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1. Introduction

Fix p > 0 a prime number, k the fraction �eld of a DVR Ok of mixed characteristic (0, p). In
this note we use the canonical integral model of certain orthogonal Shimura varieties developped by
Madapusi Pera in [4] and [3], as well as a local-to-global result on the extension of ℓ-adic local systems
to integral models by Cadoret-Tamagawa in [2], to show the following

Theorem 1.1. Let X/Ok be a smooth geometrically connected scheme with generic �ber X/k. If
Y → X is a K3 family with primitive polarization and a certain level structure, such that each closed
�ber has good reduction, then the family extends to a K3 family Y → X .

See Theorem 4.1 for the precise statement.

1.1. Notations. For any scheme X we denote its set of closed points by |X|. For any x ∈ |X| we
denote by k(x) the residue �eld of X at x, and Ox the valuation ring of k(x). We let Sx = SpecOx.
A k-variety denotes a reduced separated scheme of �nite type over k.

2. Shimura varieties and moduli spaces of K3 families

2.1. Recollections on K3 families.

De�nition 2.1. A K3 surface over k is a smooth proper surface Y over k satisfying:

• H1(Y,OY ) = 0, and
• the canonical bundle is trivial, i.e. ωY/K = OY .

De�nition 2.2. Let B be an integral, quasi-compact scheme, let Y → B be a smooth proper algebraic
space over B. It is called a K3 family (or relative K3 surface) if

• each �ber is a K3 surface over the residue �eld, and
• the relative canonical bundle is trivial, i.e. ωY/B = OY .

If Y is a scheme, we call this family schematic.
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De�nition 2.3. Let B be an integral, quasi-compact scheme, let Y → B be a K3 family. We say
that it is polarized (of degree d) if there exists a relative ample sheaf L (of degree d > 0) on Y/B. We
say that it is primitively polarized if moreover L is primitive; that is, if for all geometric point b→ B
the line bundle Lb over Yb is not a nontrivial multiple of another line bundle.

A polarized K3 family is automatically schematic.
The remainder of this section follows closely [3].

2.2. Levels. Denote by N the self-dual lattice U⊕3 ⊕ E⊕2
8 over Z. Choose a basis (e, f) for the �rst

copy of U in N , and for d > 0 set
Ld = ⟨e− df⟩ ⊆ N

which is a sublattice of N of discriminant 2d. Set Vd := Ld,Q and let L∨
d ⊆ Vd be the dual lattice.

Remark 1. Let Y/C be a K3 surface over the complex numbers. Then the K3 lattice H2(Y (C),Z)
with (the negative of) its intersection pairing is isomorphic to N . A primitive polarization of degree
2d on Y de�nes a class [ξ] ∈ H2(Y,Z), and we can always �nd an isomorphism H2(Y (C),Z) → N
mapping [ξ] to e− df , in which case the primitive cohomology is identi�ed with Ld. Similarly, if Y/k
is a K3 surface over a �eld k and ℓ is prime, the Zℓ-lattice H2(Yk,Zℓ) is isomorphic to NZℓ

, and the
isomorphism can be made to map the class of a �xed primitive polarization to e − df , so that the
primitive cohomology corresponds to Ld,Zℓ

.

De�nition 2.4. The discriminant kernel is the largest subgroup KLd
⊂ SO(Ld)(Ẑ) acting trivially on

the discriminant L∨
d /Ld. Any compact open subgroup K ⊆ KLd

is called admissible.

From now-on we will be interested exclusively in admissible levels K = KpK
p ⊆ KLd

such that
Kp = KLd,p (so called hyperspecial level structures).

2.3. Moduli space of polarized K3 families. Let d > 0 be an integer, denoteM◦
2d,Z be the moduli

problem over Z sending a Z-scheme T to the groupoid of tuples (Y → T, ξ) composed of a K3 family
with primitive polarization ξ. Let M◦

2d,Q be the corresponding moduli problem over Q.

Fact 2.1 ([5], Theorem 4.3.3). M◦
2d,Z is a separated Deligne-Mumford stack of �nite type over Z.

For every prime ℓ the stackM◦
2d,Z[1/2ℓ] comes equipped with an ℓ-adic local system H2

ℓ of rank 22

corresponding to the relative second étale cohomology group of the universal polarized K3 family over
M◦

2d,Z[1/2ℓ]. There is a perfect symmetric Poincaré pairing on H2
ℓ valued in Zℓ(−2), as well as a global

section of the twist H2
ℓ de�ned by the Chern class chℓ(ξ). Denote by P2

ℓ the primitive part of the
cohomology, that is, the orthogonal complement to chℓ(ξ)(−1). This is an ℓ-adic local system of rank
21 on which the the restriction pairing is perfect if ℓ ̸ |d.

Over M2d,Z(p)
one can consider the Ẑp-sheaf H2

Ẑp
=

∏
ℓ ̸=pH

2
ℓ , as well as a Chern class chẐp(ξ) ∈

H2
Ẑp
(−1). De�ne the étale sheaf Ip overM2d,Z(p)

of trivializations of H2
Ẑp
, i.e. such that for any scheme

B →M2d,Z(p)
,

Ip(B) = {Isometries η : Ld ⊗Z Ẑp ∼−→ H2
Ẑp,B

(−1) | η(e− df) = chẐp(ξ)}.

