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Abstract

Let Γ be a (convex-)cocompact group of isometries of the hyperbolic space Hd, let M :=
Hd/Γ be the associated hyperbolic manifold, and consider a real valued potential F on its unit
tangent bundle T 1M . Under a natural regularity condition on F , we prove that the associated
(Γ, F )-Patterson-Sullivan densities are stationary measures with exponential moment for some
random walk on Γ. As a consequence, when M is a surface, the associated equilibrium state for
the geodesic flow on T 1M exhibit “Fourier decay”, in the sense that a large class of oscillatory
integrals involving it satisfies power decay. It follows that the non-wandering set of the geodesic
flow on convex-cocompact hyperbolic surfaces has positive Fourier dimension, in a sense made
precise in the appendix.

1 Introduction

1.1 State of the art

Since the early work of Dolgopyat on the decay of correlation of Anosov flows [Do98], we know
that the rate of mixing of hyperbolic flows (with respect to some equilibrium states) may be linked
with the spectral properties of “twisted transfer operators”. This idea has been widely used and
generalized: see, for example, [St01], [BV05], [St11], and [DV21], to only name a few related work.
In concrete terms, exponential mixing can be reduced to exhibiting enough cancellations in sums
of exponentials. It turns out that this (rather complicated) process can be sometimes simplified if
one knows that the Fourier transform of those equilibrium states exhibit Fourier decay. This idea
has been explored and discussed in Li’s work on stationary measures [Li20], as well as in [MN20],
and more recently in a preprint by Khalil [Kh23]. This connection with the exponential mixing of
dynamical systems has sparked recent interest in studying the behavior of the Fourier transform
of measures. Historically, this was motivated by understanding sets of unicity for Fourier series
[KS64], which lead us to discover that the Fourier properties of a measure may be used to study
the arithmetic properties of its support. This idea is encoded in the notion of “Fourier dimension”:
see for exemple a recent preprint of Fraser [Fr22] (introducing a new notion of “Fourier dimension
spectrum”) and the references therein. Let us introduce this notion.

The Fourier dimension is better understood if we first recall a well known formula for the
Hausdorff dimension. If E ⊂ Rd is a compact subset of some euclidean space, a corollary (see for
example [Ma15]) of a lemma by Frostmann [Fro35] yields the following identity:

dimH E = sup

{
α ∈ [0, d] | ∃µ ∈ P(E),

∫
Rd

|µ̂(ξ)|2|ξ|α−ddξ <∞
}
,

where dimH E is the Hausdorff “fractal” dimension of E, P(E) is the set of all (borel) probability
measures supported on E, and where µ̂ : Rd → C, given by

µ̂(ξ) :=

∫
Rd

e−2iπx·ξdµ(x),

is the Fourier transform of the measure µ ∈ P(E). The condition on the measure in the supremum
can be though as a decay condition “on average”. In particular, the inner integral is finite if
µ̂(ξ) decays like |ξ|−α/2−ε for large ξ. With this in mind, the following notion is quite natural to
introduce: we define the Fourier dimension of E ⊂ Rd by the formula

dimF E := sup
{
α ∈ [0, d] | ∃µ ∈ P(E),∃C ≥ 1,∀ξ ∈ Rd \ {0}, |µ̂(ξ)| ≤ C|ξ|−α/2

}
.

While it is clear that 0 ≤ dimF E ≤ dimH E ≤ d, we do not always have equality between the
two notions. For example, it is well known that the triadic Cantor set has Hausdorff dimension
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ln 2/ ln 3, but has Fourier dimension 0. In fact, exhibiting deterministic (fractal) sets with positive
Fourier dimension is quite a challenge. One of the earliest examples of a deterministic (fractal)
set with a positive Fourier dimension was discovered by Kaufmann in 1980 [Ka80], involving sets
related to continued fractions. Kaufmann’s method was optimised by Queffelec and Ramare in
[QR03], and was more recently generalized by Jordan and Sahlsten [JS16]. A year later, Kauf-
mann [Ka81] found deterministic examples of (fractal) Salem sets in R, that is, sets E satisfying
dimH E = dimF E. This example is related to diophantine approximations. The construction was
generalized in R2 in [Ha17], and then in Rd in [FH23]. Let us mention that there is a whole bibli-
ography on random constructions of Salem sets: the interested reader may look at the references
in [FH23]. Returning to the study of sets with positive Fourier dimension and of sets of unicity, let
us also mention that a there has been a lot of interest for Cantor sets appearing from linear IFS.
Related work includes [LS19a], [LS19b], [So19], [Br19], [VY20], and [Ra21].

In 2017, Bourgain and Dyalov [BD17] introduced a new method to prove positivity of the
Fourier dimension for some sets. The paper takes place in a dynamical context. If we fix some
Schottky group Γ < PSL(2,R), then Γ acts naturally on R. One can prove that there exists a
cantor set ΛΓ ⊂ R, called a limit set, which is invariant by Γ. On this limit set, there is a family of
natural probability measures associated with the dynamics that are called Patterson-Sullivan mea-
sures. Using results from additive combinatorics, more specifically a “sum-product phenomenon”,
Bourgain and Dyatlov managed to prove power decay for the Fourier transform of those probability
measures. In particular, the limit set ΛΓ ⊂ R has positive Fourier dimension. An essential feature
of Γ was the nonlinearity of the dynamics.

The method introduced in this paper inspired numerous generalizations, beginning with a paper
of Li, Naud and Pan [LNP19] proving power decay for Patterson-Sullivan measures over (Zariski
dense) Fuschian Schottky groups Γ < PSL(2,C). In this paper, Li proves that such measures may
be seen as stationary measures with finite exponential moment, which allows them to use several
results from the topic of random walks on groups. From this, they obtain positivity of the Fourier
dimension of the associated limit set ΛΓ ⊂ C.

From there, at least two different directions exists for generalization. The first one is to notice
that Patterson-Sullivan measures are equilibrium states for some hyperbolic dynamical system. A
natural generalization is then given by Sahlsten and Steven in [SS20]: for one dimensional and
“totally nonlinear” IFS, one can show that any equilibrium state exhibit Fourier decay. In partic-
ular, Sahslten and Steven obtain positive Fourier dimension for a large class of “nonlinear” Cantor
sets. This paper use the method introduced by Bourgain-Dyatlov, and is also inspired by previous
techniques appearing in [JS16]. See also [ARW20] for some related work on nonlinear IFS and
pointwise normality. Some complementary remarks on the work of Sahlsten and Steven may be
found in [Le22]. Past the one-dimensionnal setting, it was proved by the author in [Le21] that the
same results hold true in the context of hyperbolic Julia sets in the complex plane. Some decay
results are also true, in the unstable direction, for equilibrium states of (sufficiently bunched) non-
linear solenoids [Le23].

A second natural direction to look at is for result concerning stationary measures with expo-
nential moment for random walks on groups. Li proved in [Li18] and [Li20] several Fourier decay
results in the context of random walks over SLn(R) (a crucial property of this group in the proofs
is its splitness). Past the split setting, further results seems difficult to achieve.

1.2 Our setting of interest

In this paper, we are interested in studying the Fourier properties of equilibrium states for the
geodesic flow on convex-cocompact surfaces of constant negative curvature. More details on our
setting will be explained during the paper, but let’s quickly introduce the main objects at play. A
usefull reference is [PPS15].

We work on hyperbolic manifolds, that is, a riemannian manifold M that may be written as
M = Hd/Γ, where Hd is the hyperbolic space of dimension d, and where Γ is a (non-elementary,
discrete, without torsion, orientation preserving) group of isometries of Hd. The geodesic flow
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ϕ = (ϕt)t∈R acts on the unit tangent bundle ofM , denoted by T 1M . We say that a point v ∈ T 1M
is wandering for the flow if there exists an open neighborhood U ⊂ T 1M of v, and a positive
number T > 0 such that:

∀t > T, ϕt(U) ∩ U = ∅.
The set of non-wandering points for ϕ, denoted by NW (ϕ) ⊂ T 1M , is typically “fractal” and is
invariant by the geodesic flow. We will work under the hypothesis that the group Γ is convex-
cocompact, which exactly means that NW(ϕ) is supposed compact. In particular, the case where
M is itself compact is authorized. Under this condition, the flow ϕ restricted to NW (ϕ) is Axiom A.

In this context, for any choice of Hölder regular potential F : T 1M → R, and for any probability
measure m ∈ P(T 1M) (the set of borel probability measures on T 1M) invariant by the geodesic
flow, one can consider the metric pressure associated to m, defined by:

PΓ,F (m) = hm(ϕ) +

∫
NW(ϕ)

Fdm,

where hm(ϕ) denotes the entropy of the time-1 map of the geodesic flow with respect to the measure
m. Notice that any probability measure invariant by the geodesic flow must have support included
in the non-wandering set of ϕ. The topological pressure is then defined by

P (Γ, F ) := sup
m
PΓ,F (m),

where the sup is taken over all the ϕ-invariant probability measures m. Those quantities generalize
the variationnal principle for the topological and metric entropy (that we recover when F = 0). It
is well known that this supremum is, in fact, a maximum: see for example [BR75] or [PPS15].

Theorem 1.1. Let Γ be convex-cocompact, M := Hd/Γ, and F : T 1M → R be a Hölder regular
potential. Then there exists a unique probability measure mF invariant by ϕ such that PΓ,F (mF ) =
P (Γ, F ). This measure is called the equilibrium state associated to F and its support is the non-
wandering set of the geodesic flow. When F = 0, mF is the measure of maximal entropy.

Theorem 6.1 in [PPS15] also gives us a description of equilibrium states. To explain it, recall
that the Hopf coordinates allows us to identify T 1Hd with ∂∞Hd×∂∞Hd×R, where ∂∞Hd denotes
the ideal boundary of the hyperbolic space (diffeomorphic to a sphere in our context). The measure
mF lift into a Γ-invariant measure m̃F on T 1Hd, which can then be studied in these coordinates.
The interesting remark is that m̃F may be seen as a product measure, involving what we call (Γ, F )-
Patterson-Sullivan densities, which are generalization of the usual Patterson-Sullivan probability
measures. More precisely, there exists µF and µιF , two Patterson-Sullivan densities supported on
the ideal boundary ∂∞Hd, such that one may write (in these Hopf coordinates):

dm̃F (ξ, η, t) =
dµF (ξ)⊗ dµιF (η)⊗ dt

DF (ξ, η)2
,

where DF is the “potential gap” (or gap map), that we will define later. More details on Patterson-
Sullivan densities can be found in section 2 (which will be devoted to recalling various preliminary
results). Since the Hopf coordinates are smooth on Hd, we see that one may reduce Fourier decay
for mF to proving Fourier decay for Patterson-Sullivan densities. This reduction is the content of
section 4. Then, to prove Fourier decay for those measures, several possibilities exists. With our
current techniques, this may only be achieved when d = 2, so that Patterson-Sullivan densities are
supported on the circle.

The first possibility would be to use the fact that, in this low dimensionnal context, there
exists a coding of the dynamics of the group Γ on the ideal boundary: see for exemple [BS79] or
[AF91]. Using these, one should be able to get Fourier decay for Patterson-Sullivan densities by
adapting the proof of Bougain and Dyatlov in [BD17]. The second possibility would be to adapt the
argument found in Li’s appendix [LNP19] to prove that Patterson-Sullivan densities are actually
stationary measures with exponential moment (for a random walk on Γ). Since in dimension 2,
isometries of H2 may be seen as elements of SL2(R), one could then apply Li’s work [Li20] to get
Fourier decay. This is the strategy that we choose to follow in section 3. Finally, let us enhance
the fact that we are only able to work under a regularity condition (R) (see definition 2.13) that
ensure Hölder regularity for our measures of interest. We now state our main results.
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Theorem 1.2 (Compare Theorem 3.2). Let Γ be a convex-cocompact group of isometries of Hd,
and let F : T 1(Hd/Γ) → R be a Hölder potential satisfying (R). Let µ ∈ P(∂∞Hd) be a (Γ, F )
Patterson-Sullivan density. Then there exists ν ∈ P(Γ) with exponential moment such that µ is
ν-stationary and such that the support of ν generates Γ.

