3.2. There exists a family of uniformly smooth maps (Φu
x)x∈Ω, such that for all x ∈ Ω

Φu
x : R −→ Wu(x) is a smooth parametrization of Wu(x), Φu

x(0) = x, |(Φu
x)

′(0)| = 1, and:

∀x ∈ Ω,∀z ∈ R, f (Φu
x(z)) = Φu

f(x)(λxz),

where λx := εux|λx|, with |λx| = ∂uf(x) ∈ (λ−, λ+) ⊂ (1,∞) and εux ∈ {−1, 1} is some sign that
depends on x. The dependence in x of (Φu

x) is Hölder.

Definition 3.3. These parametrizations often goes outside Ω, but we are only interested by what’s
happening inside Ω. So let us define:

Ωu
x := (Φu

x)
−1(Ω) ⊂ R , Ωs

x := (Φs
x)

−1(Ω) ⊂ R.

Notice that, for all x ∈ Ω, 0 ∈ Ωu
x. Moreover:

∀x ∈ Ω,∀z ∈ Ωu
x, λxz ∈ Ωu

f(x) ⊂ R.

A similar statement hold for Ωs
x.

Remark 3.4. Let us define some further notations. Define, for n ∈ Z and x ∈ Ω:

|λ⟨n⟩
x | := ∂u(f

n)(x) ; |µ⟨n⟩
x | := ∂s(f

n)(x).

Notice that |λ⟨0⟩
x | = |µ⟨0⟩

x | = 1, |λ⟨−n⟩
x | = |λ⟨n⟩

f−n(x)|
−1 and |µ⟨−n⟩

x | = |µ⟨n⟩
f−n(x)|

−1. Moreover, we can

write some relations involving (Φu
x) and (Φs

x). For all n ∈ Z, x ∈ Ω, y ∈ Ωs
x, z ∈ Ωu

x, we have:

fn(Φu
x(z)) = Φu

fn(x)(λ
⟨n⟩
x z) ; fn(Φs

x(y)) = Φs
fn(x)(µ

⟨n⟩
x y),

where λ
⟨n⟩
x (resp. µ

⟨n⟩
x ) is |λ⟨n⟩

x | (resp. |µ⟨n⟩
x |) multiplied by the obvious associated sign.

Lemma 3.5 (change of parametrizations). Let x ∈ Ω and let x̃ ∈ Ω ∩Wu
loc(x). Then the real map

affx̃,x := (Φu
x̃)

−1 ◦ Φu
x : R −→ R is affine. Moreover, there exists C ≥ 1 and α > 0 such that

ln |affx̃,x
′(0)| ≤ Cd(x, x̃)α.

Proof. Notice that, for all z ∈ R, and for all n ≥ 0:

(Φu
x̃)

−1
(Φu

x(z)) = λ
⟨n⟩
x̃

(
Φu

f−n(x̃)

)−1 (
Φu

f−n(x)(λ
⟨−n⟩
x z)

)
.

In particular, without loss of generality, we see that we can reduce our problem to show that affx,x̃

is affine on a neighborhood of zero, and this property should spread. In this case, we can compute
the log of the absolute value of the differential of (Φu

x̃)
−1 ◦ Φu

x, and we get:

ln

(∣∣∣( (Φu
x̃)

−1 ◦ Φu
x

)′
(z)
∣∣∣)

= ρx̃(Φ
u
x(z))− ρx(Φ

u
x(z)) = ρx̃(x),

which is constant in z. The proof is done: the bound on affx,x̃
′(0) follows from an easy bound on

ρx̃(x).
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These coordinates are interesting but only linearize the dynamics along the stable or unstable
direction. Of course, we can’t expect to fully linearize the dynamics in smooth coordinates, but we
can still try to introduce coordinates that will linearize the dynamics in a weaker sense, in some
particular places. This construction is directly taken from [TZ20], appendix B.

Lemma 3.6 (Nonstationary normal coordinates). The exists two small constants ρ1 < ρ0 < 1, and
a family of uniformly smooth coordinates charts {ιx : (−ρ0, ρ0)

2 → M}x∈Ω such that:

• For every x ∈ Ω, we have

ιx(0, 0) = x, ιx(z, 0) = Φu
x(z), ιx(0, y) = Φs

x(y),

• the map fx := ι−1
f(x)◦f ◦ιx : (−ρ1, ρ1)

2 −→ (−ρ0, ρ0)
2 is smooth (uniformly in x) and satisfies

πy(∂yfx(z, 0)) = µx, πz(∂zfx(0, y)) = λx,

where πz (resp. πy) is the projection on the first (resp. second) coordinate.

Furthermore, one can assume the dependence in x of (ιx)x∈Ω to be Hölder regular.

Proof. Since the stable/unstable manifolds are smooth, and since they intersect uniformly trans-
versely, we know that we can construct a system of smooth coordinate charts (ι̌x)x∈Ω such that,
for all x ∈ Ω,

ι̌x(0, 0) = x, ι̌x(z, 0) = Φu
x(z), ι̌x(0, y) = Φs

x(y).

One can also assume the dependence in x of these to be Hölder regular, since the stable/unstable
laminations are Hölder (in our context, they are even C1+α). Define f̌x := ι̌−1

f(x) ◦ f ◦ ι̌x. This is

a smooth map defined on a neighborhood of zero, with a (hyperbolic) fixed point at zero. Notice
also that (df̌x)0 is a diagonal map with coefficients (λx, µx). Those coordinates won’t do, but we
can straighten them into doing what we want. Define:

ρ̌ux(z) :=

∞∑
n=1

(
ln |πy∂y f̌f−n(x)(λ

⟨−n⟩
x z, 0)| − ln |µf−n(x)|

)
and

ρ̌sx(y) :=

∞∑
n=0

(
ln |πz∂z f̌fn(x)(0, µ

⟨n⟩
x y)| − ln |λfn(x)|

)
.

Finally, set Ďu
x(z, y) := (z, yeρ̌

u
x(z)), Ďs

x(z, y) := (ze−ρ̌s
x(y), y), Ďx := Ďu

x ◦ Ďs
x and ιx := ι̌x ◦ Ďx. Let

us check that fx := ι−1
f(x) ◦ f ◦ ιx satisfies the desired relations. First of all, notice that ρ̌ux and ρ̌sx

are smooth and satisfy ρ̌ux(0) = ρ̌sx(0) = 0. In particular, Ďx, Ďu
x and Ďs

x are smooth, and coincide
with the identity on {(z, y) , z = 0 or y = 0}. Moreover,

ρ̌uf(x)(λxz) = ln |πy∂y f̌x(z, 0)| − ln |µx|+ ρ̌ux(z)

and
ρ̌sx(y) = ln |πz∂z f̌x(0, y)| − ln |λx|+ ρ̌sf(x)(µxy).

Now let us write fx in terms of f̌x: we have

fx = ι−1
f(x) ◦ f ◦ ιx = (Ďs

f(x))
−1 ◦ (Ďu

f(x))
−1 ◦ f̌x ◦ Ďu

x ◦ Ďs
x.

Hence:

(dfx)(z,0) = d((Ds
f(x))

−1)(λxz,0) ◦ d((D
u
f(x))

−1)(λxz,0) ◦ (df̌x)(z,0) ◦ (dD
u
x)(z,0) ◦ (dDs

x)(z,0)

Abusing a bit notations, we can write in matrix form:

(dfx)(z,0) =

(
1 (∗)
0 1

)(
1 0

0 e−ρ̌f(x)(λxz)

)(
λx πz∂y f̌x(z, 0)

0 πy∂y f̌x(z, 0)

)(
1 0
0 eρ̌

u
x(z)

)(
1 (∗)
0 1

)
=

(
λx (∗)
0 e−ρ̌u

f(x)(λxz)+ρ̌u
x(z)πy∂y f̌x(z, 0)

)
=

(
λx (∗)
0 µx

)
,

which implies in particular that πy∂yfx(z, 0) = µx. A similar computation shows that

(dfx)(0,y) =

(
λx 0
(∗) µx

)
.

In particular, πz∂zfx(0, y) = λx.
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Remark 3.7. Notice the following pretty convenient property. As soon as the quantity writen down
makes sense, we have the identities:

(df ⟨n⟩
x )(z,0) =

(
λ
⟨n⟩
x (∗)
0 µ

⟨n⟩
x

)
; (df ⟨n⟩

x )(0,y) =

(
λ
⟨n⟩
x 0

(∗) µ
⟨n⟩
x

)

where f
⟨n⟩
x := ιfn(x) ◦ fn ◦ ιx : (−(ρ1/ρ0)

nρ0, (ρ1/ρ0)
nρ0)

2 −→ (−ρ0, ρ0)
2.

