

THE RELATIVE DE RHAM THEOREM

FRANÇOIS GATINE

1. INTRODUCTION

Let $\pi : X \rightarrow Y$ be a proper submersion of real smooth manifolds. We denote by \mathcal{C}_X and \mathcal{C}_Y the sheaves of real-valued smooth functions on the respective spaces, as well as Ω_X^k and Ω_Y^k the sheaves of real-valued k -differential forms. We also consider $\Omega_{X/Y}^k := \Omega_X^k / (\pi^* \Omega_Y^1 \wedge \Omega_X^{k-1})$ the sheaf of relative differential forms. The goal of this note is to establish canonical isomorphism of \mathcal{C}_Y -modules:

$$R\pi_*(\Omega_{X/Y}^\bullet) \simeq R\pi_* \underline{\mathbb{R}}_X \otimes_{\underline{\mathbb{R}}_Y} \mathcal{C}_Y.$$

which was stated in [Voi03]. Taking k -th cohomology and looking at the fiber above $y \in Y$ yields the de Rham theorem for X_y :

$$H_{\text{dR}}^k(X_y) \simeq H_{\text{sing}}^k(X_y, \mathbb{R}).$$

To see that the fiber on the left-hand side is indeed the de Rham cohomology of X_y , simply apply the proper base-change theorem to the pullback diagram

$$\begin{array}{ccc} X_y & \longrightarrow & X \\ \downarrow & & \downarrow \pi \\ y & \longrightarrow & Y \end{array}$$

The argument below was found by Matteo Verni and Tangi Pasquer. I would like to thank them for sharing their proof.

2. PROOF

We show that both sides are canonically isomorphic to $R^k \pi_*(\pi^{-1} \mathcal{C}_Y)$.

2.1. We claim that the sheaf complex $\Omega_{X/Y}^\bullet$ is an acyclic resolution of $\pi^{-1} \mathcal{C}_Y$, which implies the equality

$$R\pi_*(\pi^{-1} \mathcal{C}_Y) = R\pi_*(\Omega_{X/Y}^\bullet).$$

First, notice that each sheaf $\Omega_{X/Y}^k$ is a \mathcal{C}_X -module, which makes it acyclic for π_* . The fact that they define a resolution follows from the Poincaré lemma¹. Now it suffices to see that the kernel of $\mathcal{C}_X \xrightarrow{d_{X/Y}} \Omega_{X/Y}^1$ is $\pi^{-1} \mathcal{C}_Y$. For this, we may work locally on X and assume $Y = \mathbb{R}^m$, $X = \mathbb{R}^n \times Y$. If $f \in \mathcal{C}_X$ is in the kernel then all of its partial derivatives along the horizontal components vanish: f is constant in the \mathbb{R}^n -component of its input, hence comes from a function on Y , as desired.

2.2. It remains to show the isomorphism $R\pi_*(\pi^{-1} \mathcal{C}_Y) = R\pi_* \underline{\mathbb{R}}_X \otimes_{\underline{\mathbb{R}}_Y} \mathcal{C}_Y$. The proof is a formal argument in derived functors formalism. Notice that we can write

$$\pi^{-1} \mathcal{C}_Y = \pi^{-1} \mathcal{C}_Y \otimes_{\underline{\mathbb{R}}_X} \underline{\mathbb{R}}_X = \pi^{-1} \mathcal{C}_Y \otimes_{\underline{\mathbb{R}}_X}^L \underline{\mathbb{R}}_X$$

where \otimes^L denotes the derived tensor product. Note that we have done essentially nothing profound yet, as the functor $- \otimes_{\underline{\mathbb{R}}_X} \underline{\mathbb{R}}_X$ is quite clearly the identity (hence so is $- \otimes_{\underline{\mathbb{R}}_X}^L \underline{\mathbb{R}}_X$). Now we may apply the derived projection formula, which, in the context of proper maps² yields

$$R\pi_*(\pi^{-1} \mathcal{C}_Y) = R\pi_*(\pi^{-1} \mathcal{C}_Y \otimes_{\underline{\mathbb{R}}_X}^L \underline{\mathbb{R}}_X) = \mathcal{C}_Y \otimes_{\underline{\mathbb{R}}_Y}^L R\pi_* \underline{\mathbb{R}}_X.$$

Date: February 4, 2026.

¹The Poincaré lemma holds in the relative setting: note that we can work locally, and thus assume $Y = \mathbb{R}^m$, $X = \mathbb{R}^n \times Y$. The sheaves of differential forms split nicely, and we are (almost) reduced to the standard Poincaré lemma.

²This means that the $\pi_!$ and $\pi^!$ in the six-functor formalism reduce to the standard π_* and π^{-1} .

Notice now that the functor $\mathcal{C}_Y \otimes_{\mathbb{R}_Y} -$ is exact³, so the derived tensor product is a regular tensor product. This establishes the isomorphism and concludes the proof.

REFERENCES

[Voi03] C. VOISIN – *Hodge theory and complex algebraic geometry ii*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2003.

Email address: `francois.gatine@imj-prg.fr`

³Easily seen by looking at the stalks where we are tensoring real vector spaces.