Theorem 1.2 is our main technical result. The strategy is inspired by the appendix of [LNP19],
but in our setting, some additionnal difficulties appear since the potential may be non-zero. For
example, the proof of Lemma A.12 in [LNP19] fails to work in our context. Our main idea to
replace this lemma is to do a carefull study of the action of Γ on the sphere at infinity: we will be
particularly interested in understanding its contractions properties. This is the content of section
2. The proof of Theorem 1.2 is in section 3. Once this main technical result is proved, one can
directly use the work of Li [Li20] and get:

Corollary 1.3 ([Li20], Theorem 1.5). Let Γ be a convex-cocompact group of isometries of H2, and
let F : T 1(H2/Γ) → R be a Hölder potential satisfying (R). Let µ ∈ P(ΛΓ) be a (Γ, F ) Patterson-
Sullivan density. There exists ε > 0 such that the following hold. Let R ≥ 1 and let χ : ∂∞H2 ≃
S1 → R be a α-Hölder map supported on some compact K. Then there exists C ≥ 1 such that, for
any C2 function φ : ∂∞H2 → R such that ∥φ∥C2 + (infK |φ′|)−1 ≤ R, we have:

∀s ∈ R∗,

∣∣∣∣∫
∂∞H2

eisφχdµ

∣∣∣∣ ≤ C

|s|ε
.

Using the previous Corollary 1.3 and using the Hopf coordinates, we can conclude Fourier decay
for equilibrium states on convex-cocompact hyperbolic surfaces. The proof is done in section 4.

Theorem 1.4 (Compare Theorem 4.5). Let Γ be a convex-cocompact group of isometries of H2, and
let F : T 1(H2/Γ) → R be a Hölder potential satisfying (R). Let mF be the associated equilibrium
state. There exists ε > 0 such that the following holds. Let χ : T 1H2 → R be a Hölder map
supported on a compact neighborhood of some point vo ∈ T 1H2, and let φ : T 1H2 → R3 be a C2

local chart containing the support of χ. There exists C ≥ 1 such that:

∀ζ ∈ R3 \ {0},

∣∣∣∣∣
∫
NW (ϕ)

eiζ·φ(v)χ(v)dmF (v)

∣∣∣∣∣ ≤ C

|ζ|ε
,

where ζ · ζ ′ and |ζ| denotes the euclidean scalar product and the euclidean norm on R3. In other
word, the pushforward measure φ∗(χdmF ) ∈ P(R3) exhibit power Fourier decay.

Remark 1.5. We will see in section 4 that the argument to prove Theorem 1.4 from Corollary 1.3
is fairly general. In particular, if one is able to prove Fourier decay for (Γ, F )-Patterson-Sullivan
densities in some higher dimensionnal context, this would prove Fourier decay for equilibrium states
in higher dimensions. For example, [LNP19] precisely proves Fourier decay for Patterson-Sullivan
densities with the potential F = 0 when Γ < PSL(2,C) is a Zariski-dense Kleinian Schottky group.
This yields power decay for the measure of maximal entropy on M := H3/Γ in this context.

Remark 1.6. With our result in mind, it is natural to try to give some sense to the sentence
“dimF NW (ϕ) > 0”. The problem is that the notion of Fourier dimension is not well defined on
manifolds. In the appendix, we suggest some natural notions of Fourier dimensions for sets living
in a manifold, in particular a notion of lower Fourier dimension, that measure “persistence of the
positivity of the Fourier dimension under deformations”. The sentence is then made rigorous in
Remark A.7 and Example A.23.
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2 Preliminaries

2.1 Moebius transformations preserving the unit ball

In this first paragraph we recall well known properties of Moebius transformations. Usefull ref-
erences for the study of such maps are [Be83], [Ra06] and [BP92]. The group of all Moebius
transformations of Rd ∪ {∞} is the group generated by the inversion of spheres and by the re-
flexions. This group contains dilations and rotations. Denote by Mob(Bb) the group of all the
Moebius transformations γ such that γ preserves the orientation of Rd, and such that γ(Bd) = Bd,
where Bd denotes the open unit ball in Rd. These maps also acts on the unit sphere Sd−1. These
transformations can be put in a “normal form” as follows.

Lemma 2.1 ([Ra06], page 124). Define, for b ∈ Bd, the associated “hyperbolic translation” by:

τb(x) =
(1− |b|2)x+ (|x|2 + 2x · b+ 1)b

|b|2|x|2 + 2x · b+ 1
.

Then τb ∈ Mob(Bd). Moreover, for every γ ∈ Mob(Bd), τ−1
γ(0)γ ∈ SO(d,R).

It follows that the distortions of any Moebius transformation γ ∈ Mob(Bd) can be understood
by studying the distortions of hyperbolic translations. The main idea is the following: if γ(o) is
close to the unit sphere, then γ contracts strongly on a large part of the sphere. Let us state a
quantitative statement:

Lemma 2.2 (First contraction lemma). Let γ ∈ Mob(Bd). Suppose that |γ(o)| ≥ c0 > 0. Denote by
xmγ := γ(o)/|γ(o)|, and let εγ := 1− |γ(o)|. Then:

1. There exists c1, c2 > 0 that only depends on c0 such that

∀x ∈ Sd−1, |x− xmγ | ≥ c1ε
2
γ =⇒ |γ−1x− γ−1xmγ | ≥ c2.

2. For all c ∈ (0, 1), there exists C ≥ 1 and a set Aγ ⊂ Sd−1 such that diam(Aγ) ≤ Cεγ and
such that:

∀x ∈ Sd−1 \Aγ , |γ(x)− xmγ | ≤ cεγ .

Proof. Let γ ∈ Mob(Bd). Since γ = τγ(o)Ω for some Ω ∈ SO(n,R), we see that we may suppose

γ = τb for some b ∈ Bd. Without loss of generality, we may even choose b of the form βed, where
ed is the d-th vector of the canonical basis of Rd, and where β = |γ(o)| ∈ [c0, 1[. Denote by πd the
projection on the d− th coordinate. We find:

∀x ∈ Sd−1, πdτb(x) =
(1 + β2)xd + 2β

2βxd + (1 + β2)
=: φ(xd).

The function φ is continuous and increasing on [−1, 1], and fixes ±1. Computing its value at
zero gives φ(0) = 2β

1+β2 ≥ 1 − ε2γ , which proves the first point. Computing its value at −β gives

φ(−β) = β, which (almost) proves the second point. The second point is proved rigorously by a
direct computation, noticing that

1− φ(−1 + Cεγ) =
εγ
C

1− Cεγ/2

1− (1− 1/(2C))εγ
≤ εγ/C.

Finally, let us recall a well known way to see Mob(Bd) as a group of matrices.

Lemma 2.3. Let q : Rd+1 → Rd+1 be the quadratic form q(t, ω) := −t2 +
∑
i ω

2
i on Rd+1. We

denote by SO(d, 1) the set linear maps with determinant one that preserves q. Let H := {(t, ω) ∈
R × Rd , q(t, ω) = −1 , t > 0}. Define the stereographic projection ζ : Bd → H by ζ(x) :=(

1+|x|2
1−|x|2 ,

2x
1−|x|2

)
. Then, for any γ ∈ Mob(Bd), the map ζγζ−1 : H → H is the restriction to H of

an element of SO(d, 1).
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Proof. It suffices to check the lemma when γ is a rotation or a hyperbolic translation. A direct
computation shows that, when Ω ∈ SO(d,R), then ζΩζ−1 is a rotation leaving invariant the t
coordinate, and so it is trivially an element of SO(d, 1). We now do the case where γ = τβed is a
hyperbolic translation. We denote by x the variable in Bd and (t, ω) the variables in Rd+1. The
expression ζ(x) = (t, ω) gives

1 + |x|2

1− |x|2
= t,

2x

1− |x|2
= ω, and ζ−1(t, ω) =

ω

1 + t
.

For α ∈ R, denote sα := sinh(α) and cα := cosh(α). There exists α such that β = sα/(cα + 1) =
(cα − 1)/sα. For this α, we also have β2 = (cα − 1)/(cα + 1), and 1 − β2 = 2/(cα + 1). Now, we
see that

τβed(x) =
(1− β2)x+ (|x|2 + 2xdβ + 1)βed

β2|x|2 + 2xdβ + 1
=

2
cα+1x+ (|x|2 + 2xd

cα−1
sα

+ 1) sα
cα+1ed

cα−1
cα+1 |x|2 + 2xd

sα
cα+1 + 1

=
2x+ (sα(1 + |x|2) + 2xd(cα − 1))ed
1− |x|2 + cα(1 + |x|2) + 2sαxd

=
ω + (sαt+ (cα − 1)ωd) ed

1 + cαt+ sαωd

= ζ−1 (cαt+ sαωd, ω + (sαt+ (cα − 1)ωd) ed) ,

and so ζτβedζ
−1(t, ω) = (cαt+ sαωd , ω + (sαt+ (cα − 1)ωd) ed) is indeed linear in (t, ω). In this

form, checking that ζτβedζ
−1 ∈ SO(d, 1) is immediate.

Remark 2.4. From now on, we will allow to directly identify elements of Mob(Bd) with matrices
in SO(d, 1). (By continuity of γ 7→ ζγζ−1, we even know that thoses matrices lies in SO0(d, 1),
the connected component of the identity in SO(d, 1)). It follows from the previous explicit com-
putations that, for any matrix norm on SO(d, 1), and for any γ ∈ Mob(Bd) such that |γ(o)| ≥ c0,
there exists C0 only depending on c0 such that

∥γ∥ ≤ C0ε
−1
γ .

2.2 The Gibbs cocycle

In this paragraph, we introduce our geometric setting. For an introduction to geometry in negative
(non-constant) curvature, the interested reader may refer to [BGS85], or to the first chapters of
[PPS15].

Let M = Hd/Γ be a hyperbolic manifold of dimension d, where Γ ⊂ Iso+(Hd) denotes a non-
elementary and discrete group of isometries of the hyperbolic space without torsion that preserves
the orientation. Let T 1M denotes the unit tangent bundle of M , and denote by p : T 1M → M
the usual projection. The projection lift to a Γ-invariant map p̃ : T 1Hd → Hd. Fix F : T 1M → R
a Hölder map: we will call it a potential. The potential F lift to a Γ-invariant map F̃ : T 1Hd → R.
All future constants appearing in the paper will implicitely depend on Γ and F .

To be able to do use our previous results about Moebius transformations, we will work in
the conformal ball model for a bit. In this model, we can think of Hd as being the unit ball Bd

equipped with the metric ds2 := 4∥dx∥2

(1−∥x∥2)2 . The ideal boundary ∂∞Hd (see [BGS85] for a definition)

of Hd is then naturally identified with Sd−1, and its group of orientation-preserving isometries with
Mob(Bd). On the ideal boundary, there is a natural family of distances (dx)x∈Hd called visual
distances (seen from x), defined as follow:

dx(ξ, η) := lim
t→+∞

exp

(
−1

2
(d(x, ξt) + d(x, ηt)− d(ξt, ηt))

)
∈ [0, 1],

where ξt and ηt are any geodesic rays ending at ξ and η. To get the intuition behind this quantity,
picture a finite tree with root x and think of ξ and η as leaves in this tree.

