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Abstract

Let M be a closed manifold, and let f : M → M be a C2+α Axiom A diffeomorphism.
Suppose that f has an attractor Ω with codimension 1 stable lamination. Under a generic
nonlinearity condition and a suitable bunching condition, we prove polynomial Fourier decay
in the unstable direction for a large class of invariant measures on Ω. Our result applies in
particular for the measure of maximal entropy. We construct in the appendix an explicit
solenoid that satisfies the nonlinearity and bunching assumption.

1 Introduction

1.1 On fractals and chaotic dynamical systems

It is known since the work of Fatou and Julia that fractals appears as natural invariant sets in
various dynamical systems, for example as attractors or repellers. The geometric properties of
such invariant subsets depends intimately with the nature of the map f , and it is tempting to
study the way they relate to each other. One way to relate the geometry of invariant subsets
K to the nature of the dynamics is by the mean of invariant measures with support K. In the
context of hyperbolic dynamics, a natural choice is given by the so-called equilibrium states, a fam-
ily of probability measures that encompasses the measure of maximal entropy or the SRB measure.

If we fix some probability measure with support K ⊂ Rd, the Fourier transform being a linear
bijection S ′(Rd) → S ′(Rd), the information contained in µ are the same that the one that are
contained in

µ̂(ξ) :=

∫
K

eiξ·xdµ(x).

In a sense, studying µ or studying µ̂ should brings the same quantities of information about the
dynamics and the geometry of the support. Yet for equilibrium states, even though much is known
on the measure in its spatial representation, we have a very poor understanding of its Fourier
transform in the general setting. One of the most basic question one can ask about µ̂ is its
behavior when ξ goes to infinity. Does µ̂(ξ) −→ 0, and if yes, at which rate ? From the geometric
point of view, this question is linked to the notion of Fourier dimension of a set. Recall that for a
set K ⊂ Rd, we call the Fourier dimension of K the quantity

dimF (K) := sup
{
α ∈ [0, d] | ∃µ ∈ P(K),∃C > 0,∀ξ ∈ Rd, |µ̂(ξ)| ≤ C(1 + |ξ|)−α/2

}
where P(K) denotes the set of probability measures supported on K. The Fourier dimension of
a set can be thought as a way to quantify additive chaos in the set K. It is always less than
dimH(E), the Hausdorff dimension of K.

In a probabilistic setting, the work of Salem [Sa51], Kahane [Ka66], Bluhm [Bl96] (to cite a few)
suggest that sets satisfying dimH K = dimF K are, in some sense, generic. But except from some
specific arithmetic constructions (see [Kau81], [QR03], [Ha17] and [FH20]), explicit examples of
such sets are hard to find. Even (nontrivial) explicit sets with positive Fourier dimension are
difficult to construct.

1.2 Recent development and main results

The first explicit and “natural” fractal with positive Fourier dimension (in the sense that it is
an invariant set for some chaotic dynamical system) is due to Bourgain and Dyatlov in [BD17].
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They prove that the limit set of a non-elementary Fuschian Schottky group, seen as a subset of R,
has positive Fourier dimension (notice that such sets are Cantor sets). More precisely, Patterson-
Sullivan measures exhibit polynomial Fourier decay in this context.

This paper introduced a new method to prove Fourier decay of invariant measures based on previous
results of Bourgain from additive combinatorics, called ”sum-product phenomenons” (see [Bo10],
or [Gr09] for an accessible introduction). A concrete example of such sum-product result is given
in the following theorem.

Theorem 1.1 ([BD17]). For all δ > 0, there exists ε1, ε2 > 0 and k ∈ N such that the following
holds. Let Z be a finite set and ζ : Z → [1/2, 2] a map. Let η > 1 be large enough. Assume that
for all σ ∈

[
η−1, η−ε1

]
,

#
{
(b, c) ∈ Z2 , |ζ(b)− ζ(c)| < σ

}
≤ #Z2σδ. (∗)

Then ∣∣∣#Z−k
∑

(b1,...,bk)∈Zk

eiηζ(b1)...ζ(bk)
∣∣∣ ≤ η−ε2 .

Intuitively, the idea is that multiplications may spread the phase so that cancellations happens in
the sum. The idea to prove Fourier decay, then, is to use the autosimilarity of equilibrium states
to break the Fourier transform into a sum of exponentials on which this sum-product phenomenon
applies. One of the difficulty in the strategy being to actually prove the “non concentration hy-
pothesis” (∗) made on the phase.

The result was generalized in 2019 with the work of Li, Naud and Pan [LNP19] in the context of
limits sets for general Kleinian Schottky groups. In this context, the limit set is still a Cantor set,
but in the complex plane.

The method was generalized further in 2020 by Sahlsten and Stevens [SS20] for very general Cantor
sets in the real line. They prove that under a nonlinearity condition on the underlying dynamics
(in this context, expanding maps on the Cantor set), equilibrium states exhibit polynomial Fourier
decay, and hence the Fourier dimension of those Cantor sets is positive. An important remark is
that, in the context of the triadic Cantor set C, the underlying dynamics is the shift map x 7→ 3x
mod 1, which is linear, and the Fourier dimension of C is zero.

The strategy was pushed past the case of Cantor sets by the author in 2021 [Le21] who studied the
case of Julia sets for hyperbolic rational maps in the complex plane. The result is the following:
when the Julia set is not included in a circle, any equilibrium state associated to C1 potentials
enjoys polynomial Fourier decay. The use of Markov partitions, and the control over the dynamics
provided by the conformal setting, allowed us to adapt the previous method in this case. Notice
that the condition made on the Julia set is a form of nonlinearity condition, as it implies for exam-
ple that the dynamics is not conjugated (via a Möbius transformation) to z 7→ zd, which is linear
on the circle.

In this paper we explore the method in the context of attractors for codimension one Axiom A
diffeomorphisms. Our main goal was to investigate the Fourier dimension of such attractors in
the nonlinear setting. By the nature of the existing procedure, Fourier decay of equilibrium state
couldn’t be achieved, but we get a result of polynomial Fourier decay in the unstable direction for
nonlinear dynamics, as long as a suitable bunching condition is satisfied.

Even though this bunching condition seems quite restrictive, we think that the result should hold
for attractors of generic codimension one Axiom A diffeomorphisms, as the nonlinearity condition
is generic, and as we only use the bunching condition for one argument (to be able to use some
Dolgopyat’s estimates). On the other hand, the bunching condition has the advantage to allow
one to easily construct explicit examples of attractors on which our theorem applies. We prove
the genericity of the nonlinearity condition in the appendix A and we give an example of such a
construction in the appendix B.
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It should be stressed that if one succeed to relax the bunching condition, then Fourier decay in the
unstable direction for equilibrium state would hold for generic codimension one Anosov diffeomor-
phisms. In dimension 2, replacing f by f−1 would then give Fourier decay in the stable direction,
which should be enough to prove that equilibrium states for generic Anosov diffeomorphisms on
surfaces exhibit Fourier decay.

Let us precise our setting. Let M be a closed manifold, let f : M → M be a C2+α Axiom A
diffeomorphism (that if, f is C2, and (d2f) is α-Hölder for some α > 0). Suppose that f has an
attractor Ω, and suppose that its stable lamination is codimension 1 (in particular, it is C1+α).
The nonlinearity condition is defined by putting an independance condition on some Lyapunov
exponents.

Definition 1.1. Define Ωper := {x ∈ Ω periodic}. For any x ∈ Ωper with minimal period n, define

its local unstable Lyapunov exponent λ̂(x) by the formula

λ̂(x) =
1

n

n−1∑
k=0

ln |∂uf(fk(x))|

where |∂uf | is the absolute value of the derivative of f in the unstable direction.
We say that Ω satisfy the nonlinearity condition (NL) if

dimQVectQλ̂ (Ωper) = ∞.

Definition 1.2. We introduce our bunching condition: see for example [Ha97], [GRH21], or [ABV14],
[HP69] for similar conditions in the case of flows. We say that the bunching condition (B) is satisfied
if

∀p ∈ Ω, |∂uf(p)| · ∥(df)p|Es
p
∥ < 1,

where the norm on (df)|Es is the operator norm induced by the riemannian metric onM . It implies
that Ω is a proper attractor. In this case, by continuity of df and compacity of Ω, there exists
some α > 0 such that

∀p ∈ Ω, |∂uf(p)| · ∥(df)p|Es
p
∥1/(1+α) ≤ 1.

In this case, the stable bunching parameter bs (see [GRH21], and [Ha97] for the pointwise version)
satisfies

bs(p) = 1 +
ln ∥(df)p|Es

p
∥−1

ln |∂uf(p)|
≥ 2 + α.

This bunching condition implies that the stable lamination is C2+α. Also, notice that in dimension
2, the bunching condition becomes

∀p ∈ Ω, |det(df)p| < 1.

That is, we only need the dynamical system (Ω, f) to be dissipative.

Theorem 1.2. Let M be a closed manifold. Let f : M → M be a C2+α Axiom A diffeomorphism.
Suppose that f has an attractor Ω with codimension 1 stable lamination. Moreover, suppose that f
satisfies the nonlinearity condition (NL) and the bunching condition (B). Then the following holds.

Let µ be an equilibrium state for some Hölder potential. For any Cα map χ : Ω → R and for any
C1+α map ϕ : Ω → R such that inf

supp χ
|∂uϕ| > 0, we have

∃C > 1,∃ε > 0, ∀ξ ∈ R,

∣∣∣∣∫
Ω

eiξϕχ dµ

∣∣∣∣ ≤ C(1 + |ξ|)−ε.

Corollary 1.3. Every attractor for nonlinear and dissipative Axiom A diffeomorphism in dimension
2 exhibit polynomial Fourier decay of equilibrium states in the unstable direction.
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1.3 Strategy of the proof

The goal is to find a way to adapt the existing method for expanding maps in the case of Axiom
A diffeomorphisms. For this, we use the standard construction using Markov partitions and then
reduce the problem to the one-dimensional case.

• In section 2, we collect facts about thermodynamic formalism in the context of Axiom A
diffeomorphisms and recall classic constructions. The section 2.7 is devoted to a preliminary
regularity result for equilibrium states in our context. In the section 2.8 we state a large
deviation result about Birkhoff sums.

• In the section 3 we use the large deviations to derive order of magnitude for some dynamically-
related quantities.

• The proof of Theorem 1.2 begins in the section 4. Using the invariance of the equilibrium
state by the dynamics, we first reduce the Fourier transform to an integral on a union of local
unstable manifolds, thus reducing the problem to a one dimensional expanding map.

• We use a transfer operator to carefully approximate the integral by a sum of exponentials.
We then use a generalized version of Theorem 1.1.

• We prove the non-concentration hypothesis that is needed to conclude in section 6.
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and for pointing out various helping references, especially on the topic of total non-linearity and
Dolgopyat’s estimates. I would also like to thank Sébastien Gouëzel and Christophe Dupont for
some interesting discussions at the seminar of ergodic theory in Rennes.

2 Thermodynamic formalism for Axiom A diffeomorphisms

2.1 Axiom A diffeomorphisms and basic sets

We recall standard results about Axiom A diffeomorphisms. An introduction to the topic can
be found in [BS02]. A more in-depth study can be found in [KH95]. For an introduction to the
thermodynamic formalism of Axiom A diffeomorphisms, we suggest the classic lectures notes of
Bowen [Bo75].

Definition 2.1. Let f : M → M be a diffeomorphism of a closed C∞ riemannian manifold M . A
compact set Λ ⊂ M is said to be hyperbolic for f if f(Λ) = Λ, and if for each x ∈ Λ, the tangent
space TxM can be written as a direct sum

TxM = Esx ⊕ Eux

of subspaces such that

1. ∀x ∈ Λ, (df)x(E
s
x) = Esf(x) and (df)x(E

u
x ) = Euf(x)

2. ∃C > 0, ∃κ ∈ (0, 1), ∀x ∈ Λ,

∀v ∈ Esx, ∀n ≥ 0, ∥(dfn)x(v)∥ ≤ Cκn∥v∥

and
∀v ∈ Eux , ∀n ≥ 0, ∥(dfn)x(v)∥ ≥ C−1κ−n∥v∥.

It then follows that Esx and Eux are continuous sub-bundles of TxM .

Remark 2.1. We can always choose the metric so that C = 1 in the previous definition: this is
called an adapted metric (or a Mather metric) and we will fix one from now on. See [BS02] for a
quick proof.
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Definition 2.2. A point x ∈M is called non-wandering if, for any open neighborhood U of x,

U ∩
⋃
n>0

fn(U) ̸= ∅.

We denote the set of all non-wandering points by Ω(f).

It is easy to check that the non-wandering set of f is a compact invariant subset of M . Also,
any periodic point of f can be seen to lie in Ω(f). The definition of Axiom A diffeomorphisms is
chosen so that the dynamical system (f,Ω(f)) exhibit a chaotic behavior similar to the one found
in symbolic dynamics. Namely:

Definition 2.3. A diffeomorphism f :M →M is said to be Axiom A if

• Ω(f) is a hyperbolic set for f ,

• Ω(f) = {x ∈M | ∃n > 0, fn(x) = x}.

In general, the non-wandering set of an Axiom A diffeomorphism can be written as the union of
smaller invariant compact sets. Those are the sets on which we usually work.

Theorem 2.1. One can write Ω(f) = Ω1 ∪ . . .Ωk, where Ωi are nonempty compact disjoint sets,
such that

• f(Ωi) = Ωi, and f|Ωi
is topologically transitive,

• Ωi = X1,i ∪ · · · ∪Xri,i where the Xj,i are disjoint compact sets, f(Xj,i) = Xj+1,i (Xri+1,i =
X1,i) and fni

|Xj,i
are all topologically mixing.

The sets Ωi are called basic sets.

Remark 2.2. Notice that any basic set Ω that satisfies the nonlinearity hypothesis (NL) is neces-
sarily a perfect set. Indeed, if p ∈ Ω were an isolated point, then by transitivity p should have
dense orbit in Ω, but at the same time be a periodic point. In would imply that Ω is composed of
a unique periodic orbit, which is forbidden by the nonlinearity hypothesis.