This coordinate system is not “canonically attached” to the dynamics, since the behavior of
ιx outside the “cross” {(z, y) , zy = 0} might be completely arbitrary. But the behavior of those
coordinates near the cross seems to give rise to less arbitrary objects. Those objects will be called
“templates” in these notes. They are inspired from the “templates” appearing in [TZ20].

Definition 3.8 (Templates, dual version). Let x ∈ Ω. A template based at x is a continuous 1-form
ξx : Wu

loc(x) → Ω1(M) such that:

∀z ∈ Wu
loc(x), Ker(ξx)z ⊃ Eu(z).

We will denote by Ξ(x) the space of templates based at x.

Remark 3.9. Notice that, since Eu(z) moves smoothly along the unstable local manifold Wu
loc(x),

it makes sense to consider smooth templates. Notice further that, since (df)zE
u(z) = Eu(f(z)),

the diffeomorphism f acts naturally on templates by taking the pushforward. This yields a map
f∗ : Ξ(x) → Ξ(f(x)).

Lemma 3.10 (Some interesting templates.). There exists a family (ξsx)x∈Ω of smooth templates,
where ξsx ∈ Ξ(x), that satifies the following invariance relation:

∀z ∈ Wu
loc(x), (f∗(ξ

s
x))f(z) = µ−1

x (ξsx)f(z).

(Moreover, the dependence in x of (ξsx) is Hölder.)

Proof. For all x ∈ Ω, define ξsx := (ιx)∗(dy). It is clear that this defines a smooth template at x.
Furthermore, using remark 3.7 for n = −1:

f∗ξ
s
x = f∗((ιx)∗(dy)) = (ιf(x))∗((fx)∗(dy)) = (ιf(x))∗(d(πyf

−1
x )) = (ιf(x))∗(µ

−1
x dy) = µ−1

x ξsf(x).

The dependence is Hölder because (ιx) depends on x in a Hölder manner.

It is natural to try to find a ”vector field” version of those templates. We suggest a way to
proceed in the following.

Definition 3.11 (Templates, vector version). Let x ∈ Ω. A (vector) template based at x is a
continuous section of the line bundle TM/Eu along Wu

loc(x). We will denote by Γ(x) the space of
(vector) templates at x.

Remark 3.12. If X is some continuous vector field defined along Wu
loc(x), we can take its class

modulo Eu to get a (vector) template [X]. Notice also that it makes sense to talk about smooth
(vector) templates. Notice further that f acts naturally on (vector) templates, since (df)zE

u(z) =
Eu(f(z)). This define a map f∗ : Γ(x) → Γ(f(x)).

Lemma 3.13 (Some interesting templates.). There exists a family ([∂x
s ])x∈Ω of smooth (vector)

templates, where [∂x
s ] ∈ Γ(x), such that:

∀z ∈ Wu
loc(x), (f∗[∂

x
s ])f(z) = µx[∂

f(x)
s ]f(z).

(Moreover, the dependence in x of ([∂x
s ]) is Hölder.)

Proof. For all x ∈ Ω, define ∂x
s := (ιx)∗(∂/∂y) along Wu

loc(x). This is smooth. Moreover, using
remark 3.7, we find:

f∗∂
s
x = f∗(ιx)∗(∂y) = (ιf(x))∗((fx)∗∂y) = (ιf(x))∗(µx∂y + (∗)∂z) = µx∂

f(x)
s + (∗)∂u.

Hence, taking the class modulo Eu, we find

f∗[∂
x
s ] = µx[∂

f(x)
s ]

which is what we wanted. The dependence in x is then Hölder because of the properties of ιx.
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Remark 3.14 (A quick duality remark). We can define a sort of “duality bracket”
Ξ(x)× Γ(x) → C0(Wu

loc(x),R) by the following formula:

⟨ξ, [X]⟩ := ξ(X).

Our special templates (ξsx)x∈Ω and (∂x
s ) can be chosen normalised so that ⟨ξsx, ∂x

s ⟩ = 1. This will
not be usefull, but this is an indication that Ξ(x) and Γ(x) could countain the same informations.

Remark 3.15 (Templates acting on a space of functions). It is natural to search for a space of
functions on which (vector) templates could acts. A way to do it is as follow. For each x ∈ Ω,
define F(x) as the set of functions h defined on a neighborhood of Wu

loc(x) that are C1 along the
stable direction and that vanish along Wu

loc(x). In this case, for any point z ∈ Wu
loc(x), we know

that ∂shx(z) makes sense, and we know that ∂uhx(z) = 0 also makes sense. So one can make
(vector) templates [X] acts on h by setting:

∀z ∈ Wu
loc(x), ([X] · hx)(z) := (X · hx)(z).

This is well defined. In the particular case where [X] = [∂x
s ], we get the formula:

∀z ∈ (−1, 1), ([∂x
s ] · hx)(Φ

u
x(z)) = ∂y(hx ◦ ιx)(z, 0)

Notice that f acts naturally on these space of functions, by taking a pullback f∗ : F(f(x)) →
F(x). If we fix hf(x) ∈ F(f(x)), and if we set hx := hf(x) ◦ f ∈ F(x), notice finally that one can
write

[∂x
s ] · hx = [∂x

s ] · f∗hf(x) = f∗[∂
x
s ] · hf(x) = µx[∂

f(x)
s ] · hf(x).

Lemma 3.16 (Changing basepoint). Let x ∈ Ω. For x̃ ∈ Ω ∩Wu
loc(x), let

H(x, x̃) = exp
( ∞∑

n=0

(
lnµf−n(x) − lnµf−n(x̃)

) )
.

Then:
∀z ∈ Wu

loc(x), ([∂x̃
s ])z = H(x, x̃)([∂x

s ])z.

Proof. Remember that TM/Eu is a line bundle, and that [∂x
s ] doesn’t vanish. In particular, there

exists a function ax,x̃ : Wu
loc(x) → R such that:

∀z ∈ Wu
loc(x), ([∂x̃

s ])z = ax,x̃(z)([∂
x
s ])z.

The main point is to show that ax,x̃ is z-constant. Since the familly ([∂x
s ]) depends in x in a Hölder

manner (and locally uniformly in z), we know that ax,x̃(z) = 1 + O(d(x, x̃)α) for some α. The
invariance properties of those (vector) templates yields an invariance property for ax,x̃(z):

∀z ∈ Wu
loc(x), ax,x̃(z) =

µ
⟨−n⟩
x

µ
⟨−n⟩
x̃

af−n(x),f−n(x̃)(f
−n(z)).

Taking the limit as n → +∞ gives the result.

4 Templates acting on ∆+.

We return on our study of ∆+. Recall that ∆+ : D̃iag → R is defined as

∆+(p, q) :=

∞∑
n=0

Tn(p, q),

where Tn(p, q) := τ(fn(p)) − τ(fn([p, q])) − τ(fn([q, p])) + τ(fn(q)). Let us fix some p ∈ Ω, and
set:

∆+
p (q) := ∆+(p, q) , Tp,n(q) := Tn(p, q).

For each p and n, Tp,n is C1+α, and moreover taking the derivative along the local stable lamination

yields: ∂sTp,n(q) = −(∂sτ)(f
n([p, q]))|µ⟨n⟩

[p,q]|∂sπp(q) + ∂sτ(f
n(q)))|µ⟨n⟩

q |, where πp(q) := [p, q]. It
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follows that ∆+
p is C1 along the local stable lamination. Moreover, Tp,n vanish on Wu

loc(p), and so
does ∆+

p . It follows that

∆+
p ∈ F(p) , Tp,n ∈ F(p),

where F(p) denotes the space of function defined in remark 3.15. This ensure that the next
definition makes sense.

Definition 4.1. For each x ∈ Ω, for each z ∈ Ωu
x ⊂ R, define Xx ∈ Cα((−ρ0, ρ0),R) by:

Xx(z) := ([∂x
s ] ·∆+

x )(Φ
u
x(z)).

The family (Xx)x∈Ω depends on x in a Hölder manner.

Lemma 4.2 (autosimilarity). We have Xx(0) = 0. Moreover, the family (Xx)x∈Ω satisfies the
following autosimilarity relation:

∀z ∈ Ωu
x, Xx(z) = τ̂x(z) + µxXf(x)(λxz),

where τ̂x(z) := ([∂s
x] · Tx,0)(Φ

u
x(z)) ∈ Cα.

Proof. Notice that Tp,n+1(q) = Tf(p),n(f(q)). It follows that:

∆+
p (q) = Tp,0(q) +

∞∑
n=0

Tf(p),n(f(q)) = Tp,0(q) + ∆+
f(p)(f(q)).