If K = KpK
p is an admissible level, Kp acts on the right of Ip by precomposition. A section [η] ∈

H0(B, Ip/Kp) is called a Kp-level structure on B. De�neM◦
2d,K,Z(p)

the relative moduli problem over

M◦
2d,Z(p)

attaching to T →M◦
2d,Z(p)

the set of level structures on B.

Fact 2.2 ([3], Proposition 2.11). M◦
2d,K,Z(p)

is �nite etale over M◦
2d,Z(p)

. For Kp small enough it is

an algebraic space over Z(p).

We denote by P2
K,ℓ the pullback of P2

ℓ toM◦
2d,K,Z(p)

.

2.4. Orthogonal shimura variety. Denote G = SO(Vd) which is semisimple over Q. Let XL denote
the space of oriented negative de�nite planes in Ld,R; then the pair (G,XL) de�nes a Shimura datum.
We denote by Sh the Shimura variety de�ned by (G,XL) with level KLd

; it is a smooth Deligne-
Mumford stack de�ned over Q. If K is admissible, we let ShK be the quotient Shimura variety with
level K. It de�nes a �nite étale cover ShK → Sh over Q with C-points

ShK(C) = G(Q)\(XL ×G(Af )/K).
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If K is neat, then ShK is a smooth quasi-projective variety over Q.

De�nition 2.5. We set

ShKp = lim←−
Kp⊆Kp

Ld

ShKLd,p
Kp

where the prime-to-p component Kp is allowed to vary within the compact open subgroups of Kp
Ld
.

One of the main results of [4] is that ShKp admits a so called smooth integral canonical model.

Fact 2.3 ([4], Proposition 7.9). There exists a regular, formally smooth Z(p)-model SKp of ShKp

satisfying the following smooth extension property: for any regular, formally smooth Zp-scheme R,
any map RQ → ShKp over Q extends uniquely to a map R → SKp .

In turn, one of the main results of [3] is a relation between the moduli space M◦
2d,K,Z(p)

and the

integral model SK for some admissible levels K.

Fact 2.4 ([3], Corollary 4.15). For any neat admissible level K, there is a (non-canonical) open im-
mersion ρK :M◦

2d,K,Z(p)
→ SK .

From now-on we �x such an open immersion. It pulls back over Q to an open immersion

(1) ρK : M◦
2d,K,Q → ShK .

2.5. Canonical local systems on orthogonal Shimura varieties. For each prime ℓ ̸= p Madapusi
de�nes a local system Lℓ on SKp using the so-called special endomorphisms of a certain Kuga-Sataka
construction. The pullback of Lℓ to the generic �ber ShKp is also denoted Lℓ. For every admissible
level K the local system passes to the quotient and de�nes local systems LK,ℓ on SK and ShK .

Fact 2.5 ([3], 3.2). For any n ≥ 1 there exists an admissible subgroup K(ℓn) ⊆ K such that the
trivializing cover of ShK of the �nite local system LK,ℓ/ℓ

nLK,ℓ is ShK(ℓn).

Denote by Lℓ̸=p (resp. LK,ℓ̸=p) the product over ℓ ̸= p of all Lℓ (resp. LK,ℓ) over ShKp (resp. ShK).

Corollary 2.1. For any N prime to p there exists an admissible subgroup K(N) ⊆ K such that the
trivializing cover of ShK of the �nite local system LK,ℓ̸=p/NLK,ℓ̸=p is ShK(N).

The Shimura varieties ShK parametrize certain quadratic lattices with extra structure. From Fact
2.5 above one expects the local systems LK,ℓ to be related to such lattices; ideally LK,ℓ would be the
universal Zℓ-lattice over ShK . We see from Remark 1 that the primitive cohomology of K3 surfaces
precisely yields lattices of this nature. It is then a reasonable guess to assume that under the open
immersion (1) the local system LK,ℓ pulls back to P2

K,ℓ. This is true.

Fact 2.6 ([6], Proposition 3.9). ρK induces an isometry ρ∗KLK,ℓ
∼−→ P2

K,ℓ overM◦
2d,K,Z(p)

.

Any primitively polarized K3 family over a base B/Q with K level structure corresponds to a map
B →M◦

2d,K,Q, hence a map B → ShK . Fact 2.6 says that the pullback of Lℓ under this map gives back
the second primitive cohomology of the polarized K3 family.

The smooth extension property in De�nition 2.3, refered to as the Mine-Moonen extension property,
requires "test" schemes mapping to every ShK for all levels K = KpK

p as in De�nition 2.5. Such test
schemes could for instance be pro-smooth schemes over Z(p), which are geometrically more complicated
than the �nite type Z(p) schemes. For this reason we want to use a weaker version of the smooth
extension property stated in [1], in which maps between pro-objects are replaced with extensions of
étale local systems.