For this section, we fix a basic set (not necessarily an attractor) Ω ⊂ M for an Axiom A diffeo-
morphism f .

2.2 Equilibrium states

Definition 2.4. We say that a map φ : X ⊂ M → R is Hölder if there exists α ∈ (0, 1) and C > 0
such that ∀x, y ∈ X, |φ(x)− φ(y)| ≤ Cd(x, y)α, where d is the natural geodesic distance induced
by the metric on M . We note Cα(X) the set of α-Hölder maps on X. If α > 1, we denote by
Cα(M) the set of functions that are ⌊α⌋ times differentiable, with (α− ⌊α⌋)-Hölder derivatives.

Remark 2.3. A theorem by McShane [Mc34] proves that any α-Hölder map defined on a subset
of M can always be extended to an α-Hölder map on all M . Hence, even if for some definitions
the potentials φ need only to be defined on Ω, we will always be able to consider them as maps in
Cα(M) if necessary.

Definition 2.5. [Bo75], [Ru78] Let ψ : Ω → R be a Hölder potential. Define the pressure of ψ by

P (ψ) := sup
µ∈Pf (Ω)

{
hf (µ) +

∫
Ω

ψdµ

}
,

where Pf (Ω) is the compact set of all probability measures supported on Ω that are f -invariant,
and where hf (µ) is the entropy of µ. There exists a unique measure µψ ∈Mf (Ω) such that

P (ψ) = hf (µψ) +

∫
Ω

ψdµψ.

This measure has support equal to Ω, is ergodic on (Ω, f), and is called the equilibrium state
associated to ψ.
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Two particular choices of potentials stands among the others. The first one is the constant poten-
tial ψ := C. In this case, the equilibrium measure is the measure of maximal entropy (which is
known to be linked with the repartition of periodic orbits, see for example [Be16]).

Another natural choice is the geometric potential

ψ := − log |det(df)|u|,

where det(df)|u stands for the determinant of the linear map (df)x : Eux → Euf(x), which is well
defined up to a sign since the Eu are equipped with a scalar product. In the case where Ω is an
attractor, that is, if there exists a neighborhood U of Ω such that⋂

n≥0

fn(U) = Ω,

then the associated equilibrium measure is called a SRB measure. In this case, for any continuous
function g : U → R and for lebesgue almost all x ∈ U ,

1

n

n−1∑
k=0

g(fk(x)) −→
n→∞

∫
Ω

g dµSRB ,

which allows us to think of this measure as the“physical equilibrium state”of the dynamical system.
See [Yo02] for more details on SRB measures, and also the last chapter of [Bo75].

2.3 Stable/unstable laminations, bracket and holonomies

In this subsection, we will recall some results about the existence of stable/unstable lamina-
tions, some regularity results in our particular case, and the consequence on the regularity of
the holonomies.

Definition 2.6. Let x ∈ Ω. For ε > 0 small enough, we define the local stable and unstable manifold
at x by

W s
ϵ (x) := {y ∈M | ∀n ≥ 0, d(fn(x), fn(y)) ≤ ε},

Wu
ε (x) := {y ∈M | ∀n ≤ 0, d(fn(x), fn(y)) ≤ ε}.

We also define the global stable and unstable manifolds at x by

W s(x) := {y ∈M | d(fn(x), fn(y)) −→
n→+∞

0},

Wu(x) := {y ∈M | d(fn(x), fn(y)) −→
n→−∞

0}.

Theorem 2.2 ([BS02], [KH95], [Bo75]). Let f be a Cr Axiom A diffeomorphism and let Ω be a basic
set. For ε > 0 small enough and for x ∈ Ω:

• W s
ε (x) and W

u
ε (x) are Cr embedded disks,

• ∀y ∈ Ω ∩W s
ε (x), TyW

s
ε (x) = Esy,

• ∀y ∈ Ω ∩Wu
ε (x), TyW

u
ε (x) = Euy ,

• f(W s
ε (x)) ⊂⊂ W s

ε (f(x)) and f(Wu
ε (x)) ⊃⊃ Wu

ε (f(x)) where ⊂⊂ means “compactly in-
cluded”,

• ∀y ∈ W s
ε (x), ∀n ≥ 0, ds(fn(x), fn(y)) ≤ κnds(x, y) where ds denotes the geodesic distance

on the submanifold W s
ε ,

• ∀y ∈ Wu
ε (x), ∀n ≥ 0, du(f−n(x), f−n(y)) ≤ κndu(x, y) where du denotes the geodesic dis-

tance on the submanifold Wu
ε .
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Moreover ⋃
n≥0

f−n(W s
ε (f

n(x))) =W s(x)

and ⋃
n≥0

fn(Wu
ε (f

−n(x))) =Wu(x),

and so the global stable and unstable manifolds are injectively immersed manifolds in M .

The family (W s
ε (x),W

u
ε (x))x∈Ω forms two transverse continuous laminations, which allows us to

define the so-called bracket and holonomies maps.

Definition 2.7 ([Bo75], [KH95], [BS02]). For ε > 0 small enough, there exists δ > 0 such that
W s
ε (x) ∩Wu

ε (y) consists of a single point [x, y] whenever x, y ∈ Ω and d(x, y) < δ. In this case,
[x, y] ∈ Ω, and the map

[·, ·] : {(x, y) ∈ Ω× Ω , d(x, y) < δ} −→ Ω

is continuous. Moreover, there exists C > 0 such that

ds([x, y], x) ≤ Cd(x, y), and du([x, y], y) ≤ Cd(x, y).

Definition 2.8. Fix x, y two close enough points in Ω lying in the same local stable manifold. Let
Uu ⊂Wu

ε (x) ∩ Ω be a small open neighborhood of x relatively to Wu
ε (x) ∩ Ω. The map

πx,y : Uu ⊂Wu
ε (x) ∩ Ω −→Wu

ε (y) ∩ Ω.

defined by πx,y(z) := [z, y] is called a stable holonomy map. One can define an unstable holonomy
map similarly on pieces of local stable manifolds intersected with Ω. Since the stable and unstable
laminations are Hölder regular in the general case, those honolomy maps are only Hölder regular
in general ([KH95], theorem 19.1.6).

To work, we will need a bit of regularity on the unstable holonomies. Fortunately for us, in the
particular case where the stable lamination are codimension 1, we have some regularity results:
this is Theorem 1 page 25 of [Ha89], and Theorem 19.1.11 in [KH95] for Anosov diffeomorphisms.
For general hyperbolic sets, the proof is done is [PR02].

Theorem 2.3. Let f be an Axiom A diffeomorphism, and let Ω be a basic set. Suppose that f has
codimension one stable laminations, that is, dimEux = 1 for all x ∈ Ω. Then the stable lamination
is C1+α for some α > 0. In particular, the stable holonomies maps are C1+α diffeomorphisms.

Remark 2.4. Here, the holonomies being C1+α means that the map πx,y extends to small curves
Wu
δ (x) −→Wu

ε (y), and that the extended map is a C1+α diffeomorphism.

From now on, we will work under the assumption that f has codimension one stable laminations.
This is always true if dimM = 2, or if dimM = 3 by exchanging f by f−1 if necessary. We fix a
Hölder potential ψ : Ω → R and its associated equilibrium state µ.

2.4 Markov partitions

In this subsection, we will construct the topological space on which we will work in this paper:
the hypothesis made on the dimension of the unstable lamination will allow us to approximate the
dynamics by a dynamical system on a finite disjoint union of smooth curves. For this we need to
recall some results about Markov partitions.

Definition 2.9. A set R ⊂ Ω is called a rectangle if

∀x, y ∈ R, [x, y] ∈ R.

A rectangle is called proper if intΩ(R) = R. If x ∈ R, and if diam(R) is small enough with respect
to ε, we define

W s(x,R) :=W s
ε (x) ∩R and Wu(x,R) :=Wu

ε (x) ∩R.
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Remark 2.5. Notice that a rectangle isn’t always connected, and might even have an infinite number
of connected component, even if Ω is itself connected. This technicality is noticed in [Pe19], at the
first paragraph of subsection 3.3, and is an obstruction to the existence of finite Markov partition
with connected elements.

Definition 2.10. A Markov partition of Ω is a finite covering {Ra}a∈A of Ω by proper rectangles
such that

• intΩRa ∩ intΩRb = ∅ if a ̸= b

• f (Wu(x,Ra)) ⊃Wu(f(x), Rb) and f (W
s(x,Ra)) ⊂W s(f(x), Rb)

when x ∈ intΩRa ∩ f−1 (intΩRa).

Theorem 2.4 ([Bo75],[KH95]). Let Ω be a basic set for an Axiom A diffeomorphism f . Then Ω has
Markov partitions of arbitrary small diameter.

From now on, we fix once and for all a Markov partition {Ra}a∈A of Ω with small enough diameter.
Remember that, since Ω is not an isolated cycle, it is a perfect set. In particular, diamRa > 0 for
all a ∈ A.

Definition 2.11. We fix for the rest of this paper some periodic points xa ∈ intΩRa for all a ∈ A
(this is possible by density of such points in Ω). By periodicity, xa /∈Wu(xb) when a ̸= b.

Definition 2.12. We set, for all a ∈ A,

Sa :=W s(xa, Ra) and Ua :=Wu(xa, Ra).

They are closed sets included in Ra, and are defined so that [Ua, Sa] = Ra. They will allow us
to decompose the dynamics into a stable and an unstable part. Notice that the decomposition is
unique:

∀x ∈ Ra,∃!(y, z) ∈ Ua × Sa, x = [y, z].

The intuition of the construction to come is that, after a large enough number of iterates, fn can
be approximated by a map that is only defined on the (Ua)a∈A.

2.5 A factor dynamics

In this section we construct what will take the role of the shift map in our context. The construction
is inspired by the symbolic case and already appear in the work of Dolgopyat [Do98].

Notations 2.6. Let a and b be two letters in A. We note a→ b if f(intΩRa) ∩ intΩRb ̸= ∅.

Definition 2.13. We define

R :=
⊔
a∈A

Ra, S :=
⊔
a∈A

Sa, U :=
⊔
a∈A

Ua

where
⊔

denote a formal disjoint union. we also define

R(0) :=
⊔
a∈A

intΩRa ⊂ R

and
R(1) :=

⊔
a→b

(intΩRa) ∩ f−1(intΩRb) ⊂ R(0)

So that the map f : Ω → Ω may be naturally seen as a map f : R(1) −→ R(0). We then define

R(k) := f−k(R(0))

and, finally, we denote the associated residual set by

R̂ :=
⋂
k≥0

R(k)

so that f : R̂ −→ R̂. Seen as a subset of Ω, R̂ as full measure, by ergodicity of the equilibrium
measure µ. Hence µ can naturally be though as a probability measure on R̂.
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Definition 2.14. Let R/S be the topological space defined by the equivalence relation x ∼ y ⇔ ∃a ∈
A, y ∈ W s(x,Ra) in R. Let π : R → R/S denotes the natural projection. The map f : R̂ → R̂
induces a factor map F : R̂/S → R̂/S. Moreover, the measure ν := π∗µ is a F -invariant probability
measure on R/S.

Proof. We just have to check that f : R(1) −→ R(0) satisfy

fW s(x,Ra) ⊂W s(f(x), Rb)

for x ∈ (intΩRa)∩ f−1(intΩRb). This is true by definition of Markov partitions. The induced map
satisfy F ◦ π = π ◦ f , and so F∗ν = ν.

Remark 2.7. There is a natural isomorphism U ≃ R/S that is induced by the inclusion U ↪→ R.
This allows us to identify all the precedent construction to a dynamical system on U . Namely:

• The projection π : R → R/S is identified with

π : R −→ U
x ∈ Ra 7−→ [x, xa] ∈ Ua

• The factor map F : R̂/S → R̂/S is identified with

F : Û −→ Û
x ∈ Ra ∩ f−1(Rb) 7−→ [f(x), xb] ∈ Ub

where Û is defined similarly to R̂, but with F replacing f in the construction.

• The measure ν is identified to the unique measure on U such that:

∀h ∈ C0(R,R) S-constant,
∫
U
hdν =

∫
R
hdµ

where S-constant means that ∀a ∈ A,∀x, y ∈ Ra, x ∈W s(y,Ra) ⇒ h(x) = h(y).

Remark 2.8. Since our centers xa are periodic, xa ∈ R̂, and hence xa ∈ Û .

Lemma 2.5. Under the nonlinearity hypothesis, the set Û is a perfect set. In particular, diam Ua > 0
for all a ∈ A.

Proof. First of all, we prove that Û is infinite. By hypothesis, there exists an infinite family of
distinct periodic orbits for f in Ω. Since f is Axiom A, the set of periodic orbits for f is dense in
Ω. In particular, the set of f -periodic points in R(0) is infinite.

Let x ̸= y ∈ Ra be two f -periodic points with distinct periodic orbits. Then π(x) and π(y) are F -

periodic with distinct periodic orbits. (In particular, they are in Û .) Indeed, if there existed some n0
andm0 such that π(fn0(x)) = π(fm0y), then by definition of π we would have fn0(x) ∈W s(fm0y).
Hence d(fn+n0(x), fn+m0(y)) −→

n→+∞
0, a contradiction.

So Û is an infinite set. Now we justify that F|Û is topologically transitive.

We see by the Baire category theorem that R̂ is a dense subset of Ω. Moreover, f(R̂) = R̂. It then
follows from the transitivity of f|Ω that f|R̂ is topologically transitive. Hence, F|Û is topologically

transitive, as a factor of f|R̂. We conclude the proof using the argument of remark 2.2.

Remark 2.9. The fact that Û is perfect, combined with the fact that holonomies extend to C1+α

maps, allows us to consider for x ∈ R the (absolute value of the) derivatives along the unstable
direction of the holonomies in a meaningful way (without having to chose an extension). We denote
them by ∂uπ(x). (Formally, |∂uπ(x)| := |(dπ)x(n⃗)| where n⃗ is a unit vector in Eux and where | · | is
the norm on Eux .)