Making the vector template [∂p
s ] acts on this along Wu

loc(p) yields (using the invariance properties
of the family ([∂x

s ])):

([∂p
s ] ·∆+

p ) = ([∂p
s ] · Tp,0) + ([∂p

s ] · (∆+
f(p) ◦ f)) = ([∂p

s ] · Tp,0) + µp([∂
f(p)
s ] ·∆+

f(p)) ◦ f.

Testing this equality on Φu
p(z) gives the desired equality, since f ◦ Φu

p = Φu
f(p) ◦ (λpId).

Lemma 4.3 (regularity of τ̂x). The function τ̂x is smoother than expected: it is C1+α((−ρ0, ρ0),R).
It vanish at z = 0, and its derivative at zero is:

(τ̂x)
′(0) = ∂z∂y(τ ◦ ιx)(0, 0) + n′

x(0)∂z(τ ◦ ιx)(0, 0),

where nx(z) ∈ C1+α is defined such that ∂y + nx(z)∂z ∈ ι−1
x (Es) points in the stable direction at

coordinates (z, 0).

Proof. Let us do an explicit computation of τ̂x. By definition of [∂x
s ]:

τ̂x(z) = ([∂x
s ] · Tx,0)(Φ

u
x(z)) = ∂y(Tx,0 ◦ ιx)(z, 0).

Recall that Tx,0(ιx(z, y)) = τ(ιx(z, y))− τ([x, ιx(z, y)])− τ([ιx(z, y), x]) + τ(x) ∈ C1+α. Define

πs
x(z, y) := ι−1

x ([x, ιx(z, y)]) ∈ {(0, y′), y′ ∈ (−ρ0, ρ0)}

and
πu
x(z, y) := ι−1

x ([ιx(z, y), x]) ∈ {(z′, 0), z′ ∈ (−ρ0, ρ0)}.

Define also τx := τ ◦ ιx. Then:

Tx,0(ιx(z, y)) = τx(z, y)− τx(π
u
x(z, y))− τx(π

s
x(z, y)) + τx(0).

For each point z ∈ (−ρ0, ρ0), let N⃗x(z) be a vector pointing along the direction ι−1
x (Es), and

normalize it so that N⃗x(z) = ∂y + nx(z)∂z. By regularity of Es, we can choose N⃗x(z) to be C1+α

in z. We can then, for each x, z, find a (smooth) path t 7→ γx(z, t) such that πu
x ◦ γx(z, t) = (z, 0)

and such that ∂tγx(z, 0) = N⃗x(z). (We just follow the stable lamination in coordinates.) Using
this path, we can compute the derivative of Tx,0 ◦ ιx as follow:

∂y(Tx,0 ◦ ιx)(z, 0) =
(
(∂y + nx(z)∂z) · (Tx,0 ◦ ιx)

)
(z, 0) =

d

dt
Tx,0(ιx(γx(z, t)))|t=0
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=
d

dt |t=0

(
τx(γx(z, t))− τx(π

u
x(γx(z, t)))− τx(π

s
x(γx(z, t))) + τx(0)

)
= ∂yτx(z, 0) + nx(z)∂zτx(z, 0)− (dτx)(0,0) ◦ (dπs

x)(z,0)(N⃗x(z))

= ∂yτx(z, 0) + nx(z)∂zτx(z, 0)− ∂yτx(0, 0)πy(∂yπ
s
x(z, 0)),

since (dπs
x)(z,0)(∂z) = 0, as πs

x(z, 0) = (0, 0), and since πz ◦ πs
x = 0. In this expression, everything

is C1+α; except eventually the last term ηx(z) := πy∂yπ
s
x(z, 0). Let us prove that ηx(z) is, in fact,

constant and equal to one. First of all, the maps (ηx) are at least continuous (and this, uniformly
in x). Moreover, we have πyπ

s
x(0, y) = y, and hence ηx(0) = 1. To conclude, let us use the fact

that the stable lamination is f invariant. This remark, written in coordinates, yields (as soon as
the relation makes sense):

πs
x = f

⟨n⟩
f−n(x) ◦ π

s
f−n(x) ◦ f

⟨−n⟩
x .

Taking the differential at (z, 0) yields, using remark 3.7:

∀n ≥ 0,∀z ∈ (−ρ0, ρ0), (dπs
x)(z,0) = (df

⟨n⟩
f−n(x))(0,0) ◦ (dπ

s
f−n(x))(λ⟨−n⟩

x z,0)
◦ (df ⟨−n⟩

x )(z,0)

=

(
λ
⟨n⟩
f−n(x) 0

0 µ
⟨n⟩
f−n(x)

)(
0 0

0 ηf−n(x)(λ
⟨−n⟩
x z)

)(
λ
⟨−n⟩
x (∗)
0 µ

⟨−n⟩
x

)
=

(
0 0

0 ηf−n(x)(λ
⟨−n⟩
x z)

)
It follows that:

∀z,∀n ≥ 0, ηx(z) = ηf−n(x)(λ
⟨−n⟩
x z) −→

n→∞
1.

In conclusion, we get the following expression for τ̂x:

τ̂x(z) = ∂yτx(z, 0) + nx(z)∂zτx(z, 0)− ∂yτx(0, 0),

which is a C1+α function that vanish at zero. Let us compute its derivative at zero: we have

(τ̂x)
′(0) = ∂z∂yτx(0, 0) + n′

x(0)∂zτx(0, 0) + nx(0)∂
2
zτx(0, 0).

The fact that nx(0) = 0 gives us the desired formula.

Remark 4.4. Recall that, in our area-preserving context, there exists a Hölder map h : Ω → R such
that λxµx = exp(h(f(x))−h(x)). Fix one such h for the rest of the paper. For each τ ∈ C2+α(Ω,R),
let us denote by Φτ ∈ Cα(Ω,R) the map defined by

Φτ : x ∈ Ω 7−→ (τ̂x)
′(0)eh(x) ∈ R.

The linear map τ ∈ C2+α 7→ Φτ ∈ Cα is obviously continuous. Moreover, it is easy to see that,
genericaly in τ ∈ C2+α, Φτ is not cohomologous to zero. Indeed, one can take a fixed point p0 (or
a periodic ordit) and look at the value of Φτ (p0): if it is zero, then it is easy to C2+α−perturb τ
on a neighborhood of p0 so that Φτ (p0) becomes non-vanishing. In the following of these notes,
the potential Φτ : Ω → R will have the same kind of role for us as a “longitudinal KAM cocycle”
would. (See [FH03] for details on this notion.)

Lemma 4.5 (Change of basepoint). Let x ∈ Ω. Let x̃ ∈ Wu
loc(x) be close enough to x. Then, there

exists Affx,x̃ : R → R, an (invertible) affine map, such that:

Affx,x̃

(
Xx̃(z)

)
= Xx(affx,x̃(z)),

where affx,x̃ = (Φu
x)

−1 ◦ Φu
x̃ is the affine change of charts defined in lemma 3.5. Moreover, there

exists C ≥ 1 and α > 0 such that ln |Affx,x̃
′(0)| ≤ Cd(x, x̃)α.

Proof. Let x ∈ Ω and let x̃ ∈ Wu
loc(x) be close enough to x. We have, for p in a neighborhood of x̃:

∆+(x̃, q) = ∆+(x̃, [x, q]) + ∆+(x, q).

We differentiate (w.r.t. q) with the vector template [∂x̃
s ] along Wu

loc(x̃) to find:

Xx̃(z) = [∂x̃
s ] · (∆+

x̃ ◦ [x, ·])(Φu
x̃(z)) + ([∂x̃

s ] ·∆+
x )(Φ

u
x̃(z)).
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The first thing to recall is that Φu
x̃ = Φu

x ◦ (Φu
x)

−1 ◦Φu
x̃ = Φu

x ◦ affx,x̃, and moreover, by lemma 3.16,
[∂x̃

s ] = H(x, x̃)[∂x
s ]. From this, we see that the last term is H(x, x̃)Xx(affx,x̃(z)). To conclude, we

only need to show that

[∂x̃
s ] · (∆+

x̃ ◦ [x, ·]) = H(x, x̃)[∂x
s ] · (∆+

x̃ ◦ [x, ·])

is constant along Wu
loc(x). In coordinates, we see that:

[∂x
s ] · (∆+

x̃ ◦ [x, ·])(Φx(z)) = ∂y(∆
+
x̃ ◦ [x, ·] ◦ ιx)(z, 0) = ∂y(∆

+
x̃ ◦ ιx ◦ πs

x)(z, 0),

where πs
x is defined in the proof of lemma 4.3. Recall from this proof that we have

(dπs
x)(z,0) =

(
0 0
0 1

)
is constant in z (and in x). It follows that: [∂x

s ] · (∆+
x̃ ◦ [·, x])(Φx(z)) = ∂y(∆

+
x̃ ◦ ιx)(0, 0), which is

a constant expression in z. The proof is done.