Lemma 2.5 ([PPS15] page 15 and [LNP19] lemma A.5). The visual distances are all equivalent and
induces the usual euclidean topology on Sd−1 ≃ ∂∞Hd. More precisely:

∀x, y ∈ Hd,∀ξ, η ∈ ∂∞Hd, e−d(x,y) ≤ dx(ξ, η)

dy(ξ, η)
≤ ed(x,y).

In the ball model, the visual distance from the center of the ball is the sine of (half of) the angle.

6



The sphere at infinity ∂∞Hd takes an important role in the study of Γ. For any x ∈ Hd, the
orbit Γx accumulates on Sd−1 (for the euclidean topology) into a (fractal) limit set denoted ΛΓ.
This limit set is independant of x. We will denote by Hull(ΛΓ) the convex hull of the limit set: that
is, the set of points x ∈ Hd such that x is in a geodesic starting and finishing in ΛΓ. Since Γ acts
naturally on ΛΓ, Γ acts on Hull(ΛΓ). Without loss of generality, we can assume that o ∈ Hull(ΛΓ),
and we will do from now on. We will say that Γ is convex-cocompact if Γ is discrete, without
torsion and if Hull(ΛΓ)/Γ is compact. In particular, in this paper, we allow M to be compact.

We will suppose througout the paper that Γ is convex cocompact. In this context, the set
ΩΓ = p−1(HullΛΓ/Γ) ⊂ T 1M is compact, and it follows that supΩΓ |F | < ∞. In particular, F̃
is bounded on p̃−1(Hull(ΛΓ)), which is going to allow us to get some control over line integrals
involving F . Recall the notion of line integral in this context: if x, y ∈ Hd are distinct points, then
there exists a unique unit speed geodesic joining x to y, call it cx,y. We then define:∫ y

x

F̃ :=

∫ d(x,y)

0

F̃ (ċx,y(s))ds.

Beware that if F̃ (−v) ̸= F̃ (v) for some v ∈ T 1M , then
∫ y
x
F̃ and

∫ x
y
F̃ might not be equal.

We are ready to introduce the Gibbs cocycle and recall some of its properties.

Definition 2.6 ([PPS15], page 39). The following “Gibbs cocycle”CF : ∂∞Hd×Hd×Hd → R is well
defined and continuous:

CF,ξ(x, y) := lim
t→+∞

(∫ ξt

y

F̃ −
∫ ξt

x

F̃

)
where ξt denotes any geodesic converging to ξ.

Remark 2.7. Notice that if ξ is the endpoint of the ray joining x to y, then

CF,ξ(x, y) = −
∫ y

x

F̃ .

For A ⊂ Hd, we call “shadow of A seen from x” the set OxA of all ξ ∈ ∂∞Hd such that the
geodesic joining x to ξ intersects A. (The letter O stands for “Ombre” in french.)

Proposition 2.8 ([PPS15], prop 3.4 and 3.5). We have the following estimates on the Gibbs cocycle.

1. For all R > 0, there exists C0 > 0 such that for all γ ∈ Γ and for all ξ ∈ OoB(γ(o), R) in the
shadow of the (hyperbolic) ball B(γ(o), R) seen from o, we have:∣∣∣∣∣CF,ξ(o, γ(o)) +

∫ γ(o)

o

F̃

∣∣∣∣∣ ≤ C0

2. There exists α ∈ (0, 1) and C0 > 0 such that, for all γ ∈ Γ and for all ξ, η ∈ ΛΓ such that
do(ξ, η) ≤ e−d(o,γ(o))−2,

|CF,ξ(o, γ(o))− CF,η(o, γ(o))| ≤ C0e
αd(o,γ(o))do(ξ, η)

α.

(The hypothesis asking ξ, η to be very close can be understood as an hypothesis asking for the
rays [o, ξ[, [o, η[ and [γ(o), ξ[, [γ(o), η[ to be close. This way, we can use the Hölder regularity
of F̃ to get some control.)

2.3 Patterson-Sullivan densities

In this paragraph, we recall the definition of (Γ, F ) Patterson-Sullivan densities, and we introduce
a regularity condition. To begin with, recall the definition and some properties of the critical
exponent of (Γ, F ).

Definition 2.9 ([PPS15], Lemma 3.3). Recall that F is supposed Hölder, and that Γ is convex-
cocompact. The critical exponent of (Γ, F ) is the quantity δΓ,F ∈ R defined by:

δΓ,F := lim sup
n→∞

1

n
ln
∑
γ∈Γ

e
∫ γy
x

F̃

n−c<d(x,γy)≤n

,

for any x, y ∈ Hd and any c > 0. The critical exponent dosen’t depend on the choice of x, y and c.
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Theorem 2.10 ([PPS15], section 3.6 and section 5.3). Let Γ ⊂ Iso+(Hd) be convex-cocompact, and
note M := Hd/Γ. Let F : T 1M → R be a Hölder regular potential. Then there exists a unique (up
to a scalar multiple) family of finite nonzero measures (µx)x∈Hd on ∂∞Hd such that, for all γ ∈ Γ,
for all x, y ∈ Hd and for all ξ ∈ ∂∞Hd:

• γ∗µx = µγx

• dµx(ξ) = e−CF−δΓ,F ,ξ(x,y)dµy(ξ)

Moreover, these measures are all supported on the limit set ΛΓ. We call them (Γ, F )-Patterson
Sullivan densities.

Remark 2.11. Notice that Patterson-Sullivan densities only depend on the normalized potential
F − δΓ,F . Since δΓ,F+κ = δΓ,F + κ, replacing F by F − δΓ,F allows us to work without loss of
generality with potential satisfying δΓ,F = 0. We call such potential normalized.

The next estimate tells us, in a sense, that we can think of µ0 as a measure of a “fractal solid
angle”, pondered by the potential. This is better understood by recalling that since the area of a
hyperbolic sphere of large radius r is a power of ∼ er, then the solid angle of an object of diameter
1 lying in that sphere is a power of ∼ e−r. In the following “Shadow lemma”, the object is a ball
B(y,R), at distance d(x, y) from an observer at x.

Proposition 2.12 (Shadow Lemma, [PPS15] Lemma 3.10). Let R > 0 be large enough. There exists
C > 0 such that, for all x, y ∈ Hull(ΛΓ):

C−1e
∫ y
x
(F̃−δΓ,F ) ≤ µx (OxB(y,R)) ≤ Ce

∫ y
x
(F̃−δΓ,F ).

Definition 2.13. The shadow lemma calls for the following hypothesis: we say that the potential F
satisfy the regularity assumptions (R) if F is Hölder regular and if supΩΓ F < δΓ,F .

Remark 2.14. By Lemma 3.3 in [PPS15], we see that we can construct potentials satisfying (R)
as follow: choose some potential F0 satisfying (R) (for example, the constant potential) and then
choose any Holder map E : T 1M → R satisfying 2 supΩΓ |E| < δΓ,F − supΩΓ F . Then F := F0 +E
satisfies the assumption (R). A similar assumption is introduced in [GS14].

The point of the assumption (R) is to ensure that the Patterson-Sullivan densities exhibit some
regularity. This is possible because we have a tight control over the geometry of shadows.

Lemma 2.15. Let Γ ⊂ Iso+(Hd) be convex-cocompact, and let F : T 1(Hd/Γ) → R satisfy the
regularity assumptions (R). Let δreg ∈ (0, 1) such that δreg < δΓ,F − supΩΓ F . Let µ denote some
(Γ, F )-Patterson-Sullivan density. Then

∃C > 0, ∀ξ ∈ ∂∞Hd, ∀r > 0, µ(B(ξ, r)) ≤ Crδreg ,

where the ball is in the sense of some visual distance.

Proof. First of all, since for all p, q ∈ Hd, ξ ∈ ∂∞Hd 7→ eCξ(p,q) is continuous and since the ideal
boundary is compact, we can easily reduce our statement to the case where µ is a Patterson-Sullivan
density based on the center of the ball o. Moreover, since all the visual distances are equivalent,
one can suppose that we are working for the visual distance based at o too. Finally, since the
support of µo is ΛΓ, we can suppose without loss of generality that B(ξ, r)∩ΛΓ ̸= ∅. Since in this
case there exists some ξ̃ ∈ ΛΓ such that B(ξ, r) ⊂ B(ξ̃, 2r), we may further suppose without loss
of generality that ξ ∈ ΛΓ.

Now fix ξ ∈ ΛΓ and r > 0. Let x ∈ Hull(ΛΓ) lay in the ray starting from o and ending at ξ.
Let ρ ∈ [0, 1], let y ∈ Hd such that [o, y] is tangent to the sphere S(x, ρ), and note η the ending of
the ray starting from o and going through y. The hyperbolic law of sine (see Lemma A.4 and A.5
in [LNP19]) allows us to compute directly:

do(ξ, η) =
1

2
· sinh(ρ)

sinh(d(o, x))
.

It follows that there exists C > 0 such that for all ξ ∈ ΛΓ, for all r > 0, there exists x ∈ Hull(ΛΓ)
such that e−d(o,x) ≤ Cr and Bo(ξ, r) ⊂ OoB(x, 1). The desired bound follows from the shadow
lemma, since the geodesic segment joining o and x lays in Hull(ΛΓ).
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The regularity of the Patterson-Sullivan densities is going to allow us to state a second version
of the contraction lemma. First, let us introduce a bit of notations. We fix, for all the duration
of the paper, a large enough constant CΓ > 0. For γ ∈ Γ, we define κ(γ) := d(o, γo), rγ := e−κ(γ)

and Bγ := OoB(γo, CΓ). By the hyperbolic law of sine, the radius of Bγ is sinh(CΓ)/ sinh(rγ)
(Lemma A.5 in [LNP19].) If CΓ is chosen large enough and when κ(γ) is large, we get a radius of
∼ eCΓrγ ≥ rγ . We have the following covering result.

Lemma 2.16 ([LNP19], Lemma A.8). Define rn := e−4CΓn, and let Sn := {γ ∈ Γ , e−2CΓrn ≤ rγ <
rn}. For all n ≥ 1, the family {Bγ}γ∈Sn cover ΛΓ. Moreover, there exists C > 0 such that:

∀n, ∀ξ ∈ ΛΓ, #{γ ∈ Sn , ξ ∈ Bγ} ≤ C.

Now, we are ready to state our second contraction lemma. Since the potential is not supposed
bounded, a lot of technical bounds will only be achieved by working on the limit set or on its
convex hull. One of the main goal of the second contraction lemma is then to replace xmγ by a
point ηγ lying in the limit set.

Lemma 2.17 (Second contraction lemma). Let Γ ⊂ Iso+(Hd) be convex-cocompact. Let F :
T 1(Hd/Γ) → R be a potential satisfying (R). Denote by µo ∈ P(ΛΓ) the associated Patterson-
Sullivan density at o. Then there exists a family of points (ηγ)γ∈Γ such that, for any γ ∈ Γ with
large enough κ(γ), we have ηγ ∈ ΛΓ ∩Bγ , and moreover:

1. there exists c > 0 independant of γ such that do(ξ, ηγ) ≥ rγ/2 ⇒ do(γ
−1ξ, γ−1ηγ) ≥ c,

2. for all ε0 ∈ (0, δreg), there exists C independant of γ such that:∫
ΛΓ

do(γ(ξ), ηγ)
ε0dµo(ξ) ≤ Crε0γ .