It is then known that those quantities are uniformly bounded [PR02]. In other words:

∃c, C > 0,∀x ∈ R, c < |∂uπ(x)| ≤ C.

9



Remark 2.10. The map F : Û → Û is an eventually expanding map.

Indeed, let n ≥ 0. By Theorem 2.2, if x, y ∈ Û are close enough depending on n, then d(fn(x), fn(y)) ≥
κ−nd(x, y) and fn(x), fn(y) are still in the same Rb. Since F

n = π ◦ fn, and since π has bounded
derivatives, we get:

∃c > 0, ∀n, ∀(x, y) close enough, du(Fnx, Fny) ≥ cκ−ndu(x, y).

2.6 A transfer operator

The dynamical system (F, Û , ν) is constructed to behave like a semi-shift, and so it is natural to
search for a transfer operator defined on U that leaves ν invariant. Recall that µ is the equilibrium
measure for some Hölder potential ψ on M : the fact that ψ isn’t necessarily S-constant suggest
that we will have to search for another potential, cohomologous to ψ, that is S-invariant. Looking
at the symbolic case, we notice from the proof of the proposition 1.2 in [PP90] that the potential
φ0 ∈ Cα(R,R) (take α smaller if necessary) defined by the formula

φ0(x) := ψ(π(x)) +

∞∑
n=0

(
ψ(fn+1πx)− ψ(fnπfx)

)
might be interesting to consider. First of all, recall what is a transfer operator.

Definition 2.15. For some Hölder potential φ : U → R, define the associated transfer operator
Lφ : C0(U (0),C) −→ C0(U (1),C) by

∀x ∈ U (0), Lφh(x) :=
∑

y∈F−1(x)

eφ(y)h(y).

Iterating Lφ gives

∀x ∈ U (0), Lnφh(x) =
∑

y∈F−n(x)

eSnφ(y)h(y),

where Snφ(z) :=
∑n−1
k=0 φ(F

k(z)) is a Birkhoff sum.

By duality, Lφ also acts on the set of measures on U . If m is a measure on U (1), then L∗
φm is the

unique measure on U (0) such that

∀h ∈ C0(U (1),C),
∫
U
h dL∗

φm =

∫
U
Lφh dm.

Remark 2.11. We may rewrite the definition by highlighting the role of the inverse branches of F .

For some a → b, we see that F : U
(1)
ab → U

(0)
b is (the restriction of) a diffeomorphism. We denote

by gab : Ub → Uab its local inverse, that can be defined by the formula

∀x ∈ Ub, gab(x) := f−1([x, f(xa)]).

Then the transfer operator can be rewritten as follow:

∀x ∈ Ub, Lφh(x) =
∑
a→b

eφ(gab(x))h(gab(x)).

Theorem 2.6. There exists a Hölder function h : U → R such that L∗
φ0
(hν) = eP (ψ)hν, where

φ0(x) := ψ(π(x)) +

∞∑
n=0

(
ψ(fn+1πx)− ψ(fnπfx)

)
.

Proof. This fact follows from the symbolic setting, but a quick and clean proof can also be achieved
using the following geometrical results, extracted from [Le00] and [Cl20]. See in particular Theorem
3.10 in [Cl20]. Define, when x ∈W s(y),

ω+(x, y) :=

∞∑
n=0

(ψ(fn(x))− ψ(fn(y))) ,

10



and when x ∈Wu(y),

ω−(x, y) :=

∞∑
n=0

(
ψ(f−n(x))− ψ(f−n(y))

)
.

There exists two families of (nonzero and) finite measures ms
x, m

u
x indexed on x ∈ R(0) such that

supp(mu
x) ⊂ Wu(x,Ra) and supp(ms

x) ⊂ W s(x,Ra) if x ∈ Ra, and that satisfies the following
properties:

• If π is a stable holonomy map between Wu(y,Ra) and W
u(π(y), Ra), then

d
(
π∗m

u
y

)
dmu

π(y)

(π(x)) = eω
+(x,πx).

and a similar formula holds for the ms
y with an unstable holonomy map.

• The family of measures is f -conformal:

d
(
f∗m

u
y

)
dmu

f(y)

(f(x)) = eψ(x)−P (ψ)

and a similar formula holds for the ms
y.

Finally, this family of measures is related to µ in the following way. There exists positive constants
(ca)a∈A such that, for any measurable map g :M → C, the following formula holds:∫

M

gdµ =
∑
a∈A

∫
Ua

∫
Sa

eω
+([x,y],x)+ω−([x,y],y)g([x, y])cadm

s
xa
(y)dmu

xa
(x).

From this we can link ν and the family mu
xa

in the following way. Define h0 : U → R by the formula

∀a ∈ A, ∀x ∈ Ua, h0(x) := ca

∫
Sa

eω
−([x,y],y)+ω+([x,y],y)dms

xa
(y) > 0.

Then, for any S-constant map g : R → R, we have∫
U
gdν =

∫
M

gdµ =
∑
a∈A

∫
Ua

g(x)h0(x)dm
u
xa
(x).

It follows from the properties of the bracket and the fact that ψ is supposed Hölder that h0 is
Hölder. So h := h−1

0 is Hölder and satisfy hν = mu, where mu
|Ua

:= mu
xa
. We check that mu is an

eigenmeasure for Lφ0
. Fix a→ b ∈ A, and G : Ub → C continuous. We have∫
Ub

G(gab(x))dm
u
xb
(x) =

∫
Ub

G
(
f−1[x, f(xa)]

)
dmu

xb
(x)

=

∫
f(Uab)

G
(
f−1x

)
eω

+(x,πx)dmu
f(xa)

(x)

=

∫
Uab

G(x)eω
+(fx,πfx)e−ψ(x)+P (ψ)dmu

xa
(x).

= eP (ψ)

∫
Uab

G(x)e−φ0(x)dmu
xa
.

In particular, for any continuous G : U → R:∫
U
Lφ0(G)dm

u =
∑
b∈A

∫
Ub

∑
a→b

eφ0(gab(x))G(gab(x))dm
u
xa

= eP (ψ)
∑
a,b∈A
a→b

∫
Uab

G(x)dmu
xa

=

∫
U
Gdmu.

Which concludes the proof.
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Lemma 2.7. Define φ := φ0 − lnh ◦ F + lnh− P (ψ). Then φ : U → R is Hölder and normalized,

that is: L∗
φν = ν, Lφ1 = 1 on Û . Moreover, φ ≤ 0 on Û , and there exists an integer N ≥ 0 such

that SNφ < 0 on Û .

Proof. It follows from the definition of φ that L∗
φν = ν. Then, we see that Lφ1 = 1 on L2(ν).

Indeed, for any L2(ν) map G, we have∫
U
Lφ(1)Gdν =

∫
U
Lφ(G ◦ F )dν =

∫
U
G ◦ Fdν =

∫
U
Gdν.

Since Lφ1 and 1 are continuous functions on Û , and since ν has full support, it follows that Lφ1 = 1

on all Û , and even on U by density. We check that φ is eventually negative on the residual set.
First of all, the equality 1 = Lφ(1) implies that φ ≤ 0 on Û . Then, since F is uniformly expanding,
there exists some integer N such that F−N (x) always contains at least two distinct points, for any

x. The equality 1 = LNφ (1) then allows us to conclude that SNφ < 0 on F−N (Û) = Û .

2.7 Some regularity for ν

In this subsection, we introduce the usual symbolic formalism, recall the Gibbs estimates for ν,
and prove an upper regularity result for ν. In particular, we prove that ν don’t have atoms under
our non-linearity condition. Notice that if Ω were an isolated cycle, then the measure of maximal
entropy would be the Dirac on the cycle, which is fully discrete, so this is not completely trivial.

Notations 2.12. For n ≥ 1, a word a = a1 . . . an ∈ An is said to be admissible if a1 → a2 → · · · →
an. We define:

• Wn := {a ∈ An | a is admissible }.

• For a ∈ Wn, define ga := ga1a2ga2a3 . . . gan−1an : Uan −→ Ua1 .

• For a ∈ Wn, define Ua := ga (Uan), Ua := ga (Uan), and Ûa := ga

(
Û ∩ Uan

)
• For a ∈ Wn, set xa := ga (xan) ∈ Ûa.

Remark 2.13. Since F is eventually expanding, the maps ga are eventually contracting as n becomes
large. As U is included in a finite union of unstable curve, that are one dimensional riemannian
manifolds, it makes sense to consider absolute value of the derivatives of F and ga, and we will
do it from now on. For points in U , this correspond to the absolute value of the derivative in the
unstable direction.

Since the holonomies are uniformly bounded, and by hyperbolicity of f , we see that

∀x ∈ Û , |∂uFn(x)| ≥ cκ−n.

Consequently,
∀a ∈ Wn, ∀x ∈ Uan , |g′a(x)| ≤ c−1κn.

Moreover, using remark 2.10, we see that

∀a ∈ Wn,diam(Ua) = diam ga (Uan) ≤ c−1κn.

A consequence for our potential is that it has exponentially vanishing variations. Namely, since φ
is Hölder, the following holds:

∃C > 0, ∀n ≥ 1, ∀a ∈ Wn, ∀x, y ∈ Ua, |φ(x)− φ(y)| ≤ Cκαn.

Remark 2.14. For a fixed n, the family (Ua)a∈Wn
is a partition of U (modulo a boundary set of

zero measure). In particular, for any continuous map g : U → C, we can write∫
U
gdν =

∑
a∈Wn

∫
Ua

gdν =
∑

a∈Wn

∫
Ua

gdν.

12



Lemma 2.8 (Gibbs estimates, [PP90]).

∃C0 > 1, ∀n ≥ 1, ∀a ∈ Wn, ∀x ∈ Ua, C−1
0 eSnφ(x) ≤ ν(Ua) ≤ C0e

Snφ(x)

Proof. We have∫
U
e−φ1Ua1...an

dνφ =

∫
U
Lφ
(
e−φ1Ua1...an

)
dν =

∫
U

1Ua2...an
dν = ν(Ua2...an).

Moreover, since φ has exponentially decreasing variations, we can write that:

∀x ∈ Ua1...an , e
−φ(x)−Cκαn

ν(Ua1...an) ≤
∫
U
e−φ1Ua1...an

dν ≤ e−φ(x)+Cκ
αn

ν(Ua1...an)

And so

∀x ∈ Ua1...an , e
−φ(x)−Cκαn

≤ ν(Ua2...an)

ν(Ua1...an)
≤ e−φ(x)+Cκ

αn

.

Multiplying those inequalities gives us the desired relation.

Lemma 2.9. The measure ν is upper regular, that is, there exists C > 0 and δup > 0 such that

∀x ∈ U , ∀r > 0, ν(B(x, r)) ≤ Crδup .

Where B(x, r) is a ball of center x and radius r in U .

Proof. Let x ∈ U , and let r > 0 be small enough. If B(x, r) ∩ Û = ∅ then ν(B(x, r)) = 0 since Û
has full measure, and the proof is done. If B(x, r) ∩ Û ̸= ∅, then let x̃ ∈ B(x, r) ∩ Û . We then see
that ν(B(x, r)) ≤ ν(B(x̃, 2r).

Recall that F has bounded derivative on U : |F ′|∞ < ∞. In particular, there exists a constant
κ1 ∈ (0, 1) such that |(Fn)′|∞ ≤ κ−n1 . Hence, ∀n ≥ 1, ∀a ∈ Wn, inf|g′a| > κn1 . In particular,

diam(Ua) > κn1η0, where η0 := mina∈A diam(Ua) > 0 (This is where we use the fact that Û is
perfect).

Recall also from the lemma 2.7 that there exists an integer N such that SNφ < 0 on Û . We then
let n(r) be the unique integer n such that

η0κ
N(n+1)
1 < 2r ≤ η0κ

Nn
1 .

Then, by construction, 2r ≤ diam(Ua),∀a ∈ Wn(r). Since everything is one dimensional, it follows
that B(x̃, 2r) is contained in at most two sets of the form Ua, a ∈ Wn. In particular, by the Gibbs

estimates, there exists eventually a y ∈ Û such that

ν (B(x, r)) ≤ C0e
SNn(r)φ(x) + C0e

SNn(r)φ(y).

But then notice that SnNφ(x) < −n inf Û |SNφ|, and similarly for SnNφ(y). Hence:

ν (B(x, r)) ≤ 2C0e
−n(r) infÛ |SNφ| ≤ Crδup

for some C > 0 and δup > 0.

In particular, it follows that ν don’t have atoms, which is some good news since we are willing to
prove Fourier decay. Moreover, we get a regularity result on µ (that holds more generally if one

replace (NL) by “Û is perfect”).

Corollary 2.10. Let f be an Axiom A diffeomorphism, and let Ω be a basic set with codimension
one stable foliation. Suppose that Ω satisfies (NL). Then any equilibrium state µ associated to
Hölder potential ψ : Ω → R is upper regular.

Proof. Let x ∈ Ω and r > 0 be small enough. Write B(x, r) =
⋃
a∈AB(x, r) ∩ Ra. Notice that

B(x, r) ∩Ra ⊂ {y ∈ Ra | ∃z ∈ B(x, r) ∩Ra, π(y) = π(z)}, and so:

µ(B(x, r)) =
∑
a∈A

µ (B(x, r) ∩Ra) ≤
∑
a∈A

ν (π (B(x, r) ∩Ra)) ≤ |A|C∥∂uπ∥
δup

∞,R(2r)δup ≤ C̃rδup .

using the previous lemma, and using the fact that diamu (π (B(x, r) ∩Ra)) ≤ r∥∂uπ∥∞,R.
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2.8 Large deviations

We finish this preliminary section by recalling some large deviation results. There exists a large
bibliography on the subject, see for example [Ki90]. Large deviations in the context of Fourier
decay for some 1-dimensional shift was used in [JS16] and in [SS20]. A simple proof in the context
of Julia sets using the pressure function can be found in the appendix of [Le21].