We conclude this section by showing that one can reduce the study of the oscillations of ∆+
x to

the study of the oscillations of Xx. The proof is in two parts: we first establish a proper asymptotic
expansion for ∆+

p , and then we reduce (NC) to a statement about (Xx)x∈Ω.

Theorem 4.6. Let p, q ∈ Ω be close enough. We will denote πS
p (q) := [p, q] =: s ∈ Ω∩W s

loc(p), and

πU
p (q) := [q, p] =: r ∈ Ω ∩ Wu

loc(p). We have q = [r, s]. These “coordinates” are C1+α. Suppose

that ds(p, s) ≤ σβZ and du(p, r) ≤ σ for σ > 0 small enough. If βZ > 1 is fixed large enough, then
the following asymptotic expansion hold:

∆+
p ([r, s]) = ±∂s∆

+
p (r)d

s([r, s], r) +O(σ1+βZ+α),

where ∂s denotes the derivative in the stable direction.

Proof. Let us introduce some notations. Define, for any p ∈ Ω, the C2+α map ∇p : W s
loc(p) → R

as

∇p(s) :=

∞∑
n=0

(τ(fn(p))− τ(fn(s))) ,

and notice that
∆+

p (q) = ∇p(s)−∇r(q).

A Taylor expansion yields:

∇p(s) = ∇p(p)± ∂s∇p(p)d
s(p, s) +

1

2
∂2
s∇p(p)d

s(p, s)2 +O(ds(p, s)2+α)

= ±∂s∇p(p)d
s(p, s) +

1

2
∂2
s∇p(p)d

s(p, s)2 +O(σ(2+α)βZ )

±∂s∇p(p)d
s(p, s) +

1

2
∂2
s∇p(p)d

s(p, s)2 +O(σ1+α+βZ )

since βZ > 1. Hence,
∆+

p (q) = ± (∂s∇p(p)d
s(p, s)− ∂s∇r(r)d

s(r, s))

+
1

2

(
∂2
s∇p(p)d

s(p, s)2 − ∂2
s∇r(r)d

s(r, q)2
)
+O(σ1+α+βZ ).

Then, notice the following. The function

(r, s) ∈ Ω2 ∩ (Wu
loc(p)×W s

loc(p)) 7→
ds([r, s], r)

ds(s, p)
∈ R

is C1+α. Indeed, in our 2 dimensionnal hyperbolic context, the bracket [·, ·] is (since the holonomies
are C1+α), and the distance “arclenght” functions ds have the same regularity than Es, which is
also C1+α. A Taylor expansion in the s variable around p yields:

ds(q, r)

ds(s, p)
= ∂sπ

S
p (r) +O(ds(s, p)α) = ∂sπ

S
p (r) +O(σαβZ ).

12



If βZ is chosen so large that αβZ > 1 + α, then we find the expansion:

ds(q, r)

ds(s, p)
= ∂sπ

S
p (r) +O(σ1+α).

Next, notice that r ∈ Wu
loc(p) 7→ ∂sπ

S
p (r) is actually C1+α. This can be seen as follow. We at least

know that this function is Hölder, and moreover, that ln ∂sπ
S
p (q) = O(du(p, q)α). Invariance by

the dynamics yields, if q is close enough to Wu
loc(p) depending on n :

πS
p (q) = fnπf−n(p)(f

−n(q)).

Taking the derivative in the stable direction, taking the limit as n → ∞ and taking the log yields
the formula:

ln ∂sπp(r) =

∞∑
n=0

(
ln(∂sf)(f

−np)− ln(∂sf)(f
−nr)

)
.

This expression is clearly C1+α on r ∈ Wu
loc(p). A corollary of all this discussion is the expansion:

ds(q, r)

ds(s, p)
= 1 +O(σ)

In particular ds(p, s)2 = ds(q, r)2(1 + O(σ)) = ds(q, r)2 + O(σ1+2βZ ) = ds(q, r)2 + O(σ1+α+βZ ).
Hence

∂2
s∇p(p)d

s(p, s)2 − ∂2
s∇r(r)d

s(r, q)2 =
(
∂2
s∇p(p)− ∂2

s∇r(r)
)
ds(r, q)2 +O(σ1+βZ+α).

Finally, the map

∂2
s∇q(q) :=

∞∑
n=0

∂2
sτ(f

n(q))(∂sf
n(q))2 + ∂sτ(f

n(q))∂2
s (f

n(q))

being Hölder regular, we get ∂2
s∇p(p)− ∂2

s∇r(r) = O(σα). In particular, we find that(
∂2
s∇p(p)− ∂2

s∇r(r)
)
ds(r, q)2 = O(σ2βZ+α) = O(σ1+α+βZ ). All of this discussion gives us the

following expansion:

∆+
p (q) = ±(∂s∇p(p)d

s(p, s)− ∂s∇r(r)d
s(r, q)) +O(σ1+βZ+α).

We want to make ∂s∆
+
p (r) appear. We compute it and find out that

∂s∆
+
p (r) = ∂s∇p(p)∂sπ

S
p (r)−∇r(r).

We can make this term appear in our asymptotic expansion as follow:

∆+
p (q) = ±

(
∂s∇p(p)

ds(p, s)

ds(r, q)
− ∂s∇r(r)

)
ds(r, q) +O(σ1+α+βZ )

= ±
(
∂s∆

+
p (s) + φp,s(r)

)
ds(r, q) +O(σ1+α+βZ )

where

φp,s(r) := ∂s∇p(p)

(
ds(p, s)

ds(r, q)
− ∂sπ

S
p (r)

)
= ∂s∇p(p)

(
ds(πS

p (r), π
S
p ([r, s]))

ds(r, [r, s])
− ∂sπ

S
p (r)

)
.

Now recall that we already proved that φp,s(r) = O(σ1+α). Hence φp,s(r)d
s(r, q) = O(σ1+α+βZ ),

and we are done.

Remark 4.7. Recall again that µ has a local product structure [Cl20], in the following sense. For all
x ∈ Ω, there exists µu

x and µs
x two measures supported on Ux := Ω∩Wu

loc(x) and Sx := Ω∩W s
loc(x)

such that, for all measurable h : M → C supported in a small enough neighborhood of x, we have∫
Ω

hdµ =

∫
Ux

∫
Sx

h([z, y])dµs
x(y)dµ

u
x(z).

13



Notice in particular that, for some rectangle Rp = [Up, Sp] ∋ p, and for any borel set I ⊂ R :

µ(q ∈ Rp, h([q, p]) ∈ I) = µs
p(Sp)µ

u
p(z ∈ Up, h(z) ∈ I)).

The family of measures (µu
x)x∈Ω satisfies some invariance properties under f that will prove usefull

later. (Written like that, its interesting to see the possible similarities with the idea of templates...
Since those measures lives on some local unstable manifold at x.) In the following lemma, we will
denote Uσ

x := B(x, σ) ∩ Ux and Sσ
x := B(x, σ) ∩ Sx.

Lemma 4.8. Denote by
x

:= (Φu
x)

∗µu
x, the measure µu

x seen in the coordinates Φu
x. Suppose

that the family (Xx)x satisfies the following (uniform) non-concentration estimates: there exists
α, γ, σ0 > 0 such that, for all x ∈ Ω and for all 0 < σ < σ0, and for any a ∈ R:

x
(z ∈ [−σ, σ], |Xx(z)− az| ≤ σ1+α/2) ≤ σγ ·

x
([−σ, σ]).

Then (NC) holds.

Proof. Recall that, by lemma 2.5, to check (NC), it suffices to establish the following bound:

µ
(
q ∈ Rσ

p , |∆+
p (q)| ≤ σ1+α+βZ

)
≤ σγµ(Rσ

p )

where the bound is uniform in p, and where Rσ
p = [U

(σ)
p , S

(σβZ )
p ] is a rectangle with p in its center

of stable (resp. unstable) diameter σβZ (resp. σ). Let us check this estimate by using the Taylor
expansion of ∆+

p . We can write, using the local product structure of µ:

µ
(
q ∈ Rσ

p , |∆+
p (q)| ≤ σ1+α+βZ

)
=

∫
S

(σβZ )
p

µu
p

(
r ∈ Uσ

p , |∆+
p ([r, s])| ≤ σ1+α+βZ

)
dµs

p(s)

≤
∫
S

(σβZ )
p

µu
p

(
r ∈ Uσ

p , |∂s∆+
p (r)d

s([r, s], r)| ≤ Cσ1+βZ+α
)
dµs

p(s).