Proof. Recalling that the visual distance and the euclidean distance are equivalent on the unit
sphere, if we forget about ηγ and replace it by xmγ instead, then the first point is a direct corollary
of the first contraction lemma. We just have to check two points: first, since Γ is discrete without
torsion, there exists c0 > 0 such that for all γ ∈ Γ\{Id}, d(o, γo) > c0. The second point is to check
that the orders of magnitude of rγ and εγ (quantity introduced in the first contraction lemma) are
compatible. This can be checked using an explicit formula relating the hyperbolic distance with

the euclidean one in the ball model: rγ = e−κ(γ) = 1−|γ(o)|
1+|γ(o)| ∼ εγ/2 (see [Ra06], exercise 4.5.1). We

even have a large security gap for the first statement to hold (recall that the critical scale is ∼ ε2γ).

We will use the strong contraction properties of Γ to construct a point ηγ ∈ ΛΓ very close to
xmγ . Since Γ is convex-cocompact, we know in particular that diam(ΛΓ) > 0. Now let γ ∈ Γ such

that κ(γ) is large enough. The first contraction lemma says that there exists Aγ ⊂ ∂∞Hd with
diam(Aγ) ≤ Crγ such that diam(γ(Acγ)) ≤ rγ/10. It follows that we can find a point η̂γ ∈ ΛΓ

such that d(Aγ , η̂γ) > diam(ΛΓ)/3. Fixing ηγ := γ(η̂γ) gives us a point satisfying ηγ ∈ ΛΓ and
do(ηγ , x

m
γ ) ≲ r2γ . Hence ηγ ∈ Bγ , and moreover, any point ξ satisfying do(ξ, ηγ) ≥ rγ/2 will satisfy

γ−1(ξ) ∈ Aγ , and so do(γ
−1(ξ), γ−1(ηγ)) ≥ diam(ΛΓ)/3. This proves the first point.

For the second point: since the set Aγ ⊂ ∂∞Hd is of diameter ≤ Crγ and satisfy that, for all
ξ /∈ Aγ , do(γ(ξ), x

m
γ ) ≤ rγ/10, the upper regularity of µ0 yields∫

ΛΓ

do(γ(ξ), x
m
γ )ε0dµo(ξ) ≤ Cµo(Aγ) +

∫
Ac

γ

Crε0γ dµo ≤ Crε0γ .

The desired bound follows from do(x
m
γ , ηγ) ≲ rγ , using the triangle inequality.

3 Patterson-Sullivan densities are stationary measures

3.1 Stationary measures

In this subsection we define stationary measures and state our main theorem.
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Definition 3.1. Let ν ∈ P(Γ) be a probability measure on Γ ⊂ SO(n, 1). Let µ ∈ P(∂∞Hd). We
say that µ is ν-stationary if:

µ = ν ∗ µ :=

∫
Γ

γ∗µ dν(γ).

Moreover, we say that the measure ν has exponential moment if there exists ε > 0 such that∫
Γ
∥γ∥εdν(γ) <∞. Finally, we denote by Γν the subgroup of Γ generated by the support of ν.

Theorem 3.2. Let Γ ⊂ Iso+(Hd) be a convex-cocompact group, and let F : T 1(Hd/Γ) → R be a
potential on the unit tangent bundle satisfying (R). Let x ∈ Hd and let µx ∈ P(ΛΓ) denotes the
(Γ, F ) Patterson-Sullivan density from x. Then there exists ν ∈ P(Γ) with exponential moment
(seen as a random walk in SO(d, 1)) such that µ is ν-stationary and such that Γν = Γ.

Remark 3.3. This result for d = 2 was announced without proof by Jialun Li in [Li18] (see remark
1.9). A proof in the case of constant potentials is done in the appendix of [LNP19]. Our strategy
is inspired by this appendix. For more details on stationary measures, see the references therein.

First of all, a direct computation allows us to see that if (µx)x∈Hd are (Γ, F ) Patterson-Sullivan
densities, then, for any η ∈ SO0(d, 1) , (η∗µη−1x)x∈Hd are (ηΓη−1, η∗F ) Patterson-Sullivan densi-
ties. This remark allows us to reduce our theorem to the case where the basepoint x is the center
of the ball o. Our goal is to find ν ∈ P(Γ) such that ν ∗ µo = µo. Assuming that F is normalized,
this can be rewritten as follows:

dµo(ξ) =
∑
γ

ν(γ)d(γ∗µo)(ξ) =
∑
γ

ν(γ)eCF,ξ(o,γo)dµo(ξ).

Hence, µo is ν-stationary if ∑
γ∈Γ

ν(γ)fγ = 1 on ΛΓ,

where
fγ(ξ) := eCF,ξ(o,γo).

Remark 3.4. Our main goal is to find a way to decompose the constant function 1 as a sum of fγ .
Here is the intuition behind our proof.

Define r−Fγ := e−
∫ γo
o

F̃ = fγ(x
m
γ ) ≃ fγ(ηγ). The first thing to notice is that fγ looks like an

approximation of unity centered at xmγ . Renormalizing yields the intuitive statement rFγ fγ ∼ 1Bγ
.

The idea is that this approximation gets better as κ(γ) becomes large. Once this observation is
done, there is a natural “n-th approximation” operator that can be defined. For some positive
function R, one can write:

R ≃
∑
γ∈Sn

R(ηγ)1Bγ
≃
∑
γ∈Sn

R(ηγ)r
F
γ fγ =: PnR.

Proving that the operator Pn does a good enough job at approximating some functions R is the
content of the“approximation lemma”3.8. In particular, it is proved that, under some assumptions
on R > 0, we have cR ≤ PnR ≤ CR.

The conclusion of the proof is then easy. We fix a constant β > 0 small enough so that cR ≤
βPnR ≤ R. Then, we define by induction R0 = 1 and 0 < Rn+1 := Rn − βPn+1Rn ≤ (1 − c)Rn.
By induction, this gives Rn ≤ (1 − c)n, and hence 1 = R0 − limnRn =

∑
k(Rk − Rk+1) is a

decomposition of 1 as a sum of fγ .

3.2 The approximation operator

First, we collect some results on fγ that will allows us to think of it as an approximation of unity
around xγm with width rγ . The first point studies fγ near xmγ , the second point study the decay of
fγ away from it, and the last point is a regularity estimate at the scale rγ . To quantify this decay,
we recall the notion of potential gap (or gap map).
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Definition 3.5. The following“potential gap”DF : Hd×∂∞Hd×∂∞Hd is well defined and continuous:

DF,x(η, ξ) := exp
1

2
lim
t→∞

(∫ ξt

x

F̃ +

∫ x

ηt

F̃ −
∫ ξt

ηt

F̃

)
where (ηt) and (ξt) denotes any unit speed geodesic ray converging to η and ξ.

Under our assumptions, the gap map (for some fixed x) behaves like a distance on ΛΓ: see
[PPS15], section 3.4 for details. Finally, we denote by ι(v) = −v the flip map on the unit tangent
bundle.

Lemma 3.6 (Properties of fγ). There exists Creg ≥ 2 (independant of CΓ) and C0 ≥ 1 (depending
on CΓ) such that, for all γ ∈ Γ:

1. For all ξ ∈ Bγ ,
rFγ fγ(ξ) ∈ [e−C0 , eC0 ].

2. For all ξ ∈ ΛΓ such that do(ξ, ηγ) ≥ rγ/2,

C−1
0 Do(ξ, ηγ)

−2 ≤ r−F◦ι
γ fγ(ξ) ≤ C0Do(ξ, ηγ)

−2.

3. For all ξ, η ∈ ΛΓ such that do(ξ, η) ≤ rγ/e
2,

|fγ(ξ)/fγ(η)− 1| ≤ Creg · do(ξ, η)αr−αγ .

Proof. Recall that fγ(x
m
γ ) = r−Fγ : the first point is then a consequence of Proposition 2.8. The

third point also directly follows without difficulty. For the second item, recall that ηγ ∈ Bγ , so
that by the same argument we get

r−F◦ι
γ ≃ eCF◦ι,ηγ (o,γo).

Then, a direct computation yields:

fγ(ξ)r
−F◦ι
γ ≃ exp lim

t→∞

((∫ ξt

γo

F̃ −
∫ ξt

o

F̃

)
−

(∫ o

(ηγ)t

F̃ −
∫ γo

(ηγ)t

F̃

))

= lim
t→∞

exp

((
−
∫ ξt

o

F̃ −
∫ o

(ηγ)t

F̃ +

∫ ξt

(ηγ)t

)
+

(∫ ξt

γo

F̃ +

∫ γo

(ηγ)t

F̃ −
∫ ξt

(ηγ)t

F̃

))

=
DF,γo(ηγ , ξ)

2

DF,o(ηγ , ξ)2
.

Under our regularity hypothesis (R), and because Γ is convex6cocompact and ξ, η ∈ ΛΓ, it is known
that there exists c0 > 0 such that dγo(ξ, ηγ)

c0 ≤ DF,γo(ηγ , ξ) ≤ 1 (see [PPS15], page 56). The
second contraction lemma allows us to conclude, since dγo(ξ, ηγ) = do(γ

−1ξ, γ−1(ηγ)) ≥ c under
the hypothesis do(ξ, ηγ) ≥ rγ/2.

To get further control over the decay rate of fγ away from ηγ , the following“role reversal” result
will be helpful.

Lemma 3.7 (symmetry). Let n ∈ N. Since Sn is a covering of ΛΓ, and by choosing CΓ larger if
necessary, we know that for every η ∈ ΛΓ there exists γ̃η ∈ Sn such that η ∈ Sγ̃η and d(η, ηγ̃η ) ≤
C

−2/α
reg rγ . Suppose that do(η, ηγ) ≥ rγ . Then:

C−1fγ̃η (ηγ) ≤ fγ(η) ≤ Cfγ̃η (ηγ)

for some constant C independant of n, γ and η.

Proof. First of all, by the third point of the previous lemma, and since d(η, ηγ̃η ) ≤ C
−2/α
reg rγ , we

can write fγ(η)/fγ(ηγ̃η ) ∈ [1/2, 3/2]. Then, by the previous lemma again, we see that

fγ(η)

fγ̃η (ηγ)
≃
fγ(ηγ̃η )

fγ̃η (ηγ)
≃
DF,o(ηγ̃η , ηγ)

2

DF,o(ηγ , ηγ̃η )
2
≃ 1,

where we used the quasi symmetry of the gap map ([PPS15], page 47).
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We are ready to introduce the n-th approximation operator. For some positive function R :
ΛΓ → R∗

+, define, on ∂∞Hd, the following positive function:

PnR(η) :=
∑
γ∈Sn

R(ηγ)r
F
γ fγ(η).

The function PnR has the regularity of fγ for γ ∈ Sn.

Lemma 3.8. Choosing CΓ larger if necessary, the following hold. Let n ∈ N and let ξ, η ∈ ΛΓ such
that do(ξ, η) ≤ rn+1. Then: ∣∣∣∣PnR(ξ)PnR(η)

− 1

∣∣∣∣ ≤ 1

2
do(ξ, η)

αr−αn+1.

Proof. The regularity estimates on fγ and the positivity of R yields:

|PnR(ξ)− PnR(η)| ≤
∑
γ∈Sn

R(ηγ)r
F
γ |fγ(ξ)− fγ(η)|

≤ Creg

∑
γ∈Sn

R(ηγ)r
F
γ fγ(η)d0(ξ, η)

αr−αγ = PnR(η) · Crege
−2αCΓd0(ξ, η)

αr−αn+1.

The bound follows.

Now is the time where we combine all of our preliminary lemma to prove our main technical
lemma: the approximation operator does a good enough job at approximating on ΛΓ. Some natural
hypothesis on R are required: the function to approximate has to be regular enough at scale rn,
and has to have mild global variations (so that the decay of fγ away from xmγ is still usefull).