Theorem 2.11 ([LQZ03]). Let g : Ω → C be any continuous map. Then, for all ε > 0, there exists
n0(ε) and δ0(ε) > 0 such that

∀n ≥ n0(ε), µ

({
x ∈ Ω,

∣∣∣∣∣ 1n
n−1∑
k=0

g(fk(x))−
∫
Ω

gdµ

∣∣∣∣∣ ≥ ε

})
≤ e−δ0(ε)n

Notice that applying Theorem 2.11 to a S-constant function immediately gives the same statement
for (ν, Û , F ). We apply it to some special cases.

Definition 2.16. Define τf := ln |∂uf(x)| (so that −τf is the geometric potential) and τF :=
ln |F ′(x)|. Then, define the associated global Lyapunov exponents by:

λ :=

∫
Ω

τfdµ > 0 , Λ :=

∫
U
τF dν > 0

Also, define the dimension of ν by the formula

δ := − 1

Λ

∫
U
φdν > 0.

A consequence of Theorem 2.11 is the following:

Corollary 2.12 ([SS20], [Le21]). For every ε > 0, there exists n1(ε) and δ1(ε) > 0 such that

∀n ≥ n1(ε), ν

({
x ∈ Û ,

∣∣∣∣ 1nSnτF (x)− Λ

∣∣∣∣ ≥ ε or

∣∣∣∣ Snφ(x)SnτF (x)
+ δ

∣∣∣∣ ≥ ε

})
≤ e−δ1(ε)n.

Those quantitative results tells us that, “for most x ∈ Ω”, |∂ufn(x)| have order of magnitude
exp(λn), and |(Fn)′(x)| have order of magnitude exp(Λn). Studying those two quantities is there-
fore central for us. An important (and natural) remark is the following.

Lemma 2.13. The global unstable Lyapunov exponents λ and Λ are equal. In other words,∫
Ω

ln |∂uf |dµ =

∫
U
ln |F ′|dν.

Proof. The fact that π ◦ f = F ◦ π implies that

τf = τF (π(x)) + ln |∂uπ(f(x))| − ln |∂uπ(x)|.

In particular, τf and τF ◦π are f -cohomologous. This implies the desired equality, by definition of
the measure ν, and by f -invariance of µ.

3 Computing some orders of magnitudes

Starting now, we begin to do analysis. For this, it will be useful to work on connected sets. Hence,
we make from now on the assumption that Ω is an attractor. A useful result in this case is the
following.

Lemma 3.1. Suppose that Ω is an attractor for f . Let x ∈ Ω. Then Wu(x) ⊂ Ω.
In particular, in this setting, (Ua)a∈A is a finite collection of compact connected smooth curves.

Proof. Let x ∈ Ω and y ∈ Wu(x). Since Ω is an attractor, there exists U an open neighborhood
of Ω such that

⋂
n≥0 f

n(U) = Ω. Since d(f−n(x), f−n(y)) −→
n→+∞

0, there exists N ≥ 0 so that

ỹ := f−N (y) ∈ U , and for all n ≥ 0, f−n(ỹ) ∈ U . We can then write ỹ = fn(f−n(ỹ)) ∈ fn(U) for
all n ≥ 0. Hence ỹ ∈ Ω, and so y ∈ Ω.
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This allows us to see holonomy maps as genuine C1+α diffeomorphisms between curves, and to
see F as a smooth 1-dimensional map. It defines a piecewise expanding map in the sense of [DV21].

The goal of this section is to use the large deviations to compute orders of magnitude for dynamical
quantities. Once this preparatory step is done, we will be able to study oscillatory integrals
involving µ. First of all, we recall some useful symbolic notations.

• Recall that Wn stands for the set of admissible words of length n. For a = a1 . . . anan+1 ∈
Wn+1, define a′ := a1 . . . an ∈ Wn.

• Let a ∈ Wn+1 and b ∈ Wm+1. Denote a⇝ b if an+1 = b1. In this case, a′b ∈ Wn+m+1.

• Let a ∈ Wn+1. We denote by b(a) the last letter of a.

With those notations, we may rewrite the formula for the iterate of our transfer operator. For any
continuous function h : U −→ C, we have

∀b ∈ A, ∀x ∈ Ub, Lnφh(x) =
∑

a∈Wn+1

a⇝b

eSnφ(ga(x))h(ga(x)) =
∑

a∈Wn+1

a⇝b

h(ga(x))wa(x).

where
wa(x) := eSnφ(ga(x)) ≃ ν(Ua).

Iterating Lnφ again leads us to the formula

∀x ∈ Ub, Lnkφ h(x) =
∑

a1⇝···⇝ak⇝b

h(ga′
1...a

′
k−1ak

(x))wa′
1...a

′
k−1ak

(x).

Definition 3.1. Let, for small ε > 0 and n ≥ 1,

Bn(ε) :=

{
x ∈ R ,

∣∣∣∣ 1nSnτF (π(x))− λ

∣∣∣∣ < ε and

∣∣∣∣ Snφ(π(x))SnτF (π(x))
+ δ

∣∣∣∣ < ε

}

and Cn(ε) :=

{
x ∈ Ω ,

∣∣∣∣∣ 1n
n−1∑
k=0

τf (f
k(x))− λ

∣∣∣∣∣ < ε

}
.

Finally, let An(ε) := Bn(ε) ∩ Cn(ε). Then µ(An(ε)) ≥ 1 − e−δ2(ε)n for n large enough depending
on ε and for some δ2(ε) > 0, by Theorem 2.11 and Corollary 2.12.

Notations 3.1. To simplify the reading, when two quantities dependent of n satisfy bn ≤ Can for
some constant C, we denote it by an ≲ bn. If an ≲ bn ≲ cn, we denote it by an ≃ bn. If there
exists c, C and β, independent of n and ε, such that ce−εβnan ≤ bn ≤ Ceεβnan, we denote it by
an ∼ bn. Throughout the text β will be allowed to change from line to line. It correspond to some
positive constant.

Eventually, we will chose ε small enough such that this exponentially growing term gets absorbed
by the other leading terms, so we can neglect it.

Lemma 3.2. Let a ∈ Wn+1(ε) be such that Ua ∩An(ε) ̸= ∅. Then:

• uniformly on x ∈ Ua, |∂ufn(x)| ∼ enλ.

• uniformly on x ∈ Ub(a), |g′a(x)| ∼ e−nλ

• diam(Ûa), diam(Ua) ∼ e−nλ

• uniformly on x ∈ Ua, wa(x) ∼ e−δλn

• ν(Ûa) ∼ e−δλn

Remark 3.2. The definition of δ is chosen so that µ(Ua) ∼ diam(Ua)
δ when Ua∩An(ε) ̸= ∅. Beware

that the diameters are for the distance du.
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Proof. The first thing to notice is that, since any Hölder map have exponentially vanishing varia-
tions, Birkhoff sums are easy to control when n becomes large. In particular, the estimates that
are true on a piece of Ua will extends on Ua. For example, let x ∈ Ua, and let ya ∈ Ua ∩ An(ε).
Since τf has exponentially vanishing variations, we can write∣∣∣∣∣ 1n

n−1∑
k=0

τf (f
k(x))− λ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n−1∑
k=0

τf (f
k(x))− 1

n

n−1∑
k=0

τf (f
k(ya))

∣∣∣∣∣+
∣∣∣∣∣ 1n

n−1∑
k=0

τf (f
k(ya))− λ

∣∣∣∣∣ .
Since fk(Ua) ⊂ Rak+1...an is diffeomorphic to Uak+1...an by the mean of the holonomy map π which
have bounded differential, we have

1

n

n−1∑
k=0

∣∣τf (fk(x))− τf (f
k(ya))

∣∣ ≤ 1

n

n−1∑
k=0

|τf |αdiam
(
fk(Ua)

)α

≲
1

n

n−1∑
k=0

diam(Uak+1...an)
α ≲

1

n

n−1∑
k=0

καk ≤ C

n

for some constant C. In particular we see that for n large enough depending on ε, the estimate

∀x ∈ Ua,

∣∣∣∣∣ 1n
n−1∑
k=0

τf (f
k(x))− λ

∣∣∣∣∣ < 2ε

holds. Similarly the estimates related to Bn(ε) extends on Ua replacing ε with 2ε as long as n is
large enough. Once this is known, the estimates for ∂u(f

n), g′a and wa are easy, and the estimates
for the diameters is a direct consequence of our 1-dimensional setting and the mean value theorem.
The estimates for ν follows from the Gibbs estimates.

Definition 3.2. For some fixed set ω ⊂ U such that ν(ω) > 0, define the set of (ω-localized) ε-regular
words by

Rn+1(ω) := {a ∈ Wn+1 | ω ∩ Ua ∩An(ε) ̸= ∅} .

When no localization is asked, define Rn+1 := Rn+1(M). Then, define the set of (ω-localized)
ε-regular k-blocks by

Rk
n+1(ω) =

{
A = a′1 . . .a

′
k−1ak ∈ Wnk+1 | ∀i ≥ 2, ai ∈ Rn+1, and a1 ∈ Rn+1(ω)

}
.

Finally, define the associated geometric points to be

Rkn+1(ω) :=
⋃

A∈Rk
n+1(ω)

UA.

The sets Rk
n+1, R

k
n+1 denotes the regular blocks and associated geometric points when ω =M .

Lemma 3.3. For ω and k ≥ 1 fixed, and for n large enough depending on ε,

#Rk
n+1(ω) ∼ ekδλn.

Proof. First of all, notice that An(ε) ⊂ Rn+1, so that ν(U \ Rn+1) ≤ ν(U \ An) ≤ ν(U \ Bn) +
ν(U \ Cn). To control the term in Cn, we notice that, by the same argument than in Lemma 3.1:

∀x ∈ Ra, x ∈ Cn(ε) ⇒ [x, Sa] ⊂ Cn(2ε)

as soon as n is large enough. Hence, by the definition of the measure ν:

ν(U \ Cn) = µ (R \ [U ∩ Cn,S]) ≤ µ(R \ Cn(ε/2)) ≲ e−δ1n.

This proves that ν(Rn+1) ≥ 1− e−δ0n for n large enough depending on ε and for some δ0(ε) > 0.
Since Rn+1(ω) = Rn+1 ∩ ω, it follows that ν(ω)− e−δ0n ≤ ν(Rn+1(ω)) ≤ ν(ω).
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Then, define R̃n+1 :=
⊔

a∈Rn+1
intU (Ua). From the point of view of the measure ν, it is indistin-

guishable from Rn+1. First, we prove that

ω ∩
k−1⋂
i=0

F−ni
(
R̃n+1

)
⊂ Rkn+1(ω).

Let x ∈ ω ∩
⋂k−1
i=0 F

−ni
(
R̃n+1

)
. Since there exists A = a′1 . . .a

′
k−1ak ∈ Wkn+1 such that x ∈ UA,

we see that for any i we can write Fni(x) ∈ Ua′
1+i...ak

∩R̃n+1. So there exists bi+1 ∈ Rn+1 such that

Ua′
1+i...ak

∩ intUUbi+1 ̸= ∅. Then bi+1 = ai+1, for all i, which implies that A ∈ Rk
n+1. Moreover,

since ∅ ≠ ω∩UA ⊂ ω∩Ua1
, a1 ∈ Rn+1(ω), and so A ∈ Rk

n+1(ω). Now that the inclusion is proved,
we see that

ν
(
ω \Rkn+1(ω)

)
≤ ν(ω\Rn+1(ω))+

k−1∑
i=1

ν
(
F−ni

(
U \ R̃n+1

))
= ν(ω\Rn+1(ω))+(k−1)ν(U\Rn+1),

and so ν(Rkn+1(ω)) ≥ ν(ω)− ke−δ1(ε)n for n large enough depending on ε.
Now we may prove the cardinality estimate: since ν(Rkn+1(ω)) =

∑
A∈Rk

n+1(ω)
ν(UA), we have

#
(
Rk
n+1(ω)

)
e−εβne−δλkn ≲ ν

(
Rkn+1(ω)

)
≲ #

(
Rk
n+1(ω)

)
eεβne−δλkn

and so
e−εβneδλkn

(
ν(ω)− ke−δ1(ε)n

)
≲ #Rk

n+1(ω) ≲ e
εβneδλkn.

4 Reduction to sums of exponential

We can finally start the proof of our main theorem. The goal is to follow the strategy developed in
[SS20] and [Le21] (which generalized the original method developed in [BD17] and [LNP19]). To do
so, we will reduce our oscillatory integral over Ω with respect to µ to an oscillatory integral over U
with respect to ν. The fact that ν is invariant by a transfer operator related to an expanding map
will allows us to get the same final reduction as in those two papers: everything will boils down to
a sum of exponential that we will be able to control thanks to a combinatorial theorem of Bourgain.

Before going on, recall the setting: we have fixed a C2+α Axiom A diffeomorphism f : M → M
and an attractor Ω on which f has codimension 1 stable lamination and that satisfies our generic
nonlinearity condition (NL). The bunching condition (B) will only be used in section 6. We have
fixed a Hölder potential ψ : Ω → R and its associated equilibrium state µ. We denote by (F,U , ν)
the expanding dynamical system in factor defined in section 2. The measure ν is invariant by a
transfer operator Lφ, where φ is some normalized and α-Hölder potential. The Hölder exponent
α is fixed for the rest of the paper.

Six quantities will be at play: ξ, K, n, k, ε0 and ε. We will think of k, ε0 and ε as being fixed.
The constant k is fixed using Corollary 5.3. The constant ε0 > 0 will be fixed at at the end of the
paper, in Lemma 6.5. The constant ε > 0 is chosen at the very end of the proof to be small in
front of every other constant that might appear. The only variable is ξ. We relate it to n and K
by the formulas

n :=

⌊
ln |ξ|

(2k + 1)λ+ ε0

⌋
and K :=

⌊
((2k + 1)λ+ 2ε0)n

α| lnκ|

⌋
.