It is easy to see, using Gibbs estimates, that there exists δreg > 0 such that

µs
p(B(p, σβZ+α/2) ∩ S(σβZ )

p ) ≤ σαδreg/2µs
p(S

σβZ

p ).

It follows that one can cut the integral over Sp in two parts: the part where r is σβZ+α/2-close to
p, and the other part. We get, using the aforementienned regularity estimates:

µ
(
q ∈ Rσ

p , |∆+
p (q)| ≤ σ1+α+βZ

)
≤ σδregα/2µ(Rσ

p ) +

∫
S

(σβZ )
p

µu
p

(
r ∈ Uσ

p , |∂s∆+
p (r)| ≤ Cσ1+α/2

)
dµs

p(s). (∗)

We just have to control the integral term to conclude. To do so, notice that, for all s, we can write:

µu
p

(
r ∈ Uσ

p , |∂s∆+
p (r)| ≤ Cσ1+α/2

)
=
(
(Φu

p)
∗µu

p

) (
z ∈ (Φu

p)
−1(Uσ

p ), |∂s∆+
p (Φp(z))| ≤ Cσ1+α/2

)
≤
(
(Φu

p)
∗µu

p

) (
z ∈ [−Cσ,Cσ], |∂s∆+

p (Φp(z))| ≤ Cσ1+α/2
)
.

Now, since TM/Eu is a line bundle, and since ∂s and ∂p
s are C1+α, there exists a nonvanishing

C1+α function ap(z) such that [∂s]Φu
p (z)

= ap(z)[∂
p
s ]Φu

p (z)
. We have ap(z) = eO(1). Hence:(

(Φu
p)

∗µu
p

) (
z ∈ [−Cσ,Cσ], |∂s∆+

p (Φp(z))| ≤ Cσ1+α/2
)

=
(
(Φu

p)
∗µu

p

) (
z ∈ [−Cσ,Cσ], |ap(z)Xp(z)| ≤ Cσ1+α/2

)
(
(Φu

p)
∗µu

p

) (
z ∈ [−Cσ,Cσ], |Xp(z)| ≤ C ′σ1+α/2

)
≤ C ′′((Φu

p)
∗µu

p

)
([C ′σ,C ′σ])σγ ,
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where the last control is given by the nonconcentration hypothesis made on (Xx)x∈Ω. To conclude,
notice that by regularity of the parametrizations Φu

p , and since the measure µu
x is doubling (thus

constants can be neglected), we get
(
(Φu

p)
∗µu

p

)
([−Cσ,Cσ]) ≤ Cµu

p(U
σ
p ). Injecting this estimate in

(∗) yields
µ
(
q ∈ Rσ

p , |∆+
p (q)| ≤ σ1+βZ+α

)
≤ C

(
σδregα/2 + σγ

)
µ(Rσ

p ),

which is what we wanted.

We see that we are reduced to understand oscillations of z 7→ Xx(z) (modulo linear maps: this
wasn’t necessary here, but this claim will be natural after reading the next section). The next
section will be devoted to proving a “blowup” result on the family (Xx)x∈Ω, which will help us
understand deeper the oscillations of those functions. This “blowup” result will allow us to exhibit
a rigidity phenomenon. The final section is devoted to proving the non-concentration estimates in
the hypothesis of lemma 4.8, under our generic condition defined in remark 4.4.

5 Autosimilarity, polynomials, and rigidity

Let us recall our setting. We are given a family of Hölder maps (Xx)x∈Ω, where Xx : Ωu
x ∩

(−ρ, ρ) −→ R is defined only on a (fractal) neighborhood of zero and vanish at z = 0. Recall that
Ωu

x := (Φu
x)

−1(Ω) ∋ 0. We have an autosimilarity relation: for any x ∈ Ω, and any z ∈ Ωu
x∩(−ρ, ρ),

we have
Xx(z) = τ̂x(z) + µxXf(x)(zλx),

where τ̂x : Ωu
x ∩ (−ρ, ρ) → R is a C1+α map (in the sense of Whitney) that vanish at zero. Recall

that, C2+α-generically in the choice of τ , we can suppose that the function

Φτ : x ∈ Ω 7→ (τ̂x)
′(0)eh(x) ∈ R

is not cohomologous to zero (where h : Ω → R is such that µxλx = exp(h(f(x)) − h(x))). Let
us call this cohomology condition (C). We will establish quantitative estimates on the oscillations
of (Xx) under the cohomology condition (C). To do so, we start by proving a ”blowup” result,
directly inspired/taken from Appendix B in [TZ20]. The point of this lemma is to only keep, in the
autosimilarity formula of (Xx)x∈Ω, the germ of τ̂x (in the form of its Taylor expansion at zero at
some order). Depending on the contraction/dilation rate on the dynamics, the order of this Taylor
expansion is different: in our area-preserving case, it is enough to approximate τ̂x(z) by (τ̂x)

′(0)z.

Lemma 5.1 (Blowup ?). There exists two families of functions (Yx)x∈Ω, (Zx)x∈Ω such that:

• For all x ∈ Ω and z ∈ Ωu
x ∩ (−ρ, ρ),

Xx(z) = Yx(z) + Zx(z).

• The map Yx : Ωu
x ∩ (−ρ, ρ) → R is C1+α, and there exists C ≥ 1 such that, for all x ∈ Ω and

z ∈ Ωu
x ∩ (−ρ, ρ):

|Yx(z)| ≤ C|z|1+α.

• The family (Zx)x∈Ω satisfies an autosimilarity formula: for any x ∈ Ω, z ∈ Ωu
x ∩ (−ρ, ρ)

Zx(z) = (τ̂x)
′(0)z + µxZf(x)(zλx).

Moreover, the dependence in x of (Xx)x∈Ω, (Yx)x∈Ω and (Zx)x∈Ω is Hölder.

Proof. In the original proof, there is an implicit argument used, which is the fact that polynomials
(of order one, here) are maps with vanishing (second order) derivative. In our fractal context,
this is not true, as Ωu

x may not be connected: so we have to replace this derivative with a notion
adapted to our fractal context. For β < α, define a “(1 + β)-order fractal derivative” as follows:
if h : Ωu

x ∩ (−ρ, ρ) → R is C1+α in the sense of Whitney, then its Taylor expansion at zero makes
sense, and we can consider the function:

δ1+β(h)(z) :=
h(z)− h(0)− h′(0)z

z1+β
.
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This is a continuous function on Ωu
x ∩ (−ρ, ρ), and it is bounded and vanish at zero at order

|z(α−β)−|. Moreover, notice that δ1+β(h) = 0 is equivalent to saying that h is affine. Notice further
that

δ1+β
(
µh(λ·)

)
(z) = (µλ1+β) · δ1+β(h)(zλ).

Now, let us begin the actual proof. Consider the autosimilarity equation of (Xx), and formaly take
the (1 + β)-th fractal derivative. We search for a C1+α solution (Yx) of this equation:

δ1+β(Yx)(z) = δ1+β(τ̂x)(z) + µxλ
1+β
x · δ1+β(Yx)(zλx).

Notice that κx := µxλ
1+β
x behaves like a greater-than-one multiplier. Indeed, if we denote, for

x ∈ Ω and n ∈ Z,
κ⟨n⟩
x := κx . . . κfn−1(x)

(if n ≥ 0, and similarly if n ≤ 0 as in the definition of λ
⟨n⟩
x ), we see that κ

⟨n⟩
x ≥ (λn

−)
β where

λ− > 1. We can wolve this equation by setting

δ1+β(Yx)(z) := −
∞∑

n=1

δ1+β(τ̂f−n(x))(zλ
⟨−n⟩
x ) · κ⟨−n⟩

x =: Ỹx(z).

This is defines a continuous function that vanishes at zero. We then define Yx as the only C1+α

function such that Yx(0) = Y ′
x(0) = 0 and δ1+β(Yx) = Ỹx. In other words, Yx(z) := z1+βỸx(z).

Using the sum formula of Ỹx, we find the autosimilarity formula:

Yx(z) = τ̂x(z)− (τ̂x)
′(0)z + µxYf(x)(zλx).

We can then conclude by setting Zx := Xx − Yx.

The idea now is to consider the distance from Zx to the space of affine maps. By the autosim-
ilarity formula of (Zx), there is going to be some invariance that will prove usefull.

