Proposition (Exercice 2). Si X est compact, alors toute partie fermée de X est compacte.

Preuve. Soit (X, d) un espace métrique compact. On considère A une partie fermée de X.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de A. Puisque $A\subseteq X$, alors par compacité de X, $(x_n)_{n\in\mathbb{N}}$ admet une valeur d'adhérence qu'on note $x\in X$.

Dès lors, on peut extraire une suite de $(x_n)_{n\in\mathbb{N}}$ qu'on note $(x_{\phi(n)})_{n\in\mathbb{N}}$ qui converge vers x. Or, A est fermé donc $x\in A$ (caractérisation séquentielle des fermés).

Finalement, $(x_{\phi(n)})_{n\in\mathbb{N}}$ admet une valeur d'adhérence dans A. On en déduit que A est compact.