Definition 4.1. Let χ ∈ Cα(M,C) (with support of positive measure). Let ϕ ∈ C1+α(M,R).
Suppose that there exists a constant Cϕ,χ > 1 such that

• ∥χ∥Cα + ∥ϕ∥C1+α < Cϕ,χ

• ∀x ∈ supp χ, |∂uϕ(x)| > C−1
ϕ,χ.
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Then define, for ξ ∈ R:

µ̂(ξ) :=

∫
M

eiξϕχ dµ.

Since the condition on ∂uϕ is open, it holds on a small open neighborhood ω̃ ⊃ suppχ. Choosing
a small enough Markov partition allows us to choose ω̃ as a nonempty union of rectangles Ra. It
follows that ω := ω̃ ∩ U have positive measure, and hence we can use the results of Lemma 3.2.

Remark 4.1. The constant C in Theorem 1.2 will depends only on the riemannian manifold M ,
the diffeomorphism f , the equilibrium state µ, the Hölder exponent α and the constant Cϕ,χ > 1.

Notations 4.2. We recall a final set of notations, inspired from [BD17]. For a fixed n and k, denote:

• A = (a0, . . . , ak) ∈ Wk+1
n+1 , B = (b1, . . . ,bk) ∈ Wk

n+1.

• We write A ↔ B iff aj−1 ⇝ bj ⇝ aj for all j = 1, . . . k.

• If A ↔ B, then we define the words A ∗ B := a′0b
′
1a

′
1b

′
2 . . . a

′
k−1b

′
kak

and A#B := a′0b
′
1a

′
1b

′
2 . . . a

′
k−1bk.

• Denote by b(A) ∈ A the last letter of ak.

We prove the following reduction.

Proposition 4.1. Define Jn := {eε0n/2 ≤ |η| ≤ e2ε0n} and

ζj,A(b) := e2λn|g′a′
j−1b

(xaj )|.

There exists some constant β > 1 such that for n large enough depending on ε:

|µ̂(ξ)|2 ≲ eεβne−λδ(2k+1)n
∑

A∈Rk+1
n+1(ω)

sup
η∈Jn

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiηζ1,A(b1)...ζk,A(bk)

∣∣∣∣∣
+e−ε0n + e−δ1(ε)n + eεβn

(
e−λαn + καn + e−(αλ−ε0)n + e−ε0δupn/2

)
.

Once proposition 4.1 is established, if we manage to prove that the sum of exponentials enjoys
exponential decay in n, then choosing ε small enough will allow us to see that |µ̂(ξ)|2 enjoys
polynomial decay in ξ, and our main theorem will be proved. We prove Proposition 4.1 through a
succession of lemmas.

Lemma 4.2. For n large enough there exists C > 0 that depends only on Cψ,χ such that∣∣∣∣∫
Ω

eiξϕχdµ−
∫
U
eiξϕ◦f

K

χ ◦ fKdν
∣∣∣∣ ≤ Ce−ε0n.

Proof. Let h(x) := eiξϕ(x)χ(x). Then, since µ is f invariant,

µ̂ =

∫
Ω

h ◦ fKdµ.

We then check that h◦fK is close to a S-constant function asK grows larger. First of all, notice that
since ϕ is C1, eiξϕ also is. In particular it is Lipschitz with constant |ξ|Cϕ,χ. Since M is a closed
riemannian manifold, it follows that eiξϕ is α-Hölder on M with constant |ξ|Cϕ,χdiam(M)1−α.
Since χ is α-Holder too, with constant Cϕ,χ, the product h is also locally α-Hölder, with constant
Cϕ,χ + C2

ϕ,χ|ξ|diam(M)1−α.

Let x ∈ Ra. By definition, π(x) ∈ Ua is in W s(x). Then

|h(fK(x))− h(fK(π(x)))| ≤ |h|αd(fK(x), fK(π(x)))α ≤ |h|ακαK

≤
(
Cϕ,χ + C2

ϕ,χ|ξ|diam(M)1−α
)
καK .

Since |ξ|καK ≲ e−ε0n, there exists a constant C > 1 that depends only on Cψ,χ such that

∥h ◦ fK − h ◦ fK ◦ π∥∞,R ≤ Ce−ε0n.

The desired estimates follows from the definition of ν.
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Now we are ready to adapt the existing strategy for one dimensional expanding maps. From this
point, we will follow [SS20] and [Le21]. Notice however that we use an additional word C to cancel
the distortions induced by fK .

Lemma 4.3.∣∣∣∣∫
U
eiξϕ◦f

K

χ ◦ fKdν
∣∣∣∣2 ≲

∣∣∣∣∣ ∑
C∈RK+1

∑
A∈Rk+1

n+1

B∈Rk
n+1

C⇝A↔B

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))χ(fKgC′(A∗B)(x))wC′(A∗B)(x)dν(x)

∣∣∣∣∣
2

+ e−δ1(ε)n

Proof. Since ν is invariant by Lφ, we can write∫
U
h ◦ fKdν =

∑
C∈WK+1

∫
Ub(C)

h
(
fK(gC(x))

)
wC(x)dν(x)

If we look at the part of the sum where C is not a regular word, we get by the Gibbs estimates:∣∣∣∣∣ ∑
C/∈RK+1

∫
Ub(A)

h
(
fK(gC(x))

)
wC(x)dν(x)

∣∣∣∣∣ ≲ ∑
B/∈RK

ν(UC) ≲ ν(U \RK)

which decays exponentially in n by Lemma 3.2. Then, we iterate our transfer operator again on
the main sum, to get the following term:∑

C∈RK+1

∑
A∈Wk+1

n+1

B∈Wk
n+1

C⇝A↔B

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))χ(fKgC′(A∗B)(x))wC′(A∗B)(x)dν(x).

Looking at the part of the sum where words are not regular again, we see by the Gibbs estimates
again that∣∣∣∣∣ ∑

C∈RK+1

∑
C⇝A↔B

A/∈Rk+1
n+1

or B/∈Rk
n+1

∫
Ub(A)

h
(
fK(gC′(A∗B)(x))

)
wC′(A∗B)(x)dν(x)

∣∣∣∣∣

≲
∑

C∈RK+1

∑
C⇝A↔B

A/∈Rk+1
n+1

or B/∈Rk
n+1

ν(UC)ν(UA∗B) ≲ ν(U \R2k+1
n ),

and the desired estimate follows from Lemma 3.2.

Lemma 4.4. Define χC(a0) := χ(fKgC(xa0
)). There exists some constant β > 0 such that, for n

large enough:

∣∣∣∣∣ ∑
C∈RK+1

∑
A∈Rk+1

n+1

B∈Rk
n+1

C⇝A↔B

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))wC′(A∗B)(x)χ(f

KgC′(A∗B)(x))dν(x)

∣∣∣∣∣
2

≲

∣∣∣∣∣ ∑
C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

χC(a0)

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x)))wC′(A∗B)(x)dν(x)

∣∣∣∣∣
2

+ eεβne−λαn.
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Proof. Our first move is to get rid of terms in the sum where χ(fKgCgA∗B) = 0. To this end,
notice that fKgC is an holonomy map that sends Ub(C) in Rb(C). It doesn’t really play a role for
this question. The only word that matter here is a0 : if it isn’t in Rn+1(ω), then by definition it
implies that ω ∩ Ua0 = ∅. It follows that ω̃ ∩Ra0 = ∅, and so χ(fKgCgA∗B) = 0.

Hence our main term is equal to the same sum, but where we have restricted A in Rn+1(ω).

Next, denote χC(a0) := χ(fKgC(xa0
)). The orders of magnitude of Lemma 3.1 and Remark 3.3

combined gives us∣∣χ(fKgCgA∗B(x))− χC(a0)
∣∣ ≤ Cϕ,χd

(
fKgCgA∗B(x), f

KgC(xa0)
)α

≤ Cϕ,χ∥∂u(fK)∥α∞,UC
∥g′C∥α∞,Ub(C)

diam(Ua0
)α ≲ eεβne−λαn.

Hence, by the Gibbs estimates∣∣∣∣∣ ∑
A,B,C

∫
Ub(A)

eiξϕ(f
KgC′(A∗B))χ(fKgC′(A∗B))wC′(A∗B)dν −

∑
A,B,C

χC(a0)

∫
Ub(A)

eiξϕ(f
KgC′(A∗B))wC′(A∗B)dν

∣∣∣∣∣
≲ eεβne−λαn

∑
A,B,C

ν(UC′(A∗B)) ≲ e
εβne−λαn.

Lemma 4.5. There exists some constant β > 0 such that, for n large enough:∣∣∣∣∣ ∑
C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

χC(a0)

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x)))wC′(A∗B)(x)dν(x)

∣∣∣∣∣
2

≲ e−(2k−1)λδne−λδK
∑

C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

∣∣∣∣∣
∫
Ub(A)

eiξϕ(f
K(gC′(A∗B)(x)))wak

(x)dν(x)

∣∣∣∣∣
2

+eεβnκαn.

Proof. Notice that wC′(A∗B)(x) and wak
(x) are related by

wC′(A∗B)(x) = wC′(A#B)(gak
(x))wak

(x).

Moreover:

wC′(A#B)(gak
(x))

wC′(A#B)(xak
)

= exp
(
SK+2nkφ(gC′(A#B)(gak

(x)))− SK+2knφ(gC′(A#B)(xak
))
)

with∣∣SK+2nkφ(gC′(A#B)(gak
(x))− SK+2knφ(gC′(A#B)(xak

))
∣∣ ≲ K+2nk−1∑

j=0

κα(K+n(2k+1)−j) ≲ καn

since φ is α-Hölder. Hence, there exists some constant C > 0 such that

e−Cκ
αn

wC′(A#B)(xak
) ≤ wC′(A#B)(gak

(x)) ≤ eCκ
αn

wC′(A#B)(xak
)

Which gives:∣∣wC′(A#B)(gak
(x))− wC′(A#B)(xak

)
∣∣ ≤ max

∣∣∣e±Cκαn

− 1
∣∣∣wC′(A#B)(xak

) ≲ καnwC′(A#B)(xak
).

Hence∣∣∣∣∣ ∑
C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

χC(a0)

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))

(
wC′(A∗B)(x)− wC′(A#B)(xak

)wak
(x)
)
dν(x)

∣∣∣∣∣
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≲ καn
∑

A,B,C

∫
Ub(A)

wC′(A#B)(xak
)wak

(x)dν(x) ≲ eεβnκαn.

by the Gibbs estimates. Moreover, by Cauchy-Schwartz and by the orders of magnitude of Lemma
3.1, ∣∣∣∣∣ ∑

C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

wC′(A#B)(xak
)χC(a0)

∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))wak

(x)dν(x)

∣∣∣∣∣
2

≲ eεβne−λδ(2k−1)ne−λδK
∑

C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

∣∣∣∣∣
∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))wak

(x)dν(x)

∣∣∣∣∣
2

,

where one could increase β if necessary.

Lemma 4.6. Define

∆A,B,C(x, y) := ϕ(fKgC′(A∗B)(x))− ϕ(fKgC′(A∗B)(y)).

There exists some constant β > 0 such that, for n large enough:

e−(2k−1)λδne−λδK
∑

C∈RK+1

∑
A∈Rk+1

n+1(ω)

B∈Rk
n+1

C⇝A↔B

∣∣∣∣∣
∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))wak

(x)dν(x)

∣∣∣∣∣
2

≲ eεβne−λδ(2k+1)ne−λδK
∑

C∈RK+1

A∈Rk+1
n+1(ω)

C⇝A

∫∫
U2

b(A)

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiξ|∆A,B,C|(x,y)

∣∣∣∣∣dν(x)dν(y).

Proof. We first open up the modulus squared:

∑
A↔B

A∈Rk+1
n+1(ω)

B∈Rk
n+1

∣∣∣∣∣
∫
Ub(A)

eiξϕ(f
KgC′(A∗B)(x))wak

(x)dν(x)

∣∣∣∣∣
2

=
∑
A↔B

A∈Rk+1
n+1(ω)

B∈Rk
n+1

∫∫
U2

b(A)

wak
(x)wak

(y)eiξ∆A,B,C(x,y)dν(x)dν(y).

Since this quantity is real, we get:

=
∑
A↔B

A∈Rk+1
n+1(ω)

B∈Rk
n+1

∫∫
U2

b(A)

wak
(x)wak

(y) cos(ξ∆A,B,C(x, y))dν(x)dν(y)

=
∑

A∈Rk+1
n+1(ω)

∫∫
U2

b(A)

wak
(x)wak

(y)
∑

B∈Rk
n+1

A↔B

cos (ξ|∆A,B,C|(x, y)) dν(x)dν(y),

and then we conclude using the triangle inequality and the estimates of section 3 as follow:
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≲ eεβne−2λδn
∑

A∈Rk+1
n+1(ω)

∫∫
U2

b(A)

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiξ|∆A,B,C|(x,y)

∣∣∣∣∣dν(x)dν(y).

Lemma 4.7. Define
ζj,A(b) := e2λn|g′a′

j−1b
(xaj

)|

and
Jn := {eε0n/2 ≤ |η| ≤ e2ε0n}.

There exists β > 0 such that, for n large enough depending on ε,

e−λδK
∑

C∈RK+1

e−λδ(2k+1)n
∑

A∈Rk+1
n+1(ω)

C⇝A

∫∫
U2

b(A)

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiξ|∆A,B,C|(x,y)

∣∣∣∣∣dν(x)dν(y)

≲ e−λδ(2k+1)n
∑

A∈Rk+1
n+1(ω)

sup
η∈Jn

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiηζ1,A(b1)...ζk,A(bk)

∣∣∣∣∣+eεβn (e−(αλ−ε0)n + e−ε0nδup/2
)
.