Definition 5.2. For any ρ > 0 small enough, consider the function Dρ : Ω −→ R+ defined as

Dρ(x) := inf
a,b∈R

sup
z∈Ωu

x∩(−ρ,ρ)

|Zx(z)− az − b|.

This function is continuous, since x ∈ Ω 7→ Zx ∈ C0 is, and since we are computing a distance to
a finite-dimensional vector space.

Lemma 5.3. We have the following criterion. Are equivalent, for some fixed x ∈ Ω and ρ > 0:

• Dρ(x) = 0

• For all n ≥ 0, Zf−n(x) ∈ C1+α
(
Ωu

f−n(x) ∩ (−ρλ
⟨−n⟩
x , ρλ

⟨−n⟩
x

)
,R), and there exists C ≥ 1 such

that, for all n ≥ 0,

∥δ1+α(Zf−n(x))∥L∞(Ωu
f−n(x)

∩(−ρλ
⟨−n⟩
x ,ρλ

⟨−n⟩
x ))

≤ C.

Proof. Suppose that Dρ(x) = 0. Since Zx(0) = 0, there exists a ∈ R such that Zx(z) = az on
(−ρ, ρ). The autosimilarity relation Zx(z) = (τ̂x)

′(0)z + µxZf(x)(λxz) gives, with a change of
variable,

Zf−1(x)(zλ
⟨−1⟩
x )µ⟨−1⟩

x = (τ̂f−1(x))
′(0)λ⟨−1⟩

x µ⟨−1⟩
x z + Zx(z).

Iterating this yields
Zf−n(x)(zλ

⟨−n⟩
x )µ⟨−n⟩

x = linear + Zx(z).

In particular, if Zx is linear on Ωu
x∩(−ρ, ρ), then Zf−n(x) is linear on Ωu

f−n(x)∩(−ρλ
⟨−n⟩
x , ρλ

⟨−n⟩
x )).

In particular, it is C1+α and the bound on δ1+α(Zf−n(x)) = 0 holds. Reciprocally, if the second
point hold, then we can write, on Ωu

x ∩ (−ρ, ρ):

|δ1+α(Zx)(z)| = |µ⟨−n⟩
x (λ⟨−n⟩

x )1+α · δ1+α(Zf−n(x))(zλ
⟨−n⟩
x )| ≤ C ′(|λx|⟨−n⟩)α −→

n→∞
0,

where we used the fact that µ
⟨n⟩
x λ

⟨n⟩
x = eO(1) by our area-preserving hypothesis made on the

dynamics f . Hence δ1+α(Zx) = 0 on Ωu
x ∩ (−ρ, ρ), which means that Zx is linear on this set.
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Lemma 5.4 (Rigidity lemma). Suppose that there exists x0 ∈ Ω such that Dρ(x0) = 0.
Then Dρ = 0 on Ω.

Proof. The proof is in three steps. Suppose that Dρ(x0) = 0 for some ρ > 0 and x0 ∈ Ω.

• We first show that there exists 0 < ρ′ < ρ and a set ω ⊂ Wu
loc(x0) ∩ Ω which is an open

neighborhood of x for the topology of Wu
loc(x0) ∩ Ω, such that Dρ′(x̃) = 0 if x̃ ∈ ω.

So suppose that Dρ(x0) = 0. Since Zx0
vanish at zero, this means that Zx0

is linear on (−ρ, ρ)∩Ωu
x0
.

In particular, since Yx0 is C1+α, we know that Xx0 is C1+α on (−ρ, ρ)∩Ωu
x0
. Now, recall that, by

Lemma 4.5, we know that if x̃ ∈ Wu
loc ∩ Ω is close enough to x, we can write

Affx0,x̃

(
Xx̃(z)

)
= Xx0

(affx0,x̃(z)),

where Affx0,x̃ and affx0,x̃ are affine function (that gets close to the identity as x̃ → x0). If follows
that Xx̃ is C1+α on some (smaller) open neighborhood of zero, (−ρ′, ρ′) ∩ Ωu

x̃. In particular, Zx̃

is also C1+α. Let us show that Dρ′(x̃) = 0 by checking the criterion given in the previous lemma.
We have:

Zx̃(z) = Xx̃(z)− Yx̃(z) = Aff−1
x0,x̃

(
Xx0

(affx0,x̃(z))
)
− Yx̃(z)

= Aff−1
x0,x̃

(
Zx0(affx0,x̃(z))

)
+Aff−1

x0,x̃

(
Yx0(affx0,x̃(z))

)
− Yx̃(z)

By hypothesis, Aff−1
x0,x̃

(
Zx0(affx0,x̃(z))

)
is affine in z, and so its (1 + α)-th derivative is zero. We

can then write, for all n ≥ 0 and z ∈ (−ρ′λ
⟨−n⟩
x , ρ′λ

⟨−n⟩
x ) ∩ Ωu

f−n(x):

δ1+α(Zf−n(x̃))(z) = αf−n(x0),f−n(x̃)δ
1+α(Yf−n(x0))(afff−n(x0),f−n(x̃)(z))− δ1+α(Yf−n(x̃))(z),

where αx0,x̃ := (Aff−1
x̃,x0

)′(0)(affx̃,x0)
′(0)1+α = 1 + O(du(x0, x̃)). Since |δ1+α(Yx)| ≤ ∥Yx∥C1+α , the

criterion applies.

• Second, we show that if Dρ′(x) = 0 for some x and small ρ′, then Dmin(ρ′λx,ρ)(f(x)) = 0.

This directly comes from the autosimilarity formula. We have, for z ∈ (−ρ, ρ) ∩ Ωu
x:

Zx(z) = (τ̂x)
′(0)z + µxZf(x)(zλx).

In particular, if Zx is linear on (−ρ′, ρ′)∩Ωu
x, then Zf(x) is linear on (−ρ′λx, ρ

′λx)∩(−ρ, ρ)∩Ωu
f(x).

• We conclude, using the transitivity of the dynamics and the continuity of Dρ.

We know that Dρ(x0) = 0, by hypothesis. By step one, there exists ω, some unstable neighborhood
of x0, and ρ′ < ρ such that Dρ′ = 0 on ω. Step 2 then ensures that D

min(ρ′λ
⟨n⟩
x ,ρ)

= 0 on fn(ω).

Choosing N large enough, we conclude that

∀x ∈
⋃

n≥N

fn(ω), Dρ(x) = 0.

Since the dynamics f is transitive on Ω, we know that
⋃

n≥N fn(ω) is dense in Ω. The function
Dρ being continuous, it follows that Dρ = 0 on Ω.

Lemma 5.5 (Oscillations everywhere in x). Under the C2+α-generic condition Φτ ≁ 0, the following
hold. There exists κ ∈ (0, ρ/10) such that, for all x ∈ Ω, for all a, b ∈ R, there exists z0 ∈
Ωu

x ∩ (−ρ/2, ρ/2) such that

∀z ∈ Ωu
x ∩ (z0 − κ, z0 + κ), |Zx(z)− az − b| ≥ κ.

Proof. Our previous lemma gives us the following dichotomy: either Dρ > 0 on Ω, or either Dρ = 0
on Ω. Suppose the later. In this case, for all x, Zx ∈ C1+α. Write the autosimilarity relation and
take the (usual) first derivative in z. We find:

Z ′
x(0) = (τ̂x)

′(0) + µxλxZ
′
f(x)(0).
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Recall that, since f is area preserving, we can write µxλx = exp(h(f(x))− h(x)) for some Hölder
function h : Ω → R. Our previous relation can then be rewritten as

Z ′
x(0)e

h(x) = eh(x)(τ̂x)
′(0) + Z ′

f(x)(0)e
h(f(x)),

which implies that Φτ ∼ 0. So our generic condition Φτ ≁ 0 ensures that Dρ > 0 on Ω. By
continuity of Dρ, and by compacity of Ω, there exists some κ > 0 such that Dρ(x) ≥ κ for all
x ∈ Ω. One can do the same proof replacing ρ with ρ/2, so we can directly says that Dρ/2(x) ≥ κ,
taking κ smaller if necessary. Now, this means the following: for every a, b ∈ R, for every x ∈ Ω,
there exists z0(x, a, b) ∈ Ωu

x ∩ (−ρ/2, ρ/2) such that

|Zx(z0)− az0 − b| ≥ κ.

We still have to show that this doesn’t only hold for some point z0, but on a whole small interval.
The proof is different, depending if a, b are small or large.