Proposition 2.1 ([1], §1.3). Let X/Z(p) be smooth with generic �ber X/Q. Let ϕ : X → ShK be
a map, and suppose that the local system ϕ∗LK,ℓ̸=p extends to X . Then ϕ extends uniquely to a map
X → SK .

Proof. Let V be the extensions of ϕ∗LK,ℓ̸=p to X . Let N be an integer prime to p, consider K(N) as in
Corollary 2.1. Let XN → X be the trivializing étale cover of V/NV, XN → X its generic �ber. Then
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XN coincides with the pullback of X along the cover ShK(N) → ShK , i.e. the following squares are
cartesian:

ShK(N) XN XN

ShK X X
As N varies, the K(N) are co�nal in all admissible levels. The projective limit of all XN (resp. the
generic �bers XN ) de�nes a regular, formally smooth scheme XKp (resp. its generic �ber XKp), with a
map XKp → ShKp . The extension property in Fact 2.3 yields a map XKp → SKp . By looking at level
K we �nd a map

X → SK .

Uniqueness follows from the density of X in X . □

3. Pointwise criterion for good reduction

Let X be a smooth, geometrically connected k-variety. Let ℓ be a prime number and V be an ℓ-adic
local system on X. If x ∈ X is any (possibly nonclosed) point of X, denote Vx the pullback to the one
point scheme x. We say that Vx is unrami�ed if it extends to a local system on Sx. De�ne

|X|urρ = {x ∈ |X| ;Vx is unrami�ed}.
To motivate Fact 3.1 below, assume that there exists a model X/Ok of X such that V extends to a
local system V ′ on X . Then for any point x of X the pullback V ′Sx

to Sx de�nes an extention of Vx to
Sx, in particular closed points are unrami�ed. The converse holds:

Fact 3.1 ([2] Theorem 14). For every semistable model X → S of X over S one has:

V extends to a local system on X ⇐⇒ Im(X (OK)→ |X|) ⊆ |X|urρ .

Example 1. Keeping X as above and X → S a semistable model, we apply Fact 3.1 to the following
scenario. Let f : Y → X be a smooth proper morphism, let i denote any nonnegative integer, and
set V = Rif∗Zℓ on X. Fact 3.1 says that if for every x ∈ Im(X (Ok) → |X|) the �ber Yx has good
reduction over Sx, then V extends to a local system on X . Indeed, it follows from the smooth proper
base change that Vx extends to a local system on Sx.

4. Statement and proof of the main Theorem

De�nition 4.1. Let Y → X be a morphism of k-schemes. We say that it satis�es pointwise good
reduction if for every x ∈ |X| the �ber Yx/k(x) extends to a schematic relative K3 surface Yx/Ok(x).

Theorem 4.1. Let X/Ok be a smooth, geometrically connected scheme with generic �ber X/k. Let
K be a neat admissible level. Let Y → X be a primitively polarized K3 family with K level structure,
satisfying pointwise good reduction. Then the family extends to a K3 family Y → X .

For each ℓ ̸= p let Vℓ denote the local system on X de�ned by the primitive cohomology of the K3
family Y → X. Example 1 implies that Vℓ extends to a local system over X . By Proposition 2.1 the
map

X →M◦
2d,K,k → ShK,k

extends to a map of integral models X → SK,Ok
. Our goal is to show that this latter map factors

through the open immersion ρK :M◦
2d,K,Ok

→ SK,Ok
. By property of open immersions it su�ces to

do so for closed points of X . Let xs be such a closed point, by smoothness and Henselian property
there exists x ∈ |X| such that xs is the closed point in the image of the natural map Sx → X . The
situation is summarized in the following commutative diagram:

Sx M◦
2d,K,Ok

SK,Ok

Spec k(x) X M◦
2d,K,k ShK,k

Sx X SK,Ok

ρK

x
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The top row is de�ned by the pointwise good reduction assumption, while the bottoms row is the
integral extension from Proposition 2.1. The middle row is the generic �ber of both the top and bottom
rows. It follows from the uniqueness in Proposition 2.1 that the top and bottom maps Sx → SK,Ok

coincide. This means that the image of Sx in SK,Ok
through the bottom row lies in M◦

2d,K,Ok
, thus

that xs maps intoM◦
2d,K,Ok

as desired.

References

[1] Benjamin Bakker, Ananth N Shankar, and Jacob Tsimerman, Integral canonical models of exceptional shimura vari-

eties, arXiv preprint arXiv:2405.12392 (2024).
[2] Anna Cadoret and Akio Tamagawa, Pointwise criteria, working draft, To be published (2026), None.
[3] Keerthi Madapusi Pera, The tate conjecture for k3 surfaces in odd characteristic, Inventiones mathematicae 201

(2015), no. 2, 625�668.
[4] , Integral canonical models for spin shimura varieties, Compositio Mathematica 152 (2016), no. 4, 769�824.
[5] Jordan Rizov, Moduli stacks of polarized k3 surfaces in mixed characteristic, arXiv preprint math (2005).
[6] Ziquan Yang, Isogenies between k3 surfaces over fp, arXiv preprint arXiv:1810.08546 (2018).

Email address: francois.gatine@imj-prg.fr