Lemma 3.9 (Approximation lemma). Let ε0 ∈ (0, δreg) and C0 ≥ 1. Let n ∈ N, and let R : ΛΓ → R
be a positive function satisfying:

1. For ξ, η ∈ ΛΓ, if do(ξ, η) ≤ rn+1, then∣∣∣∣R(ξ)R(η)
− 1

∣∣∣∣ ≤ 1

2

(
do(ξ, η)

rn+1

)α
.

2. For ξ, η ∈ ΛΓ, if do(ξ, η) > rn+1, then

R(ξ)/R(η) ≤ C0do(ξ, η)
ε0r−ε0n .

Then there exists A ≥ 1 that only depends on ε0 and C0 such that, for all η ∈ ΛΓ:

A−1R(η) ≤ Pn+1R(η) ≤ AR(η).

Proof. Let η ∈ ΛΓ. We have:

Pn+1R(η) =
∑

γ∈Sn+1

R(ηγ)r
F
γ fγ(η) =

∑
γ∈Sn+1

η∈Bγ

R(ηγ)r
F
γ fγ(η) +

∑
γ∈Sn+1

η/∈Bγ

R(ηγ)r
F
γ fγ(η).

The first sum is easily controlled: if η ∈ Bγ , then R(ηγ) ≃ R(η) and rFγ fγ(η) ≃ 1. Since η is in a
(positive and) bounded number of Bγ , we find

C−1R(η) ≤
∑

γ∈Sn+1

η∈Bγ

R(ηγ)r
F
γ fγ(η) ≤ CR(η),

which gives the lower bound since R, rFγ and fγ are positive. To conclude, we need to get an upper
bound on the residual term. Using diam(Bγ) ≲ rn, the symmetry lemma on fγ(η), the regularity
and mild variations of R, and using the shadow lemma rFγ ≃ µo(Bγ), we get:∑

γ∈Sn

η/∈Bγ

R(ηγ)r
F
γ fγ(η) ≲ R(η)r−ε0n

∑
η/∈Bγ

rFγ do(ηγ , η)
ε0fγ̃η (ηγ)
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≲ R(η)

(
1 + r−ε0n

∫
B(η,rn+1)c

do(ξ, η)
ε0 fγ̃η (ξ)dµo(ξ)

)
.

Finally, the second contraction lemma and the bound do(η, ηγ̃η ) ≲ rn yields:∫
B(η,rn+1)c

do(ξ, η)
ε0 fγ̃η (ξ)dµo(ξ) ≤

∫
ΛΓ

do(ξ, η)
ε0 fγ̃η (ξ)dµo(ξ)

=

∫
ΛΓ

do(ξ, η)
ε0dµγ̃ηo(ξ) =

∫
ΛΓ

do(γ̃η(ξ), η)
ε0dµo(ξ)

≲ rε0n +

∫
ΛΓ

do(γ̃η(ξ), ηγ̃η )
ε0dµo(ξ) ≲ rε0n ,

which concludes the proof.

3.3 The construction of ν

In this last subsection, we construct the measure ν and conclude that (Γ, F ) Patterson-Sullivan
densities are stationary measures for a random walk on Γ with exponential moment. We can con-
clude by following the end of [LNP19] very closely, but we will recall the last arguments for the
reader’s convenience.

Recall that the large constant CΓ ≥ 1 was fixed just before Lemma 2.16, and that rn := e−4CΓn.
Recall also that α > 0 is fixed by Lemma 2.8. We fix β ∈ (0, 1) small enough so that 1 − β ≥
e−4CΓα + β, and we choose ε0 so that rε0n = (1 − β)n. By taking β even smaller, we can suppose
that ε0 < δreg. For this choice of ε0, and for C0(ε0) := 2(1−β)−2e4CΓε0 , the approximation lemma
gives us a constant A > 1 such that, under the hypothesis of Lemma 3.9:

β

A2
R ≤ β

A
Pn+1R ≤ βR.

We then use Pn to successively take away some parts of R. Define, by induction, R0 := 1 and

Rn+1 := Rn − β

A
Pn+1Rn ≤ Rn.

For the process to work as intended, we need to check that Rn satisfies the hypothesis of the
approximation lemma.

Lemma 3.10. Let n ∈ N. The function Rn is positive on ΛΓ, and for any ξ, η ∈ ΛΓ:

1. If do(ξ, η) ≤ rn+1 then ∣∣∣∣Rn(ξ)Rn(η)
− 1

∣∣∣∣ ≤ 1

2
do(ξ, η)

αr−αn+1

2. If do(ξ, η) > rn+1, then

Rn(ξ)/Rn(η) ≤ C0(ε0) · do(ξ, η)ε0(1− β)−n.

Proof. The proof goes by induction on n. The case n = 0 is easy: the first point holds trivially
and the second holds since C0(ε0)r

ε0
1 = C0(ε0)e

−4CΓε0 ≥ 1. Now, suppose that the result hold for
some n. In this case, the approximation lemma yields

Rn+1 = Rn − β

A
PnR ≥ (1− β)Rn,

and in particular Rn+1 is positive. Let us prove the first point: consider ξ, η ∈ ΛΓ such that
do(ξ, η) ≤ rn+2. Then Lemma 3.8 gives∣∣∣∣ βAPn+1Rn(ξ)−

β

A
Pn+1Rn(η)

∣∣∣∣ ≤ 1

2

(
β

A
Pn+1Rn(η)

)
· do(ξ, η)αr−αn+2 ≤ 1

2
βRn(η) · do(ξ, η)αr−αn+2.
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Hence, using the induction hypothesis:

|Rn+1(ξ)−Rn+1(η)| ≤ |Rn(ξ)−Rn(η)|+
∣∣∣∣ βAPn+1Rn(ξ)−

β

A
Pn+1Rn(η)

∣∣∣∣
≤ 1

2

(
r−αn+1 + βr−αn+2

)
Rn(η)do(ξ, η)

α

≤ 1

2

e−4CΓα + β

1− β
Rn+1(η)do(ξ, η)

αr−αn+2.

Recalling the definition of β gives the desired bound. It remains to prove the second point. First
of all, notice that, for any ξ and η, we have:

Rn+1(ξ)

Rn+1(η)
≤ (1− β)−1Rn(ξ)

Rn(η)
.

Now, suppose that do(ξ, η) ∈ (rn+2, rn+1]. The induction hypothesis gives Rn(ξ)/Rn(η) ≤ 1 +
|Rn(ξ)/Rn(η)− 1| ≤ 2, and so:

Rn+1(ξ)

Rn+1(η)
≤ 2

1− β
=

2

1− β
rε0n+2(1− β)−(n+2) ≤ 2

(1− β)2
· do(ξ, η)ε0(1− β)−n+1,

which proves the bound. Finally, suppose that do(ξ, η) > rn+1. In this case, the induction hypoth-
esis directly yields

Rn+1(ξ)

Rn+1(η)
≤ 1

1− β

Rn(ξ)

Rn(η)
≤ C0(ε0)do(ξ, η)

ε0(1− β)−(n+1),

and the proof is done.

We are ready to prove Theorem 3.2, following Li in [LNP19].

Proof. The previous lemma ensure that for all n, the function Rn satisfies the hypothesis of the
approximation lemma. Hence, we can write for all n

Rn+1 = Rn − β

A
Pn+1Rn ≤

(
1− β

A2

)
Rn,

so that by induction:

Rn ≤
(
1− β

A2

)n
−→ 0.

It follows that

1 = R0 − lim
n
Rn =

∞∑
n=1

(Rn−1 −Rn) =
β

A

∞∑
n=1

Pn(Rn−1),

in other words:

1 =

∞∑
n=1

∑
γ∈Sn

β

A
Rn−1(ηγ)r

F
γ · fγ .

Letting

ν(γ) :=
β

A
Rn−1(ηγ)r

F
γ if γ ∈ Sn, ν(γ) := 0 if γ ̸=

⋃
k

Sk

gives us a probability measure on Γ (since
∫
fγdµo = 1) satisfying ν ∗ µ0 = µ0, by the remarks

made section 3.1. Checking that the measure has exponential moment is easy since ∥γ∥ ≲ r−1
γ by

Remark 2.4. Hence, by the shadow lemma rFγ ≃ µo(Bγ) and since Sn covers each point a bounded
number of time, we get: ∫

Γ

∥γ∥εdν ≲
∑
n

∑
γ∈Sn

ν(γ)r−εγ

≲
∑
n

(∑
γ

µo(Bγ)

)
(1− β/A2)neε4CΓn <∞
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if ε is small enough. Finally, we show that group Γν spanned by the support of ν is Γ. To see this,
say that CΓ was chosen so large that CΓ ≥ 6diam(Hull(ΛΓ)/Γ). In this case, there exists γ1 ∈ S1

such that d(o, γ1o) ∈ [| ln r1|+ CΓ/2, | ln r1|+ 3CΓ/2]. Then, any γ ∈ Γ such that d(o, γo) ≤ CΓ/2
satisfies γ1γ ∈ S1. In particular:

{γ ∈ Γ , d(o, γo) ≤ CΓ/2} ⊂ Γν ,

and it is then well known (see for example Lemma A.14 in [LNP19]) that this set spans the whole
group Γ as soon as CΓ/2 is larger than 3 times the diameter of Hull(ΛΓ)/Γ.

4 Consequences on equilibrium states

Now that we have proved Theorem 1.2, Corollary 1.3 follows directly from [Li20] (since, when
d = 2, being Zariski dense is equivalent to being non-elementary). To see how this statement
induce some knowledge over equilibrium states, let us recall more precisely the link between the
latter and Patterson-Sullivan densities. First, recall that the Hopf coordinates

Hopf :
(
(∂∞H2 × ∂∞H2) \ D

)
× R −→ T 1H2

allows us to smoothly identify the unit tangent bundle of H2 with a torus minus the diagonal times
R by the following process. For any v+ ̸= v− ∈ ∂∞H2, and for any t ∈ R, Hopf(v+, v−, t) := v
is the unique vector v ∈ T 1M lying on the geodesic ]v−, v+[ such that p̃(ϕ−t(v)) is the closest
point to o on this geodesic. We will denote by (∂v+ , ∂v− , ∂t) the induced basis of T (T 1M) in these
coordinates. Finally, recall that ι denotes the flip map.

Theorem 4.1 ([PPS15], Theorem 6.1). Let Γ ⊂ Iso+(Hd) be convex cocompact, M := Hd/Γ, and
F : T 1M → R be a normalized and Hölder-regular potential. Denote by mF ∈ P(T 1M) the
associated equilibrium state, and let m̃F be its Γ-invariant lift on T 1Hd. Denotes by µFx the (Γ, F )
Patterson-Sullivan density with basepoint x. Then, for any choice of x ∈ Hd, the following identity
hold in the Hopf coordinates (up to a multiplicative constant c0 > 0):

c0 · dm̃F (v
+, v−, t) =

dµFx (v
+)dµF◦ι

x (v−)dt

DF,x(v+, v−)2
.

We are now ready to prove Fourier decay for mF . To do a clean proof, we write down three
lemmas corresponding to Fourier decay in the three directions (∂v+ , ∂v− , ∂t). We will then combine
all of them to get the desired result.

Lemma 4.2. Under the conditions of Theorem 1.2, there exists ε > 0 such that the following hold.
Let R ≥ 1 and let χ : T 1H2 → R be a Hölder map supported on some compact K. There exists
C ≥ 1 such that for any C2 function φ : T 1H2 → R satisfying ∥φ∥C2 + (infK |∂v+φ|)−1 ≤ R, we
have:

∀ξ ∈ R∗,

∣∣∣∣∫
T 1H2

eiξφ(v)χ(v)dm̃F (v)

∣∣∣∣ ≤ C

|ξ|ε
.