First of all, since Ωu
x is perfect (and by compacity of Ω), there exists κ0 > 0 such that Ωu

x∩{2κ0 ≤
|z| < ρ} ≠ ∅. Define M := supx∈Ω ∥Zx∥Cα(Ωu

x∩(−ρ,ρ),R), and then define M̃ := 4κ−1
0 (κ+M). In

the case where |a| ≤ M̃ , then we consider the associated z0 ∈ Ωu
x from before, and we define

κ̃ := min((κ/4M)1/α, κ/4M̃). We then find:

∀z ∈ Ωu
x ∩ (z0 − κ̃, z0 + κ̃), |Zx(z)− az − b|

= |(Zx(z0)− az0 − b) + (Zx(z)− Zx(z0)) + a(z0 − z)|

≥ κ− |Zx|Cα κ̃α − aκ̃ ≥ κ/2.

If |a| ≥ M̃ , we look at the value of b. If |b| ≤ |a|κ0/2 , then:

∀z ∈ Ωu
x, |z| ≥ κ0, |Zx(z)− az − b| ≥ |a|κ0 − |b| − ∥Zx∥∞ ≥ κ.

If |b| ≥ |a|κ0/2, then:

∀z ∈ Ωu
x, |z| ≤ κ0/4, |Zx(z)− az − b| ≥ |b| − |a|κ0/4− ∥Zx∥∞ ≥ κ.

This proves what we wanted: for all a, b ∈ R, there exists some open interval of positive diameter
(bounded from below uniformly in a, b and x), centered at a point lying in Ωu

x ∩ (−ρ/2, ρ/2), on
which Zx(z) is far away from az + b.

Lemma 5.6 (Oscillation everywhere in x, at all scales in z). Under the condition Φτ ≁ 0, the
following hold. There exists κ > 0 such that, for all x ∈ Ω, for all a, b ∈ R, for all n ≥ 0, there
exists z0 ∈ Ωu

x ∩ (−ρ/2, ρ/2) such that

∀z ∈ Ωu
x ∩ (z0 − κ, z0 + κ), |Z⟨n⟩

x (z)− az − b| ≥ κ,

where Z
⟨n⟩
x (z) := µ

⟨−n⟩
x Zf−n(x)(zλ

⟨−n⟩
x ). The family (Z

⟨n⟩
x ) is a (n-th times) zoomed-in and rescaled

version of (Zx).

Proof. We know that Z
⟨n⟩
x (z) = linear + Zx(z) on (−ρ, ρ) ∩ Ωu

x. The result follows from the
previous lemma.

Lemma 5.7. Under the generic condition Φτ ≁ 0, the following hold. There exists κ > 0 and n0 ≥ 0
such that, for all x ∈ Ω, for all a, b ∈ R, for all n ≥ n0, there exists z0 ∈ Ωu

x ∩ (−ρ/2, ρ/2) such
that

∀z ∈ Ωu
x ∩ (z0 − κ, z0 + κ), |X⟨n⟩

x (z)− az − b| ≥ κ,

where X
⟨n⟩
x (z) := µ

⟨−n⟩
x Xf−n(x)(zλ

⟨−n⟩
x ).

Proof. Recall that Xx = Yx + Zx, and that |Yx(z)| ≤ C|z|1+α. Zooming in, we find, for all n ≥ 0:

X⟨n⟩
x (z) = Y ⟨n⟩

x (z) + Z⟨n⟩
x (z),

where Y
⟨n⟩
x (z) := µ

⟨−n⟩
x Yf−n(x)(zλ

⟨−n⟩
x ) = O((λ

⟨−n⟩
x )α). Taking n0 large enough so that this is less

than κ/2 for the κ given by the previous lemma allows us to conclude.
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We conclude this section by establishing what we will call the “Uniform Non Integrability
condition” (UNI) in our context.

Proposition 5.8 (UNI). Under the generic condition Φτ ≁ 0, the following hold. There exists
0 < κ < 1/10 and σ0 > 0 such that, for all x ∈ Ω, for all a, b ∈ R, for all 0 < σ < σ0, there exists
z0 ∈ Ωu

x ∩ (−σ/2, σ/2) such that

∀z ∈ Ωu
x ∩ (z0 − κσ, z0 + κσ) ⊂ (−σ, σ), |Xx(z)− az − b| ≥ κσ.

Proof. For each σ small enough, define nx(σ) as the largest positive integer such that σ ≤
ρλ

⟨−nx(σ)⟩
x . We then have σ ≃ λ

⟨−nx(σ)⟩
x ≃ (µ

⟨−nx(σ)⟩
x )−1, and we see that we can deduce our

statement written with σ by our statement written with nx(σ).

6 Nonconcentration under (UNI)

In this last section, we establish our last estimate, given by the following lemma. We call (UNI)
the estimate given by Lemma 5.8.

Proposition 6.1. Under (UNI), there exists γ > 0 and α > 0 such that for all σ > 0 small enough,
for all x ∈ Ω, for all a ∈ R, we have

x

(
z ∈ [−σ, σ], |Xx(z)− az| ≤ σ1+α

)
≤ σγ

x
([−σ, σ]),

where
x
:= (Φu

x)
∗µu

x.

Once this proposition is proved, lemma 4.8 will ensure that the nonconcentration estimates
(NC) are true under the generic condition Φτ ≁ 0. Let us begin by strenghtening a bit the
conclusion of (UNI): we will go from a statement about oscillations of (Xx) at zero to a statement
about oscillations of (Xx) everywhere.

Lemma 6.2 (Oscillations everywhere !). Under the generic condition Φτ ≁ 0, the following hold.
There exists 0 < κ < 1/10 and σ0 > 0 such that, for all x ∈ Ω, for all a, b ∈ R, for all 0 < σ < σ0,
for any z0 ∈ Ωu

x ∩ (−ρ, ρ), there exists z1 ∈ Ωu
x ∩ (z0 − σ/2, z0 + σ/2) such that

∀z ∈ Ωu
x ∩ (z1 − κσ, z1 + κσ) ⊂ (z0 − σ, z0 + σ), |Xx(z)− az − b| ≥ κσ.

Proof. Let us fix the κ and σ0 from Proposition 5.8. Let x ∈ Ω, let σ < σ0, and let z0 ∈ Ωu
x. Define

x̃ := Φu
x(z0). Recall that, by lemma 4.5, there exists Affx,x̃ and affx,x̃, two affine functions with

eO(1) linear coefficients, such that

Affx,x̃(Xx̃(z)) = Xx(affx,x̃(z)).

Furthermore, affx,x̃ = (Φu
x)

−1 ◦ (Φu
x̃). Notice that affx,x̃(0) = z0. Since (Affx,x̃)

′(0) = eO(1), the
previous lemma applied to Xx̃ gives us some z2 ∈ (−σ/2, σ/2) such that:

∀z ∈ (z2 − κσ, z2 + κσ), |Affx,x̃(Xx̃(z))− az − b| ≥ κσ,

choosing κ smaller if necessary. Setting z1 := (affx,x̃)
−1(z2) yields the desired result.

We do a little break by proving a clean cutting lemma (as clean as I can right now). The
difficulty here is a to cut Ωu

x into “equal” pieces, but the fractal nature of Ωu
x makes it a bit subtle

(especially because I prefer not to use Markov partitions). This is nothing new, though.

Lemma 6.3. Denote by ρ, κ the constant given by Lemma 6.2. There exists ηcut,1, ηcut,2 ∈ (0, 1), with

ηcut,1 ≤ κ/100, such that the following hold. Let x ∈ Ω, σ ∈]0, ρ] and n ≥ 1. Let U
(σ)
x ⊂ Wu

loc(x)∩Ω
be such that B(x, σ)∩Wu

loc(x)∩Ω ⊂ U
(σ)
x ⊂ B(x, 10σ)∩Wu

loc(x). There exists a finite set A and a
family of intervals (Ia)a∈

⋃n
k=0 Wk

, where Wk ⊂ Ak is a set of words on the alphabet A, and where
Ia ⊂ Wu

loc(x) are such that:

1. I∅ ∩ Ω = U
(σ)
x
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2. For all a ∈ Ak, 0 ≤ k ≤ n, we have Ia ∩ Ω =
⋃

b∈A(Iab ∩ Ω), and this union is disjoint
modulo a zero-measure set.

3. For all a ∈ Ak, 0 ≤ k ≤ n, there exists xa ∈ Ω ∩ Ia such that

Wu
loc(x) ∩B(xa, 10

−1diamu(Ia)) ⊂ Ia

4. For all a ∈ Ak, 0 ≤ k ≤ n− 1, we have for any b ∈ A:

η2cut,1diam
u(Ia) ≤ diamu(Iab) ≤ ηcut,1diam

u(Ia) , µu
x(Iab) ≥ ηcut,2µ

u
x(Ia).

Proof. The proof is done in a couple of steps.