Proof. Our goal is to carefully approximate ∆A,B,C by a product of derivatives of ga′
j−1bj

, and
then to renormalize the phase. Using arc length parameterization, our 1-dimensional setting allows
us to apply the mean value theorem: for all x, y ∈ Ub(A), there exists z ∈ Ub(A) such that

|ϕ(fKgCgA∗B(x))− ϕ(fKgCgA∗B(y))| =

|∂uϕ(fKgC′(A∗B)z)||∂ufK(gC′(A∗B)z)||g′C(gA∗Bz)|

 k∏
j=1

|g′a′
j−1bj

(ga′
jb

′
j+1...a

′
k−1bk

z))|

 du(gak
x, gak

y).

The estimates of section 3 gives

|∆A,B,C(x, y)| ≤ Cϕ,χe
εβne−(2k+1)λn.

We then relate ∆A,B,C to the ζj,A. Set

∆̃A,B,C(x, y) := |∂uϕ(fKgC′(xa0
)||∂ufK(gC′(xa0

))||gC′(xa0
)|

 k∏
j=1

|g′a′
j−1bj

(xaj
))|

 du(gak
x, ga0

y).

Then, as before, ∣∣∣∆̃A,B,C(x, y)
∣∣∣ ≤ Cϕ,χe

εβne−(2k+1)λn.

Hence, using the fact that |es − et| ≤ emax(s,t)|s− t|, we get

∣∣∣∆A,B,C(x, y)− ∆̃A,B,C(x, y)
∣∣∣ ≤ Cϕ,χe

εβne−(2k+1)λn
∣∣∣ln |∆A,B,C|(x, y)− ln |∆̃A,B,C|(x, y)

∣∣∣ .
Moreover, using the estimates of section 3, and exponentially vanishing variations of Hölder maps,
we get:

•
∣∣ln |∂uϕ(fKgC(xa0

)| − ln |∂uϕ(fKgC(xa0
))|
∣∣ ≲ eεβne−αλn

•
∣∣ln |∂ufK(gC(A∗B)z)| − ln |∂ufK(gC′xa0)|

∣∣ ≲ eεβne−αλn
• |ln |g′C(gA∗Bz)| − ln |g′Cxa0 || ≲ eεβne−αλn

•
∣∣∣ln |g′a′

j−1bj
(ga′

jb
′
j+1...a

′
k−1bk

z))| − ln |g′a′
j−1bj

(xaj
)|
∣∣∣ ≲ eεβne−αλn
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So that summing every estimates gives us∣∣∣ln |∆A,B,C|(x, y)− ln |∆̃A,B,C|(x, y)
∣∣∣ ≲ eεβne−αλn.

Hence, ∣∣∣∆A,B,C(x, y)− ∆̃A,B,C(x, y)
∣∣∣ ≲ eεβne−(2k+1+α)λn,

which allows us to approximate our main integral as follows:

e−(2k+1)δλn−δλK

∣∣∣∣∣ ∑
C∈RK+1

A∈Rk+1
n+1(ω)

C⇝A

∫∫
U2

b(A)

∣∣∣ ∑
B∈Rk

n+1

A↔B

eiξ|∆A,B,C|
∣∣∣dν⊗dν− ∑

C∈RK+1

A∈Rk+1
n+1(ω)

C⇝A

∫∫
U2

b(A)

∣∣∣ ∑
B∈Rk

n+1

A↔B

eiξ|∆̃A,B,C|
∣∣∣dν⊗dν∣∣∣∣∣

≲ |ξ|e−(2k+1+α)λn ≲ e−(αλ−ε0)n,

since |ξ| ≃ e(2k+1)λneε0n.
To conclude, we notice that |ξ||∆̃A,B,C| can be written as a product like so:

|ξ||∆̃A,B,C|(x, y) = ηA,C(x, y)ζ1,A(b1) . . . ζk,A(bk)

where

ηA,C(x, y) := |ξ||∂uϕ(fKgC′(xa0
)||∂ufK(gC′(xa0

))||gC′(xa0
)|e−2kλndu(gak

x, ga0
y).

We estimate ηA,C using the hypothesis made on ∂uϕ, the estimates of section 3, and the mean
value theorem, to get

C−1
ϕ,χe

−εβneε0ndu(x, y) ≤ ηA,C(x, y) ≤ Cϕ,χe
εβneε0n ≤ e2ε0n.

Notice that for the lower inequality to hold, it was critical for a0 to be in Rn+1(ω), and not just
in Rn+1.

We then see that ηA,C(x, y) ∈ Jn as soon as du(x, y) ≥ Cϕ,χe
εβn−ε0n/2. To get rid of the part of

the integral where du(x, y) is too small, we use the upper regularity of ν, proved in Lemma 2.9.
For all y ∈ U , the ball B(y, Cϕ,χe

εβn−ε0n/2) have measure ≲ e−(ε0/2−βε)δupn, so that by integrating
over y,

ν ⊗ ν
(
{(x, y) ∈ U2 | |x− y| < Cϕ,χe

εβn−ε0n/2}
)
≲ e−(ε0/2−βε)δupn

as well. Hence we can cut the double integral in two, the part near the diagonal which is controlled
by the previous estimates, and the part far away from the diagonal where ηA,C(x, y) ∈ Jn.
Once this is done, the sum over C disappears, as there is no longer a dependence over C in the
phase.

5 The sum product phenomenon

5.1 A key theorem

Our second move is to use a powerful theorem of Bourgain to control the sum of exponential.
This version is the Proposition 3.2 of [BD17]. This theorem was generalized by J. Li in [Li18] and
constitute the cornerstone of the method.

Proposition 5.1. Fix γ > 0. There exist ε2 ∈ ]0, 1[ and k ∈ N∗ such that the following holds
for η ∈ R with |η| > 1. Let C0 > 1 and let λ1, . . . , λk be Borel measures supported on the
interval [C−1

0 , C0] with total mass less than C0. Assume that each λj satisfies the following non
concentration property:

∀σ ∈ [C0|η|−1, C−1
0 |η|−ε2 ], λj ⊗ λj

(
{(x, y) ∈ R2, |x− y| ≤ σ}

)
≤ C0σ

γ .

Then there exists a constant C1 depending only on C0 and γ such that∣∣∣∣∫ exp(iηz1 . . . zk)dλ1(z1) . . . dλk(zk)

∣∣∣∣ ≤ C1|η|−ε2
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Unfortunately, in our case the use of large deviations does not allow us to apply it straightforwardly.
To highlight the dependence of C1 when C0 is permitted to grow gently, we prove the following
proposition. The proof is the same than in the complex case done in [Le21], but we include it
for completeness. Notice that the complex case does not immediately imply the real case, as the
projective non concentration hypothesis is stronger than our non concentration hypothesis.

Proposition 5.2. Fix 0 < γ < 1. There exist ε1 > 0 and k ∈ N such that the following holds for
η ∈ R with |η| large enough. Let 1 < R < |η|ε1 and let λ1, . . . , λk be Borel measures supported on
the interval [R−1, R] with total mass less than R. Assume that each λj satisfies the following non
concentration property:

∀σ ∈ [|η|−2, |η|−ε1 ], λj ⊗ λj
(
{(x, y) ∈ R2, |x− y| ≤ σ}

)
≤ σγ .

Then there exists a constant c > 0 depending only on γ such that∣∣∣∣∫ exp(iηz1 . . . zk)dλ1(z1) . . . dλk(zk)

∣∣∣∣ ≤ c|η|−ε1

Proof. Fix 0 < γ < 1, and let ε2 and k given by the previous theorem. Choose ε1 := ε2
2(2k+1) . Let

1 < R < |η|ε1 , and let λ1, . . . , λk be measures that satisfy the hypothesis of Proposition 5.1. We
are going to use a dyadic decomposition.

Let m := ⌊log2(R)⌋ + 1. Then λj is supported in the interval [2−m, 2m]. Define, for A a borel
subset of R and for r = −m+ 1, . . . ,m:

λj,r(A) := R−1λj (2
r (A ∩ [1/2, 1[))

Those measures are all supported in [1/2, 1[, and have total mass λj,r(R) ≤ 1.

Moreover, a non concentration property is satisfied by each λj,r. If we fix some r1, . . . , rk between
−m+ 1 and m and define ηr1...rk := 2r1+...rkη, then |ηr1,...,rk | ≥ (2R)−k|η| > 2−k|η|1−kε1 > 1 if η
is large enough. Let σ ∈ [|ηr1,...,rk |−1, |ηr1,...,rk |−ε2 ]. Then

λj,r ⊗ λj,r
(
{(x, y) ∈ R2, |x− y| ≤ σ}

)
=

∫
R
λj,r([x− σ, x+ σ])dλj,r(x)

≤ R−2

∫
R
λj ([2

rx− 2rσ, 2rx+ 2rσ]) dλj(2
rx)

= R−2λj ⊗ λj
(
{(x, y) ∈ R2, |x− y| ≤ 2rσ}

)
Since 2rσ ∈

[
2r|ηr1,...,rk |−1, 2r|ηr1,...,rk |−ε2

]
⊂
[
(2R)−(k+1)|η|−1, (2R)k+1|η|−ε2

]
⊂
[
|η|−2, |η|ε1

]
if

|η| is large enough, we can use the non-concentration hypothesis assumed for each λj to get:

λj,r ⊗ λj,r
(
{(x, y) ∈ R2, |x− y| ≤ σ}

)
≤ R−2(2−rσ)γ ≤ σγ .

Hence, by the previous proposition, there exists a constant C1 depending only on γ such that∣∣∣∣∫ exp(iηr1...rkz1 . . . zk)dλ1,r1(z1) . . . dλk,rk(zk)

∣∣∣∣ ≤ C1|ηr1...rk |−ε2 .

Finally, since

λj(A) = R

m∑
r=−m+1

λj,r(2
−rA)

we get that: ∣∣∣∣∫ exp(iηz1 . . . zk)dλ1(z1) . . . dλk(zk)

∣∣∣∣
≤

∑
r1,...rk

Rk
∣∣∣∣∫ exp(iηz1 . . . zk)dλ1,r1(2

−r1z1) . . . dλk,rk(2
−rkzk)

∣∣∣∣
=

∑
r1,...rk

Rk
∣∣∣∣∫ exp(iηr1...rkz1 . . . zk)dλ1,r1(z1) . . . dλk,rk(zk)

∣∣∣∣
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≤ C1(2m)kRk|ηr1...rk |−ε2 ≤ 4kC1m
kR2k|η|−ε2

Since m ≤ log2(R)+ 1, and since k depends only on γ, there exists a constant c that depends only
on γ such that 4kC1m

kR2k ≤ cR2k+1 for any R > 1. Finally, cR2k+1|η|−ε2 ≤ |η|−ε1 .

Corollary 5.3. Fix 0 < γ < 1. There exist k ∈ N∗ and ε1 > 0 depending only on γ such that the
following holds for η ∈ R with |η| large enough. Let 1 < R < |η|ε1 , N > 1 and Z1, . . . ,Zk be finite
sets such that #Zj ≤ RN . Consider some maps ζj : Zj → R, j = 1, . . . , k, such that, for all j:

ζj(Zj) ⊂ [R−1, R]

and
∀σ ∈ [|η|−2, |η|−ε1 ], #{b, c ∈ Z2

j , |ζj(b)− ζj(c)| ≤ σ} ≤ N2σγ .

Then there exists a constant c > 0 depending only on γ such that∣∣∣∣∣∣N−k
∑

b1∈Z1,...,bk∈Zk

exp (iηζ1(b1) . . . ζk(bk))

∣∣∣∣∣∣ ≤ c|η|−ε1

Proof. Define our measures as sums of dirac mass:

λj :=
1

N

∑
b∈Zj

δζj(b).

We see that λj is supported in [R−1, R]. The total mass is bounded by

λj(R) ≤ N−1#Zj ≤ R.

Then, if σ ∈ [|η|−2, |η|−ε1 ], we have, for any a ∈ R:

λj ⊗ λj
(
{(x, y) ∈ R2, |x− y| < σ}

)
=

1

N2
#
{
b, c ∈ Z2

j , |ζj(b)− ζj(c)| ≤ σ
}
≤ σγ .

Hence, the previous theorem applies directly, and gives us the desired result.

5.2 End of the proof assuming non concentration

We will use Corollary 5.3 on the maps ζj,A. Let’s carefully define the framework.
For some fixed A ∈ Rk+1

n+1(ω), define for j = 1, . . . , k

Zj := {b ∈ Rn+1,aj−1 ⇝ b⇝ aj },

so that the maps ζj,A(b) := e2λn|g′a′
j−1b

(xaj )| are defined on Zj . There exists a constant β > 0

such that:
#Zj ≤ eεβneδλn

and
ζj,A(Zj) ⊂

[
e−εβn, eεβn

]
.

Let γ > 0 be small enough. The theorem 5.3 then fixes k and some ε1. The goal is to apply
Corollary 5.3 to the maps ζj,A, for N := eλδn, R := eεβn and η ∈ Jn. Notice that choosing ε small
enough ensures that R < |η|ε1 , and taking n large enough ensures that |η| is large. If we are able
to prove the non concentration hypothesis in this context, then Corollary 5.3 can be applied and
we would be able to conclude the proof of the main Theorem 1.2. Indeed, we already know that

|µ̂(ξ)|2 ≲ eεβne−λδ(2k+1)n
∑

A∈Rk+1
n+1(ω)

sup
η∈Jn

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiηζ1,A(b1)...ζk,A(bk)

∣∣∣∣∣
+e−ε0n + e−δ1(ε)n + eεβn

(
e−λαn + καn + e−(αλ−ε0)n + e−ε0δupn/2

)
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by Proposition 4.1. Since every error term already enjoys exponential decay in n, we just have to
deal with the sum of exponentials. By Corollary 5.3, we can then write

sup
η∈Jn

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiηζ1,A(b1)...ζk,A(bk)

∣∣∣∣∣ ≤ ceλkδne−ε0ε1n/2,

and hence we get

e−λδ(2k+1)n
∑

A∈Rk+1
n+1(ω)

sup
η∈Jn

∣∣∣∣∣ ∑
B∈Rk

n+1

A↔B

eiηζ1,A(b1)...ζk,A(bk)

∣∣∣∣∣
≲ eεβne−λδ(2k+1)neλδ(k+1)neλδkne−ε0ε1n/2 ≲ eεβne−ε0ε1n/2.