Proof. Denotes φ̃ and χ̃ the functions φ, χ seen in the Hopf coordinates. We get, for some large
a > 0 depending only on the support of χ:

c0

∫
T 1H2

eiξφ(v)χ(v)dm̃F (v) =

∫ a

−a

∫
ΛΓ

(∫
ΛΓ

eiξφ̃(v
+,v−,t) χ̃(v+, v−, t)

DF,o(v+, v−)2
dµFo (v

+)

)
dµF◦ι

o (v−)dt.

Now, since χ̃ is supported in a compact subset of
(
(∂∞H2 × ∂∞H2) \ D

)
× R, and since DF is

uniformly Hölder (and doesn’t vanish) on a compact subset of Λγ × ΛΓ \ D (see [PPS15], Lemma
3.6 and Proposition 3.5), and finally since ∂v+ φ̃ ̸= 0 on the compact support of χ̃, we see that
Corollary 1.3 applies to the inner integral. (Notice that we can always extend DF outside of
ΛΓ × ΛΓ \ D so that it becomes Holder on all (∂∞H2 × ∂∞H2) \ D, see [Mc34].) This gives the
desired bound.

Lemma 4.3. Under the conditions of Theorem 1.2, there exists ε > 0 such that the following hold.
Let R ≥ 1 and let χ : T 1H2 → R be a Hölder map supported on some compact K. There exists
C ≥ 1 such that for any C2 function φ : T 1H2 → R satisfying ∥φ∥C2 + (infK |∂v−φ|)−1 ≤ R, we
have:

∀ξ ∈ R∗,

∣∣∣∣∫
T 1H2

eiξφ(v)χ(v)dm̃F (v)

∣∣∣∣ ≤ C

|ξ|ε
.
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Proof. We need to check that when F satisfies the regularity assumptions (R), then F ◦ ι satisfies
them too. This is easy, since supΩΓ F ◦ ι = supΩΓ F < δΓ,F = δΓ,F◦ι by Lemma 3.3 in [PPS15].
Moreover, F ◦ ι is still Hölder regular. Hence, one can apply our previous lemma with F replaced
by F ◦ ι, and conclude.

Lemma 4.4. Under the conditions of Theorem 1.2, let R ≥ 1 and let χ : T 1H2 → R be a α-
Hölder map supported on some compact K. There exists C ≥ 1 such that, for any C2 function
φ : T 1H2 → R satisfying ∥φ∥C2 + (infK |∂tφ|)−1 ≤ R, we have:

∀ξ ∈ R∗,

∣∣∣∣∫
T 1H2

eiξφ(v)χ(v)dm̃F (v)

∣∣∣∣ ≤ C

|ξ|α

Proof. The proof is classic. We have, for some compact K̃ ⊂
(
∂∞H2 × ∂∞H2

)
\ D and for some

large enough a > 0 depending only on the support of χ:

c0

∫
T 1H2

eiξφ(v)χ(v)dm̃F (v) =

∫∫
K̃

(∫ a

−a
eiξφ̃(v

+,v−,t)χ̃(v+, v−, t)dt

)
DF,o(v

+, v−)−2d(µFo ⊗µF◦ι
o )(v+, v−).

We then work on the inner integral. When χ̃ is C1, we can conclude by an integration by parts. So
a way to conclude is to approximate χ̃ by a C1 map. Fix some smooth bump function ρ : R → R+

such that ρ is zero outside [−2, 2], one inside [−1, 1], increasing on [−2,−1] and decreasing on [1, 2].
For any ε > 0, set

χ̃ε(·, ·, t) :=
∫

R
χ̃(·, ·, t− x)ρ(x/ε)dx/ε.

This function is smooth on the t-variable. Moreover, if we denote by α a Hölder exponent for χ,
then a direct computation yields:

∥χ̃ε − χ̃∥∞ ≲ εα, ∥∂tχ̃ε∥∞ ≲ ε−(1−α).

Hence: ∣∣∣∣∫ a

−a
eiξφ̃χ̃dt

∣∣∣∣ ≤ 2a∥χ̃− χ̃ε∥∞ +

∣∣∣∣∫ a

−a
eiξφ̃χ̃εdt

∣∣∣∣ .
To control the integral on the right, we do our aforementioned integration by parts:∫ a

−a
eiξφ̃χ̃εdt =

∫ a

−a

iξ∂tφ̃

iξ∂tφ̃
eiξφ̃χ̃εdt

=

[
χ̃ε

iξ∂tφ̃
eiξφ̃

]t=a
t=−a

− i

ξ

∫ a

−a
∂t

(
χ̃ε
∂tφ̃

)
eiξφ̃dt,

so that ∣∣∣∣∫ a

−a
eiξφ̃χ̃εdt

∣∣∣∣ ≲ |ξ|−1ε−(1−α).

Finally, choosing ε = 1/|ξ| yields∣∣∣∣∫
T 1H2

eiξφ(v)χ(v)dm̃F (v)

∣∣∣∣ ≲ εα + ε−(1−α)|ξ|−1 ≲ |ξ|−α,

which is the desired bound.

Theorem 4.5. Under the conditions of Theorem 1.2, there exists ε > 0 such that the following
holds. Let R ≥ 1 and let χ : T 1M → R be a Hölder map supported on some compact K. There
exists C ≥ 1 such that, for any C2 function φ : T 1M → R satisfying ∥φ∥C2 + (infK ∥dφ∥)−1 ≤ R,
we have:

∀ξ ∈ R∗,

∣∣∣∣∫
T 1M

eiξφχdmF

∣∣∣∣ ≤ C

|ξ|ε
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Proof. First of all, choose χ̃ : T 1H2 → R a lift of χ supported on a fundamental domain of Γ.
Denote by K̃ ⊂ T 1H2 its (compact) support. Lift φ to a Γ-invariant map φ̃ : T 1H2 → R. We then
have: ∫

T 1M

eiξφχdmF =

∫
T 1H2

eiξφ̃χ̃dm̃F .

Now, consider the map Bφ : T 1H2 → R3 defined by Bφ(v) := ((dφ̃)v(∂v+), (dφ̃)v(∂v−), (dφ̃)v(∂t)).
Since ((∂v+)v, (∂v−)v, (∂t)v) is a basis of Tv(T

1H2) for any v ∈ T 1H2, and since dφ̃ doesn’t vanish
on K̃, we see that Bφ(K̃) ⊂ R3 \ {0}. By uniform continuity of Bφ on the compact K̃, it follows

that there exists c0 > 0 such that we can cover K̃ by a finite union of compact balls (Bj)j∈J
satisfying:

∀j ∈ J, ∃e ∈ {v+, v−, t}, ∀v ∈ Bj , |∂eφ̃(v)| > c0.

To conclude, we consider a partition of unity (χ̂j)j adapted to the cover (Bj)j , and we write:∫
T 1H2

eiξφ̃χ̃dm̃F =
∑
j∈J

∫
Bj

eiξφ̃χ̃χ̂jdm̃F .

Each of the inner integrals is then controlled by either Lemma 4.2, Lemma 4.3 or Lemma 4.4.

Remark 4.6. We recover our main Theorem 1.4 as a particular case of Theorem 4.5. Indeed, if
φ : K ⊂ T 1M → R3 is a C2 local chart, then for any ζ ∈ R3 \ {0}, one may write:∫

T 1M

eiζ·φ(v)χ(v)dmF (v) =

∫
T 1M

ei|ζ|(ζ/|ζ|)·φ(v)χ(v)dmF (v) ≤ C|ζ|−ε,

since the map (u, v) ∈ S2 ×K 7→ u · (dφ)v ∈ T ∗
v (T

1M) doesn’t vanish (because the range of (dφ)v
isn’t contained in a plane). Notice that we used the uniformity of the constants C ≥ 1 given by
the phases u · (dφ).

Appendix A On the Fourier dimension

A.1 The upper and lower Fourier dimension

We naturally want to make sense of the Fourier dimension of the non-wandering set of the geodesic
flow, so that we can write a sentence of the form: “dimF NW(ϕ) > 0”. But since NW (ϕ) is a
subset of an abstract manifold, the usual definition doesn’t apply. In this appendix, we suggest
some definitions that one could choose to talk about the Fourier dimension of a compact set lying
in an abstract manifold.

First of all, recall that the Fourier dimension of a probability measure µ ∈ P(E), supported on
some compact set E ⊂ Rd, can be defined as:

dimF (µ) := sup{α ≥ 0 | ∃C ≥ 1,∀ξ ∈ Rd \ {0}, |µ̂(ξ)| ≤ C|ξ|−α/2},

where the Fourier transform of µ is defined by

µ̂(ξ) :=

∫
E

e−2iπξ·xdµ(x).

The Fourier dimension of a compact set E ⊂ Rd is then defined as

dimF (E) := sup{min(d,dimF µ), µ ∈ P(E)} ≤ dimH E.

To define the Fourier dimension of a measure lying in a abstract manifold, a natural idea is to
look at our measure into local charts. But this suppose that we have a meaningful way to “localize”
the usual definition of the Fourier dimension. This is the content of the next well known lemma.

Lemma A.1. Let E ⊂ Rd be a compact set. Let µ ∈ P(E). Let ε > 0. Denote by Bump(ε) the set
of smooth functions with support of diameter at most ε. Then:

dimF µ = inf{dimF (χdµ) | χ ∈ Bump(ε)}.
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Proof. Let E ⊂ Rd be a fixed compact set, and let µ ∈ P(E) be a fixed (borel) probability measure
supported on E. First of all, consider a finite covering of the compact set E by balls (Bi)i∈I of
radius ε. Consider an associated partition of unity (χi)i∈I . Then, for all α < infχ dimF (χdµ),
there exists C ≥ 1 such that:

|µ̂(ξ)| =

∣∣∣∣∣∑
i∈I

χ̂idµ(ξ)

∣∣∣∣∣ ≤ C|ξ|−α.

Hence dimF µ ≥ α. Since this hold for any α < inf{dimF (χdµ) | χ ∈ Bump(ε)}, this yields
dimF µ ≥ inf{dimF (χdµ) | χ ∈ Bump(ε)}. Now we prove the other inequality.

Fix some smooth function with compact support χ. Its Fourier transform χ̂ is in the Schwartz
class: in particular, for all N ≥ d+1, there exists CN such that χ̂(η) ≤ CN |η|−N for all η ∈ Rd\{0}.
Let α < α′ < dimF µ. Then there exists C ≥ 1 such that |µ̂(ξ)| ≤ C|ξ|−α′

for all ξ ∈ Rd \ {0}.
Now, notice that:

χ̂dµ(ξ) = χ̂ ∗ µ̂(ξ) =
∫

Rd

χ̂(η)µ̂(ξ − η)dη.

We cut the integral in two parts, depending on some radius r > 0 that we choose to be r := |ξ|1−ε,
where ε := 1−α/α′. We suppose that |ξ| ≥ 2. In this case, a direct computation show that whenever
η ∈ B(0, r), we have |ξ|1−ε ≤ C|ξ − η|. We are finally ready to conclude our computation:

∣∣∣χ̂dµ(ξ)∣∣∣ ≤ ∣∣∣∣∣
∫
B(0,r)

χ̂(η)µ̂(ξ − η)dη

∣∣∣∣∣+
∣∣∣∣∣
∫
B(0,r)c

χ̂(η)µ̂(ξ − η)dη

∣∣∣∣∣
≲N

∫
Rd

|χ̂(η)|dη · C

|ξ|(1−ε)α′ +

∫
B(0,r)c

1

|η|N
dη

≲N
1

|ξ|α
+ rN−d

∫
B(0,1)c

1

|ζ|N
dζ ≲

1

|ξ|α

if N is choosen large enough. It follows that dimF (χdµ) ≥ α, and this for any α < dimF µ, so
dimF (χdµ) ≥ dimF (µ). Taking the infimum in χ yields the desired inequality.