• Step 1: We cut, once (n = 1), intervals [−σ, σ] when σ ∈ [ρλ−2
+ , ρ].

First of all, recall that for all ε, there exists δ > 0 such that for any z ∈ Wu
loc(x) ∩Ω, µu

x(B(z, ε) ∩
Wu

loc(x)) > δ. Since, moreover, the measure µu
x is upper regular, that is:

∀U ⊂ Wu
loc(x), µu

x(U) ≤ Cdiam(U)δreg ,

It follows that reciprocally, if µu
x(U) ≥ ε, then diam(U) ≥ δ.

Consider a finite cover of U
(σ)
x by a set of balls E of the formB(xi, ε) with xi ∈ U

(σ)
x , for ε

small enough (for example, ε := κρλ−2
+ ·10−10 should be enough). By Vitali’s lemma, there exists a

subset D ⊂ E such that the balls in D are disjoints, and such that ∪B∈D3B ⊃ U
(σ)
x . Since Wu

loc(x)
is one-dimensionnal, we can set A := D, and choose B ⊂ Ia ⊂ 3B such that the (Ia) have disjoint
union and covers U (σ). By construction, the diameter of those intervals is small, but in a controlled
way, the measure of them is greater than some constant, and they all contain a ball of radius ε
for some ε. This construct our (Ia)a∈A in this case. Notice that the cardinal of A is uniformly
bounded. We see that it suffice to take ε small enough to find other constants ηcut,1, ηcut,2 with
ηcut,1 ≤ κ/100 that satisfies what we want in this macroscopic context.

• Step 2: We cut, once (n=1), intervals [−σ, σ] when σ > 0 is small.

The idea is to use the properties of µu
x. If we denote by φ : Ω → R the potential defining

our equilibrium state µ, then we know [Cl20] that f∗dµ
u
x = eφ◦f−1−P (φ)dµu

f(x). Iterating yields

fn
∗ dµ

u
x = eSnφ◦f−n−nP (φ)dµu

fn(x). The Hölder regularity of φ allows us to see that, for all intervals

J ⊂ I := Wu
loc(f

n(x)) ∩B(fn(x), ρ), we have

µu
x(f

−n(J))

µu
x(f

−n(I))
=

µu
x(J)

µu
x(I)

(
1 +O(ρα)

)
,

diam(f−n(J))

diam(f−n(I))
=

diam(J)

diam(I)

(
1 +O(ρα)

)
.

So we see that, using the dynamics, (and reducing ρ if necessary) we can reduce our setting to the
setting of step 1. This might deform a bit the constants though, which is way we chosed the 10−1

in point three instead of 6−1 (which was the constant given by Vitali’s lemma), for example.

• Step 3: We iterate this construction to the subintervals Ib.

We consider U (σ) as in the statement of the lemma. We use step 2 to construct (Ia)a∈A. Then, we
can iterate our construction on each of the Ia, since they satisfy the necessary hypothesis to do so.
This gives us intervals (Ia1a2)a1a2∈W2 , with W2 ⊂ A2 (taking A with more letters if necessary).
Doing this again and again yield the desired construction.

Using this partition lemma, we can prove proposition 6.1. Notice that, looking at this lemma
in coordinates Φu

x, one can get the same construction replacing subintervals of Wu
loc by intervals of

R, Ω by Ωu
x, µ

u
x by

x
, etc.

Proof (Proposition 6.1). Let σ > 0 be small enough, let a, b ∈ R. Let x ∈ Ω. Define k(σ) ∈ N as
the largest integer such that

σα ≤ (κ/20) ·
(
ηcut,2

)2k(σ)
.
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We have k(σ) ≃ C| lnσ|. By applying the the previous construction to Φu
x([−σ, σ]), with depth

k(σ), we find a family of intervals (Ia)a∈∪j≤kx(σ)Aj that satisfies some good partition properties.
Then, the heart the proof is as follow: we want to construct (up to renaming some of the Ia) a
word b ∈ Wk(σ) ⊂ Akx(σ) such that

{z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σ1+α} ⊂
⋃

a∈Wk(σ)

∀i,ai ̸=bi

Ia.

This is nothing more than a technical way of keeping track of the oscillations happening at all
scales between σ and σ1+α. Notice that, once this is proved, then the conclusion is easy: we will
have

x

( ⋃
a∈Wk(σ)

∀i,ai ̸=bi

Ia

)
=

∑
a∈Wk(σ)

∀i,ai ̸=bi

x
(Ia)

≤ (1− ηcut,2)
∑

a∈Wk(σ)−1

∀i,ai ̸=bi

x
(Ia)

≤ (1− ηcut,2)
2

∑
a∈Wk(σ)−2

∀i,ai ̸=bi

x
(Ia)

≤ · · · ≤ (1− ηcut,2)
k(σ)

x
([−σ, σ]) ≃ σγ

x
([−σ, σ])

for some γ > 0, since k(σ) ≃ ln(σ−1). Now, let us construct this word b: the idea is that since

2σ1+α ≃ σ(κ/10) ·
(
ηcut,2

)2k(σ)
, for each i, we can find oscillations at scales ∼ σηicut,1 of magnitude

∼ σ(κ/10)(ηcut,1)
2i ≥ 2σ1+α, and conclude.

Let us begin by the case i = 0. By Lemma 6.2, we know that there exists a point z∅ ∈
Ωu

x ∩ (−σ/2, σ/2) such that:

∀z ∈ (z∅ ± κσ), |Xx(z)− az − b| ≥ κσ.

There exists b1 ∈ A such that z∅ ∈ Ib1 . Since diam(Ib) ≤ ηcut,1σ ≤ κ
100σ, we find

∀z ∈ Ib1 , |Xx(z)− az − b| ≥ κσ.

Hence:

{z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σ1+α} ⊂ {z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σκ/2} ⊂
⋃

a1∈A\{b1}

Ia1
.

Now, let a1 ∈ A \ {b1}, and work on Ia1
. We know that there exists za1

∈ Ωu
x such that

]za1 ± 10−1diam(Ia1)[⊂ Ia1 . Now, (UNI) applied at this interval yields:

∃z̃a1
∈ Ia1

∩Ωu
x,∀z ∈]z̃a1

± (κ/10)diam(Ia1
)[, |Xx(z)− az− b| ≥ (κ/10)diam(Ia1

) ≥ (κ/10)η2cut,1σ.

Since diam(Ia1b) ≤ ηcut,1diam(Ia1
), with ηcut,1 ≤ κ/100, we find, for some b2 ∈ A (we can say that

this is the same b2 for any a1 ∈ A, up to renaming the intervals),

∀z ∈ Ia1b2 , |Xx(z)− az − b| ≥ (κ/10)η2cut,1σ.

Hence:
Ia1

∩ {z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σ1+α}

⊂ Ia1 ∩ {z ∈ [−σ, σ], |Xx(z)− az − b| ≤ (κ/20)η2cut,1σ} ⊂
⋃

a2 ̸=b2

Ia1a2 .

Hence
{z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σ1+α} ⊂

⋃
a1 ̸=b1

⋃
a2 ̸=b2

Ia1a2
.
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Let us do the next step, and then we will stop here because the construction will be clear enough.
We could formaly conclude by induction. Take a1 ̸= b1 and a2 ̸= b2. We know that there exists
za1a2 ∈ Ωu

x such that ]za1a2 ± 10−1diam(Ia1a2)[⊂ Ia1a2 . Applying UNI to this interval yield

∃z̃a1a2
∈ Ia1a2

∩ Ωu
x,∀z ∈]z̃a1a2

± (κ/10)diam(Ia1a2
)[,

|Xx(z)− az − b| ≥ (κ/10)diam(Ia1a2
) ≥ (κ/10)η4cut,1σ.

There exists b3 ∈ A such that z̃a1a2
∈ Ia1a2b3 . Since diam(Ia1a2b3) ≤ ηcut,1diam(Ia1a2

), with
ηcut,1 ≤ κ/100, we have

∀z ∈ Ia1a2b3 , |Xx(z)− az − b| ≥ (κ/10)η4cut,1σ ≥ 2σ1+α.

Hence:
Ia1a2

∩ {z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σ1+α} ⊂
⋃

a3 ̸=b3

Ia1a2a3
,

and so
{z ∈ [−σ, σ], |Xx(z)− az − b| ≤ σ1+α} ⊂

⋃
a1 ̸=b1

⋃
a2 ̸=b2

⋃
a3 ̸=b3

Ia1a2a3
.

This algorithm is done until the k(σ)-th step. This conclude this construction, hence the proof,
(hence our notes !).

Theorem 1.2 is then proved using Proposition 6.1, Proposition 5.8, and Lemma 4.8.
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