Now, we see that we can choose ε small enough so that all terms enjoy exponential decay in n, and
since |ξ| ≃ e((2k+1)λ+ε0)n, we have proved polynomial decay of |µ̂|2.

6 The non-concentration hypothesis

The last part of this paper is devoted to the proof of the non-concentration hypothesis that we
just used. The strategy is the same than in [SS20] and [Le21], but the theorem used to conclude
will be more recent.

Definition 6.1. For a given A ∈ Rk+1
n+1(ω), define for j = 1, . . . , k

Zj := {b ∈ Rn+1, aj−1 ⇝ b⇝ aj }

Then define
ζj,A(b) := e2λn|g′a′

j−1b
(xaj )|

on Zj . The following is satisfied, for some fixed constant β > 0:

#Zj ≤ eεβneδλn

and
ζj,A(Zj) ⊂

[
e−εβn, eεβn

]
.

We are going to prove the following fact, which will allow us to apply Corollary for η ∈ Jn,
R := eεβn and N := eλδn:

Proposition 6.1 (non concentration). There exists γ > 0, and we can choose ε0 > 0, such that the
following holds. Let η ∈ Jn. Let A ∈ Rk+1

n+1. Then, if n is large enough,

∀σ ∈ [|η|−2, |η|−ε1 ], sup
a∈R

#
{
(b, c) ∈ Z2

j , |ζj,A(b)− ζj,A(c)| ≤ σ
}
≤ N2σγ .

where R := eεβn, N := eλδn and ε1, k are fixed by Corollary 5.3.

The proof of Proposition 6.1 is based on a uniform spectral gap for a family of twisted transfer
operators, as in [SS20], also known as Dolgopyat’s estimates. Before introducing it, let us first
reduce our non-concentration estimate to a statement about Birkhoff sums.

Lemma 6.2. If ε0 and γ are such that, for σ ∈ [e−5ε0n, e−ε1ε0n/4],

sup
a∈R

#
{
b ∈ Zj , S2nτF

(
ga′

j−1b
(xaj )

)
∈ [a− σ, a+ σ]

}
≤ Nσ2γ ,

Then Proposition 6.1 is true.

26



Proof. Suppose that the estimate is true. Let |η| ∈ [eε0n/2, e2ε0n], and then let σ ∈ [|η|−2, |η|−ε1 ] ⊂
[e−4ε0n, e−ε0ε1n/2]. Let a ∈ [R−1, R] (it is enough to conclude). Since for n large enough

ln(a+ σ)− ln(a− σ) = ln(1 + σa−1)− ln(1− σa−1) ≤ 4σa−1 ≤ 4σR,

We find that
ln ([a− σ, a+ σ]) ⊂ [ln a− 4Rσ, ln a+ 4Rσ].

Hence:

#{b ∈ Zj , ζj,A(b) ∈ [a− σ, a+ σ]} ≤ #{b ∈ Zj , ln ζj,A(b) ∈ [ln a− 4Rσ, ln a+ 4Rσ]}

= #{b ∈ Zj , S2nτF

(
ga′

j−1b
(xaj

)
)
∈ [− ln a+ 2nλ− 4σR,− ln a+ 2nλ+ 4σR]}

≤ N(4Rσ)2γ ≤ Nσγ

since 4Rσ ∈ [e−5ε0n, e−ε1ε0n/4] for large enough n. Finally,

#
{
(b, c) ∈ Z2

j , |ζj,A(b)− ζj,A(c)| ≤ σ
}

=
∑
c∈Zj

{b ∈ Zj , ζj,A(b) ∈ [ζj,A(c)− σ, ζj,A(c) + σ]} ≤ N2σγ ,

and so proposition 6.1 is true.

To prove that the estimate of Lemma 6.2 is satisfied, we use the following spectral gap for twisted
transfer operators, established in [SS20] (Th. 5.1) for full branched expanding maps. A similar
statement can be found in [DV21] (Th. 6.4) in a more general setting. This kind of theorem is not
new and comes from the early work of Dolgopyat [Do98]. This recent version is more adapted in
our context, as it deals explicitly with one dimensional shifts that satisfies a nonlinearity condition
that is easily seen to be true in our context.

Unfortunately, the use of Dolgopyat’s estimates can only be checked if the function τF is smooth
enough (Hölder regular is not enough). This is were we need our additional bunching assumption
(B) to conclude: if our attractor contract strongly enough in the stable direction, then the stable
lamination W s

ε (x) becomes C2+α. In particular, the map π is C2+α in the unstable direction, and
so F is C2+α too. In this case, τF is C1+α, which is enough to use Dolgopyat’s estimates.

Theorem 6.3. Define, for s ∈ C, a twisted transfer operator Ls : Cα(U ,C) → Cα(U ,C) as follows:

∀x ∈ Ub, Lsh(x) :=
∑
a→b

e(φ+sτF )(gab(x))h(gab(x))

Iterating this transfer operator yields:

∀x ∈ Ub, Lnsh(x) =
∑

a∈Wn+1

a⇝b

wa(x)e
sSnτF (ga(x))h(ga(x)).

Under our nonlinearity condition (NL) and the bunching condition (B), the following holds. There
exists ρ ∈ N such that, for any s ∈ C such that Re(s) = 0 and |Im(s)| > ρ,

∀h ∈ Cα(U ,C), ∀n ≥ 0, ∥Lnsh∥∞,U ≤ ρ|Im(s)|ρe−n/ρ∥h∥Cα(U,C).

It means that this twisted transfer operator is eventually contracting for large Im(s). This theorem
will play another key role in this paper.

Remark 6.1. This theorem is stated in [DV21] under a ”total non linearity hypothesis”made on τF .
The condition goes as follow: there exists no locally constant map c : U (1) → R and θ ∈ C1(U (1),R)
such that

τF = c− θ ◦ F + θ.

This condition is satisfied in our setting. Indeed, suppose that some locally constant c : U (1) → R
satisfy τF = c+ θ ◦ F − θ for some C1 map θ. Then, recall that τF ◦ π and τf are f -cohomologous
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(Lemma 2.13). Hence, if x ∈ Ωper is a f -periodic point with period nx, the unstable Lyapunov
exponent of the associated periodic orbit is

λ̂(x) =
1

nx
Snx

τF (π(x)) ∈ SpanQ (c(U)) ,

which implies that
dimQVectQλ̂ (Ωper) ≤ dimQSpanQ (c(U)) ,

and this is an obvious contradiction to the nonlinearity hypothesis (NL).

Lemma 6.4. Define ε0 := min (1/(5ρ(3 + ρ)), αλ/8). Fix γ := 1/4, and let ε1 and k be fixed by
Theorem 5.3. For σ ∈ [e−5ε0n, e−ε1ε0n/4] and if n is large enough,

sup
a∈R

#
{
b ∈ Zj , S2nτF

(
ga′

j−1b
(xaj )

)
∈ [a− σ, a+ σ]

}
≤ Nσ1/2.

Proof. In the proof to come, all the ≃ or ≲ will be uniform in a: the only relevant information is
σ. So fix σ ∈ [e−5ε0n, e−ε1ε0n/4], and fix an interval of length σ, [a−σ, a+σ]. Then choose a bump
function χ such that χ = 1 on [a−σ, a+σ], supp(χ) ⊂ [a−2σ, a+2σ] and such that ∥χ∥L1(R) ≃ σ.

We can suppose that ∥χ(l)∥L1(R) ≃ σ1−l.

Then, we can consider h, the 2πZ periodic map obtained by periodizing χ. This will allows us to
use Fourier series. By construction, we see that 1[a−σ,a+σ] ≤ h. Hence:

#
{
b ∈ Zj , S2nτF (ga′

j−1b
(xaj )) ∈ [a− σ, a+ σ]

}
≤
∑
b∈Zj

h
(
S2nτF (ga′

j−1b
(xaj ))

)
≤ RN

∑
b∈Zj

wb(xaj )h
(
S2nτF (ga′

j−1b
(xaj ))

)
≤ RN

∑
b∈Wn+1

aj−1⇝b⇝aj

wb(xaj )h
(
S2nτF (ga′

j−1b
(xaj ))

)
.

Then we develop h using Fourier series. We have:

∀x ∈ R, h(x) =
∑
n∈Z

cn(h)e
inx,

where

cn(h) := (2π)−1

∫ a+π

a−π
h(x)e−inxdx.

Notice that
nl|cn(h)| ≃ |cn(h(l))| ≲ σ1−l.

Plugging S2nτF (ga′
j−1b

(xaj
)) in this expression yields

h
(
S2nτF (ga′

j−1b
(xaj

))
)
=
∑
n∈Z

cn(h)e
inS2nτF (ga′

j−1
b(xaj

))
,

and so
#
{
b ∈ Zj , S2nτF (ga′

j−1b
(xaj )) ∈ [a− σ, a+ σ]

}
≤ RN

∑
n∈Z

cn(h)
∑

b∈Wn+1

aj−1⇝b⇝aj

wb(xaj )e
inS2nτF (ga′

j−1
b(xaj

))
.

For any block A ∈ Wn+1, integer j ∈ {1, . . . , k} and integer n ∈ Z, define hnA,j ∈ Cα(U ,R) by

∀x ∈ Ub(a), h
n
A,j(x) := exp

(
inSnτF (gaj−1

(x))
)

, ∀x ∈ Ub, b ̸= b(a), hnA,j(x) := 0.
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With this notation, we may rewrite the sum on b as follows:∑
b∈Wn+1

aj−1⇝b⇝aj

wb(xaj
) exp

(
inS2nτF (ga′

j−1b
(xaj

))
)

=
∑

b∈Wn+1

aj−1⇝b⇝aj

wb(xaj
)einSnτF (gb(xaj

)) exp
(
inSnτF (gaj−1

gb(xaj
))
)

=
∑

b∈Wn+1

b⇝aj

wb(xaj )e
inSnτF (gb(xaj

))hnA,j
(
gb(xaj )

)

= Lnin
(
hnA,j

)
(xaj

).

A direct computation allows us to estimate the Cα norm of hnA,j . We get, uniformly in n:

∥hnA,j∥Cα(U,R) ≲ (1 + n).

We can now break the estimate into two pieces: high frequencies are controlled by the contraction
property of this transfer operator, and the low frequencies are controlled by the Gibbs property of
µ. We also use the estimates on the Fourier coefficients on h.

#
{
b ∈ Zj , S2nτF (ga′

j−1b
(xaj

)) ∈ [a− σ, a+ σ]
}

≤ RN
∑
n∈Z

cn(h)
∑

b∈Wn+1

aj−1⇝b⇝aj

wb(xaj
)e
inS2nτF (ga′

j−1
b(xaj

))

≤ RN

∑
|n|≤ρ

|cn(h)|
∑

b∈Wn+1

wb(xaj ) +
∑
|n|>ρ

|cn(h)||Lnin(hA,j)(xaj )|


≲ RN

σ ∑
b∈Wn+1

µ(Pb) +
∑
|n|>ρ

|cn(h)|∥Lnin(hA,j)∥∞,U


≲ RNσ +RN

∑
|n|>ρ

|cn(h)|nρe−n/ρ∥hnA,j∥Cα(U,C)

≲ RNσ +RNe−n/ρ
∑
|n|>ρ

|cn(h)||n|ρ+3|n|−2

≤ CRN(σ + e−n/ρσ−(ρ+2)),

for some constant C > 0. We are nearly done. Since σ ∈ [e−5ε0n, e−ε1ε0n/4], we know that
σ−(ρ+2) ≤ e5(ρ+2)ε0n. Now is the time where we fix ε0: choose

ε0 := min

(
1

5ρ(3 + ρ)
,
αλ

8

)
.

Then e−n/ρσ−(ρ+2) ≤ e(−1/ρ+5(ρ+2)ε0)n ≤ e−5ε0n ≤ σ for n large enough. Hence, we get

#
{
b ∈ Zj , S2nτF (ga′

j−1b
(xaj )) ∈ [a− σ, a+ σ]

}
≤ 2CRNσ.

Finally, since σ1/2 is quickly decaying compared to R, we have

2CRNσ ≤ Nσ1/2

provided n is large enough. The proof is done.
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Appendix A The nonlinearity condition is generic

Theorem A.1. The condition dimQVectQλ̂ (Ωper) = ∞ is generic in the following sense: for any
given Axiom A diffeomorphism f :M →M and a fixed basic set Ω that is not an isolated periodic
orbit, a generic C1 perturbation f̃ of f have an hyperbolic set Ω̃ on which the dynamic is conjugated

with (f,Ω), and dimQSpanQλ̂
(
Ω̃per

)
= ∞.

Proof. Let f :M −→M be a C2 Axiom A diffeomorphism, and fix Ω a basic set for f that is not
an isolated periodic orbit. Recall that this implies that Ω is infinite (and even perfect). Since f is
Axiom A, Ωper is then infinite. Let U ⊃ Ω be a small open neighborhood in M . Consider a small
enough open neighborhood around f in the space of C1 maps, U ⊂ C1(M,M). Then, there exists
a map

Φ : U → 2M × C0(Ω,M)

such that for any f̃ ∈ U, Φ(f̃) = (Ω̃, h) satisfies the following properties:

• Ω̃ ⊂ U is a hyperbolic set for f̃ :M →M ,

• Ω̃per is dense in Ω̃,

• h : Ω → Ω̃ is an homeomorphism and conjugates (Ω, f) with (Ω̃, f̃).

• The map f̃ ∈ U 7→ h ∈ C0(Ω,M) is continuous.

This is Theorem 5.5.3 in [BS02]. See also [KH95], page 571: “stability of hyperbolic sets”.
So let f̃ ∈ U. Since h conjugates (f,Ω) with (f̃ , Ω̃), it is also a bijection between Ωper and Ω̃per.

For x ∈ Ωper, we write x̃ ∈ Ω̃ for h(x).