Now we understand how the Fourier dimension of a measure µ can be computed by looking at
the local behavior of µ. But another, much harder problem arise now: the Fourier dimension of a
measure depends very much on the embedding of this measure in the ambiant space. In concrete
terms, the Fourier dimension is not going to be independant on the choice of local charts. A way
to introduce an ”intrinsic” quantity related to the Fourier dimension of a measure would be to take
the supremum or the infimum under all those charts. We directly give our definition in the context
of a manifold.

Definition A.2. Let M be a smooth manifold of dimension d. Let E ⊂ M be a compact set. Let
µ ∈ P(E). Let k ∈ N∗. Let Bump(E) denote the set of all smooth functions χ :M → R such that
supp(χ) is contained in a local chart. We denote by Chart(χ,Ck) the set of all Ck local charts
φ : U → Rd, where U ⊃ supp(χ) is an open set containing the support of χ. Now, define the
lower Fourier dimension of µ by Ck charts of M by:

dimF,Ck(µ) := inf
χ∈Bump(E)

inf{dimF (φ∗(χdµ)), φ ∈ Chart(χ,Ck)}.

Similarly, define the upper Fourier dimension of µ by Ck charts of M by:

dimF,Ck(µ) := inf
χ∈Bump(E)

sup{dimF (φ∗(χdµ)), φ ∈ Chart(χ,Ck)}.

Definition A.3. Let M be a smooth manifold of dimension d. Let E ⊂ M be a compact set. Let
µ ∈ P(E). We define the lower Fourier dimension of µ by:

dimF (µ) = dimF,C∞(µ).
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Remark A.4. The lower Fourier dimension test if, for any localization χdµ of µ, and for any smooth
local chart φ, one has some decay of the Fourier transform of φ∗(χdµ). We then take the infimum of
all the best decay exponents. This quantity is C∞-intrinsic in the following sense: if Φ :M →M is
a C∞-diffeomorphism, then dimF (Φ∗µ) = dimF (µ). Symetrically, the Ck-upper Fourier dimension
test if, for any localization χdµ of µ, there exists a Ck-chart φ such that one has some decay for
the Fourier transform of φ∗(χdµ). This quantity is also C∞-intrinsic. Still, beware that the upper
and lower Fourier dimensions depends on the dimension of the ambiant manifold.

Remark A.5. Let E ⊂ M be a compact set lying in a manifold M of dimension d. Fix a bump
function χ and a local chart φ ∈ Chart(χ,Ck). For µ ∈ P(E) a measure supported in E ⊂M , we
have the following bounds:

0 ≤ dimF,Ckµ ≤ dimF φ∗(χdµ) ≤ dimF,Ckµ.

Moreover, if dimH E < d, then:
dimF,Ckµ ≤ dimH E.

Example A.6. LetM be a manifold of dimension d, and consider any smooth hypersurface N ⊂M .
Let k ≥ 1. Let µ be any smooth and compactly supported measure on N . Then:

dimF,Ck(µ) = 0, dimF,Ck(µ) = d− 1.

The first fact is easily proved by noticing that, locally, N is diffeomorphic to a linear subspace
of Rd, which has zero Fourier dimension. The second fact is proved by noticing that, locally, N
is diffeomorphic to a half sphere, and any smooth measure supported on the half sphere exhibit
power decay of its Fourier transform with exponent (d− 1)/2.

Remark A.7. It seems that, for some well behaved measures µ ∈ P(E) supported on compacts E
with dimH E < d, one might expect the quantity dimF,Ckµ is be comparable to dimH E. For some
measures lying in a 1-dimensionnal curve, this is the content of Theorem 2 in [Ek16].

Remark A.8. Using this langage, the results of [BD17], [LNP19], [SS20], [Le21] and [Li20] all
implies positivity of the lower Fourier dimension by C2 charts of some measures (respectively:
Patterson-Sullivan measures, Patterson-Sullivan measures, equilibrium states, equilibrium states,
and stationary measures). This is a bit stronger than a related notion found in [LNP19], namely
the “C2-stable positivity of the Fourier dimension”. The results in our paper implies the following:
under the conditions of Theorem 1.2, the equilibrium state mF ∈ P(NW (ϕ)) satisfies

dimF,C2(mF ) > 0,

where the non-wandering set NW (ϕ) of the geodesic flow is seen in the unit tangent bundle T 1M .
In particular, its lower Fourier dimension is positive.

A.2 A variation with real valued phases

For completeness, we suggest two variations for intrinsic notions of Fourier dimension for a measure
in an abstract manifold. The first is exposed in this subsection, and the next will be discussed in
the next subsection. Inspired by the computations made in section 4, we may want to look at more
general oscillatory integrals involving µ. A possibility is the following.

Definition A.9. Let M be a smooth manifold of dimension d. Let E ⊂ M be a compact set. Let
µ ∈ P(E). Let k ∈ N∗. Let Bump(E) denote the set of all smooth functions χ :M → R such that
supp(χ) is contained in a local chart. We denote by Phase(χ,Ck) the set of all real valued and Ck

maps ψ : U → R with nonvanishing differential, where U ⊃ supp(χ) is an open set containing the
support of χ. Now, define the lower Fourier dimension of µ by Ck phases of M by:

dimreal
F,Ck(µ) := inf

χ∈Bump(E)
inf{dimF (ψ∗(χdµ)), ψ ∈ Phase(χ,Ck)}.

Similarly, define the upper Fourier dimension of µ by Ck phases of M by:

dim
real

F,Ck(µ) := inf
χ∈Bump(E)

sup{dimF (ψ∗(χdµ)), ψ ∈ Phase(χ,Ck)}.

As before, we also denote dimreal
F (µ) := dimreal

F,C∞(µ).
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Remark A.10. First of all, notice that ψ∗(χdµ) is a measure supported in R, so its Fourier transform
is a function from R to C. More precisely:

∀t ∈ R, ̂ψ∗(χdµ)(t) :=

∫
E

eitψ(x)χ(x)dµ(x).

Like before, the lower/upper Fourier dimensions with real phases are C∞-intrinsic in the sense that

for any C∞-diffeomorphism Φ :M →M , we have dimreal
F,Ck(Φ∗µ) = dimreal

F,Ck(µ) and dim
real

F,Ck(Φ∗µ) =

dim
real

F,Ck(µ).

Example A.11. Let M be a smooth manifold, and let N be a smooth submanifold of M . Let µ be
a smooth and compactly supported probability measure in N . Then:

dimreal
F,Ck(µ) = 0, dim

real

F,Ck(µ) = ∞.

These equalities can be proved as follow. Consider some smooth bump function χ with small
enough support. Now, there exists a phase ψ, defined on a neighborhood U of supp(χ), with
nonvanishing differential on U but which is constant on N . The associated oscillatory integral
̂ψ∗(χdµ) doesn’t decay, hence the computation on the lower Fourier dimension with real phases.

There also exists smooth a phase ψ such that (dψ)|TN doesn’t vanish. By the non-stationnary
phase lemma, the associated oscillatory integral decay more than t−N , for any N ≥ 0, hence the
computation on the upper Fourier dimension with real phases.

Notice how, in particular, min(dim
real

F,Ck(µ), d) may be strictly larger than the Hausdorff dimension
of the support of µ. This may be a sign that this variation of the upper dimension isn’t well
behaving as a “Fourier dimension”.

Lemma A.12. We can compare this Fourier dimension with the previous one. We have:

dimF,Ck(µ) ≤ dimreal
F,Ck(µ), dimF,Ck(µ) ≤ dim

real

F,Ck(µ).

Proof. Let α < dimF,Ck(µ). Then, for any bump function χ and for any associated local chart φ,

there exists some constant C such that, for all ξ ∈ Rd \{0}, we have | ̂φ∗(χdµ)(ξ)| ≤ C|ξ|−α/2. Now
fix ψ : U → R with nonvanishing differential, where supp(χ) ⊂ U . By the submersion theorem,

there exists a local chart φ : U → Rd such that φ(x) = ψ(x)e1 +
∑d
j=2 fj(x)ej (where (ei)i is the

canonical basis of Rd, and where fj are some real valued functions). Hence, one can write:

|ψ∗(χdµ)(t)| = |φ∗(χdµ)(te1)| ≤ C|t|−α/2.

Hence dimreal
F,Ck(µ) ≥ α, and this for any α < dimF,Ck(µ), hence the desired bound.

The second bound is proved as follow. Let α < dimF,Ck(µ). Let χ be a small bump function.

There there exists a local chart φ : U → Rd, with U ⊃ supp(χ), such that ̂φ∗(χdµ) ≲ |ξ|−α/2. Let
u ∈ Sd−1 and consider ψ(x) := u · φ(x). It is easy to check that ψ has nonvanishing differential,
and since, for any t ∈ R \ {0},

| ̂ψ∗(χdµ)(t)| = | ̂φ∗(χdµ)(ut)| ≲ |t|−α/2,

we get dim
real

F,Ck(µ) ≥ α. The bound follow.

In concrete cases, we expect the lower Fourier dimension and the lower Fourier dimension with
real phases to be equal. Unfortunately, our choices of definitions doesn’t clearly make that happen
all the time. We have to add a very natural assumption for the equality to hold.

Definition A.13. Let µ ∈ P(E), where E ⊂ M is a compact subset of a smooth manifold. We
say that µ admits reasonnable constants for Ck-phases if, for any α < dimreal

F,Ck(µ), and for any
χ ∈ Bump(E), the following hold:

∀R ≥ 1, ∃CR ≥ 1, ∀ψ ∈ Phase(χ,Ck),(
∥ψ∥Ck + sup

x∈U
∥(dψ)x∥−1 ≤ R

)
=⇒

(
∀t ∈ R∗, | ̂ψ∗(χdµ)(t)| ≤ CRt

−α/2
)
.
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Under this natural assumption, we have equality of the lower Fourier dimensions.

Lemma A.14. Let µ ∈ P(E), where E ⊂ M is a compact subset of some smooth manifold M .
Suppose that µ admits reasonnable constants for Ck-phases. Then:

dimF,Ck(µ) = dimreal
F,Ck(µ)

Proof. An inequality is already known, we just have to prove the second one. The proof of the
other inequality is the same argument as the one explained in Remark 4.6.

A.3 A directionnal variation

A second natural and intrinsic idea would be to fix some (spatial) direction on which to look for
Fourier decay. We quickly discuss these notions and then we will move on to discuss some notions
of Fourier dimensions for sets.

Definition A.15. Let E ⊂ M be a compact set in some smooth manifold. Let V ⊂ TM be a
continuous vector bundle on an open neighborhood Ẽ of E. Denote by BumpV (E) the set of all
smooth bump functions with support included in Ẽ, and included in some local chart. For some
χ ∈ BumpV (E), denote by PhaseV (χ,Ck) the set of all Ck maps ψ : U → R such that (dψ)|V
doesn’t vanish on U , where supp(χ) ⊂ U ⊂ Ẽ is some open set.

For µ ∈ P(E), we define its lower Fourier dimension in the direction V for Ck phases by:

dimV
F,Ck(µ) := inf

χ∈BumpV (E)
inf{dimF (ψ∗(χdµ)), ψ ∈ PhaseV (χ,Ck)}.