We are ready to prove cleanly that the condition

dimQ VectQλ̂
(
Ω̃per

)
= ∞

is generic in f̃ ∈ U. The condition may be rewritten in the following way:

{
f̃ ∈ U | ∀N ≥ 1,∃x̃1, . . . , x̃N ∈ Ω̃per ,

(
λ̂(x̃1), . . . , λ̂(x̃N )

)
is linearly independant over Q

}
.

ie ⋂
N≥1

⋃
ΩN

per

{
f̃ ∈ U |

(
λ̂(x̃1), . . . , λ̂(x̃N )

)
is Q − independant

}
Fix once and for all a sequence of distinct periodic orbits (yN )N≥1 ∈ Ωper. Then:

{
f ∈ U | dimQ VectQλ̂

(
Ω̃per

)
= ∞

}
⊃
⋂
N≥1

{
f̃ ∈ U |

(
λ̂(ỹ1), . . . , λ̂(ỹN )

)
is Q − independant

}

=
⋂
N≥1

⋂
(m1,...,mN )∈ZN\{0}

{
f̃ ∈ U |

N∑
i=1

miλ̂(ỹi) ̸= 0

}
And this is a countable intersection of dense open sets. Indeed, fix some N ≥ 1 and some integers

(m1, . . . ,mN ) ∈ ZN \ {0}, and denote Um1,...,mN
:=
{
f̃ ∈ U |

∑N
i=1miλ̂(ỹi) ̸= 0

}
. Without loss of

generality, we may suppose that m1 ̸= 0.

First of all, Um1,...,mN
is open. This is because the function

U −→ RN

f̃ 7−→ (λ̂(ỹ1), . . . , λ̂(ỹN ))

is continuous. Indeed, recall that

λ̂(ỹi) =
1

ni

ni∑
k=0

log |∂uf̃(f̃k(ỹi))|,
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where ni is the period of yi ∈ Ωper so is constant in f̃ . Moreover, f̃ varies smoothly in C1 norm,

ỹi varies continuously, and finally the unstable direction of f̃ also varies continuously in f̃ , see
Corollary 2.9 in [CP15].

Now, we check that Um1,...,mN
is dense in U. Without loss of generality, it suffices to prove that

f ∈ Um1,...,mN
. If f ∈ Um1,...,mN

then we have nothing to prove. So suppose f /∈ Um1,...,mN
. We

are going to construct a perturbation f̃ in Um1,...,mN
.

Notice that the set
Λ :=

{
fk(yi) | k ∈ Z, i ∈ J1, NK

}
⊂ Ωper

is discrete and finite. So there exists a small open neighborhood U of y1 such that U ∩ Λ = {y1}.
Then, choose φ :M →M a diffeomorphism ofM that is a small perturbation of the identity onM
such that φ = Id on M \ U , φ(y1) = y1, (dφ)y1(E

u(y1)) = Eu(y1) and such that ∂uφ(y1) = 1 + ε
for some small ε > 0.

Define f̃ := f ◦ φ. Then f̃ is a small perturbation of f . Moreover, the yi are periodic orbits
for f̃ . Since h sends periodic orbits to periodic orbits of the same period, and since h is a small
perturbation of the identity, it follows necessarily that ỹi = h(yi) = yi. Hence, the Lyapunov
exponents of interests are:

λ̂(ỹ1) =
1

n1
log(|∂uf(y1)(1 + ε)|) + 1

n1

n1−1∑
k=1

log |∂uf̃(fk(y1))| =
1

n1
log(1 + ε) + λ̂(y1).

λ̂(ỹi) = λ̂(yi),∀i ∈ J2, NK.

Hence
n∑
i=1

miλ̂(ỹi) =
1

n1
log(1 + ε) +

N∑
i=1

miλ̂(yi) =
m1

n1
log(1 + ε) ̸= 0,

since f is supposed to be U \ Un1,...,nN
and m1 ̸= 0. The proof is done.

Appendix B An explicit solenoid satisfying Theorem 1.2

B.1 A nonlinear perturbation of the doubling map

Our goal is to construct a nonlinear perturbation of the doubling map on the circle on which we will
be able to compute some periodic orbits and Lyapunov exponents. We want them to be linearly
independant over Q.

Lemma B.1. Let Λ := { 1
2K−1

| K ≥ 2} and

Λ̃ :=
⊔
K≥2

[
1

2K − 1
− 1

8K
,

1

2K − 1
+

1

8K

]
Let N ≥ 2 and k ∈ J1, N − 1K. Then

2k

2N − 1
/∈ Λ̃.

Proof. First of all, the union is indeed disjoint. Indeed, for K ≥ 2, we see that

1

2K+1 − 1
+

1

8K+1
<

1

2K − 1
− 1

8K

Since
1

2K − 1
− 1

2K+1 − 1
>

1

2K
− 1

3
22
K

=
1

3

1

2K
>

9

8

1

8K
.

Now, fix N ≥ 2. We first do the case where k = N − 1. In this case,

2k

2N − 1
=

1

2

1

1− 2−N
> 1/2,
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which proves that 2k

2N−1
/∈ Λ̃ since Λ̃ ⊂ [0, 0.4].

We still have to do the case where k ∈ J1, N − 2K, and N ≥ 3. First of all, we check that

2k

2N − 1
<

1

2N−k − 1
− 1

8N−k .

Indeed:
1

2N−k − 1
− 2k

2N − 1
=

1

2N−k − 1
− 1

2N−k − 2−k

≥ 1

2N−k − 1
− 1

2N−k − 2−1

=
1

2(2N−k − 1)(2N−k − 2−1)

>
1

2 · 4N−k >
1

8N−k .

Second, we check that
1

2N−k+1 − 1
+

1

8N−k+1
<

2k

2N − 1
.

Indeed,
2k

2N − 1
− 1

2N−k+1 − 1
=

1

2N−k − 2−k
− 1

2N−k+1 − 1

>
1

2N−k − 1
3
2 · 2N−k

=
1

3

1

2N−k >
1

8N−k+1

And this conclude the proof.

Lemma B.2. Fix (αN )N≥2 a family of real numbers so that
∑
K≥2 |αK |8Kr < ∞ for any r ≥ 1.

There exists a C∞ function g : R → R such that:

• supp g ⊂ Λ̃,

• ∥g∥C1 < 1.

• ∀N ≥ 2, ∀k ∈ J1, N − 1K, g
(

2k

2N−1

)
= 0

• ∀N ≥ 2, g′
(

1
2N−1

)
= αN .

Proof. Let θ : R → [0, 1] be a smooth bump function such that supp(θ) ⊂ [−1/2, 1/2] and such
that θ = 1 on [−1/4, 1/4]. Let χ(x) := xθ(x).

The map χ is supported in [−1/2, 1/2] and satisfy χ(0) = 0, χ′(0) = 1. Define, for N ≥ 2,

χN (x) := χ

(
8N
(
x− 1

2N − 1

))
.

Then χN is supported in
[

1
2N−1

− 1
8N

, 1
2N−1

+ 1
8N

]
, and so the function

g(x) :=
∑
K≥2

αK8−KχK(x)

is well defined and supported in Λ̃. Since, for all r ≥ 1,
∑
K≥2 |αK |8Kr < ∞, g is a C∞ function,

with derivatives

g(r)(x) =
∑
K≥2

αK8(r−1)Kχ(r)

(
8N
(
x− 1

2N − 1

))
.
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In particular,

∥g∥Cr ≤
∑
K≥2

|αK |8(r−1)K

And so we see that replacing the sequence (αK)K≥2 by (αK+K0)K≥2 allows us to choose ∥g∥Cr as
small as we want if so desired. The fact that g vanishes on Λ and the computation of its derivative
on this set follows from the previous formulae.

Lemma B.3. The map f(x) := 2x+ g(x) can be seen as a smooth map S1 −→ S1.

Proof. We will identify [0, 1]/{0 ∼ 1} to the circle. The only thing to check is if g stays smooth
after the quotient. It stays smooth indeed, since g(r)(0) = g(r)(1) = 0 for all r ≥ 0.

Lemma B.4. For g small enough, (f,S1) is a nonlinear perturbation of the usual doubling map. A
familly of periodic points for this dynamical system is the set Λ, seen as a subset of the circle. The
associated lyapunov exponents are ln(2) + 1

N ln (1 + αN/2).

Proof. Let N ≥ 2 and let xN := 1
2N−1

. We check that xN is periodic with period N . Indeed, for

all k ∈ J1, N − 1K, we see that fk(xN ) = 2kxN by construction of g, and then

fN (xN ) =
2N

2N − 1
=

1

2N − 1
mod 1.

Hence xN is f -periodic with period N . Its lyapunov exponent is then

λ̂(xN ) :=
1

N

N−1∑
k=0

ln |f ′(fk(xN ))| = 1

N

N−1∑
k=0

ln |2 + g′(2kxN ))| = ln(2) +
1

N
ln (1 + αN/2) .

Lemma B.5. We can choose the sequence (αN ) so that the Lyapunov exponents λ̂(xN ) is a family
a real numbers that are linearly independent over Q.

Proof. By the Lindemann–Weierstrass theorem [Ba90], we just have to choose the αN so that

λ̂(xN ) = eβN

where βN are distinct algebraic numbers (while still ensuring that the sums of Lemma B.2 con-
verges).
In other words, it suffice to choose αN of the form

αN = 2
(
2−NeN exp(βN ) − 1

)
with βN distinct algebraic numbers converging to ln ln 2 quickly enough. For example, we can fix:

βN :=
⌊
10N

2

ln ln 2
⌋
10−N

2

And in this case αN = O(N · 10−N2

), which is quick enough.

We have constructed a chaotic and nonlinear dynamical system on the circle with some prescribed
Lyapunov exponent. With our choice of αN , we have

λ̂(xN ) = e

⌊
10N

2
ln ln 2

⌋
10−N2

.

In particular,

dimQVectQ

{
λ̂(x) | x is periodic

}
= ∞

which was what we wanted to construct.
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B.2 A nonlinear solenoid

In this section we construct an explicit nonlinear perturbation of the usual solenoid. Denote by
T := R/Z × D the full torus. Define F : T → T by the formula

F (θ, x, y) :=

(
f(θ),

1

4
x+

1

4π
cos(2πθ),

1

4
y +

1

4π
sin(2πθ)

)
where f(θ) = 2θ + g(θ) is the function defined previously. Notice that F is a diffeomorphism onto
its image. In particular, we can use it to glue T with itself along its boundary, which allows us to
see F as a diffeomorphism of a genuine closed 3-manifold ([Bo78], chapter 1) which countains T.

Then, F (T) ⊂
◦
T, and so Tn(T) is a strictly decreasing sequence of compact sets. The intersection

S :=
⋂
n≥0 F

n(T) is called a (nonlinear) solenoid. The set S is an attractor for F . Since F is a
smooth perturbation of the usual solenoid, which is a structurally stable Axiom A diffeomorphism
(this follows for example from Theorem 1 in [IPR10]), our dynamical system is still Axiom A.
Moreover, it has codimension 1 stable lamination, as it contract in the (x, y) variables.

Indeed, at a given point p = (θ, x, y) ∈ S, we see that the Jacobian of F is

JacF (p) =

 2 + g′(θ) 0 0
− 1

2 sin(2πθ) 1/4 0
1
2 cos(2πθ) 0 1/4


In particular, the subspace Es(p) := {(0, h, k) | h, k ∈ R} ⊂ TpT = R3 is independant of p, and
we check that (dF )p(E

s(p)) ⊂ Es(F (p)) is a contracting linear map. So we have found the stable
direction.

This allows us to compute the derivative in the unstable direction at p. Indeed, since

(dF )p : E
s(p)⊕ Eu(p) → Es(F (p))⊕ Eu(F (p))

also sends Eu(p) into Eu(F (p)), we can compute the determinant of the jacobian by making the
unstable derivative appear like so:

det(dF )p = ∂uF (p)× det((dF ) |Es)

And we already know that
det((dF ) |Es) = det(I/4) = 1/16

and that
det(dF )p = (2 + g′(θ))/16.

Hence:
∂uF (p) = f ′(θ).

Notice that the bunching condition (B) is satisfied.

Finally, we are going to construct some periodic orbits for F and compute their unstable Lyapunov
exponents. If p ∈ S is a periodic point for F , then it is clear that its angular coordinate is periodic
for f . Reciprocally, let θ0 be a periodic point for f : there exists a integer n0 such that fn0(θ0) = θ0.
Then, the map Fn0 satisfy

Fn0({θ0} × D) ⊂ {θ0} × D.

and is contracting on this disk. Hence, there exists a unique associated fixed point p0 ∈ {θ0} × D.

This allows us to exhibit some periodic orbits and compute the associated Lyapunov exponents.
Let N ≥ 2 and consider θN := 1

2N−1
the periodic point for f constructed in the last subsection.

Let pN be the unique associated fixed point, noted

pN = (θN , xN , yN ) ∈ S.

Then we have proved that its associated unstable Lyapunov exponent is
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λ̂(pN ) = λ̂(θN ) = eβN .

In particular, we have
dimQ VectQλ̂ (Sper) = ∞

where Sper := {p ∈ S | p is F periodic.}. Hence, Theorem 1.2 applies. For example, the SRB
measure and the measure of maximal entropy enjoys polynomial Fourier decay in the unstable
direction. Indeed, let χ be a Hölder map with localized support at a point p0 on the solenoid. Let
µ be an equilibrium state. Then, the Fourier transform of χdµ write, for ξ ∈ R3:

χ̂dµ(ξ) =

∫
S

e−2iπx·ξχ(x)dµ(x) =

∫
S

e−itϕvχdµ

where v := ξ/|ξ|, t = 2π|ξ| and ϕv(x) := x · v. Fix a direction v such that v is not orthogonal to
Eu(p0). Then, if χ has small enough support, |∂uϕv| > 0 around the support of χ. It follows from

Theorem 1.2 that χ̂dµ(tv) −→
t→∞

0 at a polynomial rate. By Remark 4.1, the convergence to zero is

even uniform on any cone in the unstable direction.
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