Similarly, define its upper Fourier dimension in the direction V for Ck phases by:

dim
V

F,Ck(µ) := inf
χ∈BumpV (E)

sup{dimF (ψ∗(χdµ)), ψ ∈ PhaseV (χ,Ck)}.

Remark A.16. Again, these notions of Fourier dimensions are C∞-intrinsic, in the following sense: if

Φ :M →M is a Ck-diffeomorphism ofM , then dimΦ∗V
F,Ck(Φ∗µ) = dimV

F,Ck(µ), and dim
Φ∗V

F,Ck(Φ∗µ) =

dim
V

F,Ck(µ).

Remark A.17. With these notations, the results found in [Le23] implies that, for any “nonlinear”
and sufficiently bunched solenoid S, and for any equilibrium state µ, one has dimEu

F,C1+α(µ) > 0,
where Eu is the unstable line bundle associated to the dynamics on the solenoid.

Lemma A.18. Let V1, . . . , Vn ⊂ TM be some continuous vector bundles defined on some open
neighborhood Ẽ of E. Suppose that (V1)p + . . . (Vn)p = TpM for all p ∈ Ẽ. Then:

min
j

dim
Vj

F,Ck(µ) = dimreal
F,Ck(µ), max

j
dim

Vj

F,Ck(µ) ≤ dim
real

F,Ck(µ).

Proof. Let α < dimreal
F,Ck(µ). Then, for any bump χ and associated phase ψ, one has ̂ψ∗(χdµ)(t) ≲

|t|−α/2. In paticular, for any phase ϕj ∈ PhaseVj (χ,Ck), the previous decay holds, and so

minj dim
Vj

F,Ck(µ) ≥ α. Hence minj dim
Vj

F,Ck(µ) ≥ dimreal
F,Ck(µ).

Now let α < minj dim
Vj

F,Ck(µ). Then, for all j, for any bump χ, and for any phase ψj ∈
PhaseVj (χ,Ck), the previous decay applies. Now, if we fix some χ and some associated phase
ψ ∈ Phase(χ,Ck), we know that at each point p, (dψ)p is nonzero. In particular, there exists j(p)
such that (dψ)|V j(p)

p
̸= 0. Following the proof of Theorem 4.5, we can show by using a partition

of unity that this implies ̂ψ∗(χdµ)(t) ≲ |t|−α/2. Hence dimreal
F,Ck(µ) ≥ α, and we have prove equality.

For our last bound, let α < maxj dim
Vj

F,Ckµ. Then there exists j such that, for all bump

χ, there exists an associated phase ψj ∈ PhaseVj (χ,Ck) such that ̂ψj(χdµ)(t) ≲ |t|−α/2. Since

ψj ∈ Phase(χ,Ck), we get dim
real

F,Ckµ ≥ maxj dim
Vj

F,Ckµ.

Remark A.19. The reverse bound for the upper dimensions is not clear: if for all bump functions
χ, there exists a phase ψ with good fourier decay properties for µ, then nothing allows us to think
that ψ is going to have nonvanishing diffenrential in some fixed Vj on all E.
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A.4 What about sets ?

We finally define some intrinsic notions of Fourier dimensions for sets. First of all, recall that the
usual definition for some E ⊂ Rd is:

dimF (E) := sup{dimF (µ) ≤ d , µ ∈ P(E)} ≤ dimH(E).

In particular, in view of the proof of Lemma A.1, we see that any measure µ with some Fourier
decay properties may be localized anywhere on its support to still yield a measure with large
Fourier dimension. Hence we find the following “localized” formula, for any ε > 0:

dimF (E) = sup
U∩E ̸=∅
U open

dimF (E ∩ U).

Now, we have two main ways to define the up(per) and low(er) Fourier dimension of a compact
set in a manifold: directly computing the Fourier dimension of parts of E in local charts, or taking
the sup over the previously defined notions of Fourier dimension for measures.

Definition A.20. Let E ⊂ M be a compact set included in some smooth manifold. We define its
lower/upper Fourier dimension with Ck-charts by:

dimF,Ck(E) := sup{dimF,Ck(µ) ≤ d, µ ∈ P(E)}, dimF,Ck(E) := sup{dimF,Ck(µ) ≤ d, µ ∈ P(E)},

We also define the Ck-low Fourier dimension and Ck-up Fourier dimensions of E by:

dim
:::F,Ck(E) := sup

U∩E ̸=∅
U open chart

inf{dimF (φ(E ∩ U)) , φ : U → Rd Ck local chart},

:::

dimF,Ck(E) := sup
U∩E ̸=∅

U open chart

sup{dimF (φ(E ∩ U)) , φ : U → Rd Ck local chart}.

Remark A.21. The low and up Fourier dimension are Ck-intrinsic in the natural sense. For exemple,
if Φ : M → M is a Ck-diffeomorphism, then dim

:::F,Ck(Φ(E)) = dim
:::F,Ck(E). The lower and upper

Fourier dimension are C∞-intrinsic.

Lemma A.22. Let E ⊂M be a compact set in some smooth manifold M . Then:

0 ≤ dimF,Ck(E) ≤ dim
:::F,Ck(E) ≤

:::

dimF,Ck(E) = dimF,Ck(E) ≤ dimH(E) ≤ d.

Proof. Let us prove all the inequalities in order, from left to right. 0 ≤ dimF,Ck(E) is trivial. Let
us prove the second one.

Let α < dimF,Ck(E). By definition, there exists some probability measure µ ∈ P(E) such
that dimF,Ck(µ) ≥ α. Now, since the support of µ is nonempty, there exists U some small open
set and a bump function χ supported in U such that χdµ is a (localized) nonzero measure. Let
φ : U → Rd a local chart. Then, by hypothesis on µ, dimF φ∗(χdµ) ≥ α. In particular, since
(up to normalization) φ∗(χdµ) ∈ P(φ(E ∩ U)), we have dimF φ(E ∩ U) ≥ α. This for any local
chart φ, and so infφ dimF (φ(E ∩ U)) ≥ α. This yields dimF,Ck(E) ≥ α. Since this is true for any
α < dimF,Ck(E), we get the desired inequality.

The inequality dim
:::F,Ck(E) ≤

:::

dimF,Ck(E) is trivial. Let us prove the equality between

:::

dimF,Ck(E)

and dimF,Ck(E). Let α <

:::

dimF,Ck(E). Then, there exists some small open set U (such that
U∩E ̸= ∅ and a local chart φ : U → Rd such that dimF (φ(U∩E)) ≥ α. By definition, it means that
there exists some measure ν ∈ P(φ(E ∩U)) such that dimF ν ≥ α. Letting µ := φ−1

∗ ν ∈ P(E ∩U)
yields a measure supported in E that satisfies dimF,Ck(µ) ≥ α (in view of the proof of Lemma

A.1). Hence, dimF,Ck(E) ≥ α. This, for any α <

:::

dimF,Ck(E), so that dimF,Ck(E) ≥

:::

dimF,Ck(E).

Let us prove the other inequality. Let α < dimF,Ck(E). By definition, there exists µ ∈ P(E)

such that dimF,Ck(µ) ≥ α. Now let U be some small open set with µ|U ̸= 0, and let φ : U → Rd be
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a local chart. Let χ be some bump function supported in U . Then, by hypothesis on µ, we have

dimF φ∗(χdµ) ≥ α. In particular, dimF (φ(E ∩ U)) ≥ α. Hence

:::

dimF,Ck(E) ≥ α. This proves the

other inequality, and hence concludes the proof that

:::

dimF,Ck(E) = dimF,Ck(E).

Finally, the fact that the Hausdorff dimension is invariant under C1-diffeomorphisms implies

:::

dimF,Ck(E) = sup
U

sup
φ

dimF (φ(U∩E)) ≤ sup
U

sup
φ

dimH(φ(E∩U)) = sup
U

dimH(E∩U) = dimH(E) ≤ d.

Example A.23. Let N ⊂M be a hypersurface in some smooth manifold M . Then:

dimF,Ck(N) = dim
:::F,Ck(N) = 0 ,

:::

dimF,Ck(N) = dimF,Ck(N) = dimH(N) = d− 1.

Example A.24. We can finally state the result that we wanted to state. Let M be a convex-
cocompact hyperbolic surface. Let NW (ϕ) ⊂ T 1M be the non-wandering set of the geodesic flow
ϕ, seen as lying in the unit tangent bundle of M . Then:

dimF,C2(NW (ϕ)) > 0.

Example A.25. Let L be a 1-dimensionnal manifold, and let E ⊂ L be any compact subset. Then:

dimF,C1E = dimH E.

This very striking result is proved in [Ek16]. Also, Ekstrom proves that, for any k ≥ 1, we have
dimF,CkE ≥ (dimH E)/k. This motivates the following question: do we have, for any compact set

E in any manifold M , the formula dimF,C1(E) = dimH(E) ?

Remark A.26. Other natural questions are the following. Can we find an example of set E ⊂ Rd

such that dimF,Ck(E) < dim
:::F,Ck(E) ? Or is it always an equality ? Is the lower Fourier dimension

Ck-intrinsic ?

For completeness, we conclude by introducing the real variation for the lower Fourier dimension.
We will not introduce this variation for the upper Fourier dimension, as we said earlier that these
seems to behave quite badly with respect to the Hausdorff dimension. To keep it concise, we will
not discuss the directionnal variations.

Definition A.27. Let E ⊂ M be a compact subset of some smooth manifold M . Define the lower
Fourier dimension with Ck-phases by:

dimreal
F,Ck(E) := sup{dimreal

F,Ckµ ≤ d , µ ∈ P(E)}.

Remark A.28. By Lemma A.11, we see that dimF,Ck(E) ≤ dimreal
F,Ck(E). Is this an equality, or are

we able to produce an exemple were this inequality is strict ? A related question is: if we denote
by Preas,Ck(E) the set of probability measures that admits reasonnables constants for Ck-phases
(see Definition A.12), do we have

dimF,Ck(E) = sup{dimF,Ckµ ≤ d, µ ∈ Preas,Ck(E)} ?

References

[ARW20] A. Algom, F. Rodriguez, Z. Wang, Pointwise normality and Fourier decay for self-
conformal measures Volume 393, 108096. doi:10.1016/j.aim.2021.108096, arXiv:2012.06529

[AF91] R. Adler, L. Flatto Geodesic flows, interval maps, and symbolic dynamics Bull. Amer.
Math. Soc. (N.S.) 25(2): 229-334 (October 1991).

[BD17] J. Bourgain, S. Dyatlov, Fourier dimension and spectral gaps for hyperbolic surfaces, Geom.
Funct. Anal. 27, 744–771 (2017), arXiv:1704.02909

23

https://doi.org/10.1016/j.aim.2021.108096
https://arxiv.org/abs/2012.06529
https://arxiv.org/abs/1704.02909


[Be83] A.F. Beardon, The geometry of discrete groups, vol. 91, Springer-Verlag, Berlin and New
York, 1983, xii -f 337 pp . ISBN: 0-387-90788-2

[BGS85] W. Ballmann, M. Gromov, V. Schroeder Manifolds of nonpositive curvature Progress in
mathematics, Vol 61, 1985. ISBN: 978-1-4684-9159-3

[BP92] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry. Universitext, Springer,
1992. ISBN: 978-3-642-58158-8

[BR75] R. Bowen,D. Ruelle, The ergodic theory of AxiomA flows Invent Math 29, 181–202 (1975).
https://doi.org/10.1007/BF01389848

[Br19] J. Brémont, Self-similar measures and the Rajchman property Annales Henri Lebesgue,
Tome 4 (2021), pp. 973-1004, arXiv:1910.03463

[BS79] R. Bowen, C. Series Markov maps associated with fuchsian groups. Publications Mathéma-
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