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1. INTRODUCTION

Fix p > 0 a prime number, k the fraction field of a DVR Oy of mixed characteristic (0,p). In
this note we use the canonical integral model of certain orthogonal Shimura varieties developped by
Madapusi Pera in [4] and [3], as well as a local-to-global result on the extension of ¢-adic local systems
to integral models by Cadoret-Tamagawa in [2], to show the following

Theorem 1.1. Let X /Oy be a smooth geometrically connected scheme with generic fiber X/k. If
Y — X is a K38 family with primitive polarization and a certain level structure, such that each closed
fiber has good reduction, then the family extends to a K3 family Y — X.

See Theorem 4.1 for the precise statement.

1.1. Notations. For any scheme X we denote its set of closed points by |X|. For any x € |X| we
denote by k(x) the residue field of X at x, and O, the valuation ring of k(x). We let S, = Spec O,.
A k-variety denotes a reduced separated scheme of finite type over k.

2. SHIMURA VARIETIES AND MODULI SPACES OF K3 FAMILIES

2.1. Recollections on K3 families.

Definition 2.1. A K3 surface over k is a smooth proper surface Y over k satisfying:

e HY(Y,Oy) =0, and

e the canonical bundle is trivial, i.e. wy/g = Oy
Definition 2.2. Let B be an integral, quasi-compact scheme, let ) — B be a smooth proper algebraic
space over B. It is called a K3 family (or relative K3 surface) if

e cach fiber is a K3 surface over the residue field, and
e the relative canonical bundle is trivial, i.e. wy,;p = Oy.

If Y is a scheme, we call this family schematic.
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Definition 2.3. Let B be an integral, quasi-compact scheme, let J — B be a K3 family. We say
that it is polarized (of degree d) if there exists a relative ample sheaf £ (of degree d > 0) on V/B. We
say that it is primitively polarized if moreover L is primitive; that is, if for all geometric point b — B
the line bundle £ over Y} is not a nontrivial multiple of another line bundle.

A polarized K3 family is automatically schematic.
The remainder of this section follows closely [3].

2.2. Levels. Denote by N the self-dual lattice U3 @ E§B2 over Z. Choose a basis (e, f) for the first
copy of U in N, and for d > 0 set

Ly=(e—df) SN
which is a sublattice of N of discriminant 2d. Set V= L4 and let L) C V; be the dual lattice.

Remark 1. Let Y/C be a K3 surface over the complex numbers. Then the K3 lattice H?(Y(C),Z)
with (the negative of) its intersection pairing is isomorphic to N. A primitive polarization of degree
2d on Y defines a class [¢] € H%(Y,Z), and we can always find an isomorphism H?(Y(C),Z) — N
mapping [£] to e — df, in which case the primitive cohomology is identified with Lg4. Similarly, if Y/k
is a K3 surface over a field k and ¢ is prime, the Z,-lattice HQ(YE, Zy) is isomorphic to Nz, and the
isomorphism can be made to map the class of a fixed primitive polarization to e — df, so that the
primitive cohomology corresponds to Ly z,.

~

Definition 2.4. The discriminant kernel is the largest subgroup K, C SO(Lg)(Z) acting trivially on
the discriminant LY /L4. Any compact open subgroup K C K, is called admissible.

From now-on we will be interested exclusively in admissible levels K = K,K? C K, such that
K, = K1, p (so called hyperspecial level structures).

2.3. Moduli space of polarized K3 families. Let d > 0 be an integer, denote M5, , be the moduli
problem over Z sending a Z-scheme T to the groupoid of tuples (Y — T,&) composed of a K3 family
with primitive polarization £. Let Mé’d@ be the corresponding moduli problem over Q.

Fact 2.1 ([5], Theorem 4.3.3). M3, , is a separated Deligne-Mumford stack of finite type over Z.

Sd,Z[1/21]
corresponding to the relative second étale cohomology group of the universal polarized K3 family over

MGy 211 /2 There is a perfect symmetric Poincaré pairing on H? valued in Zy(—2), as well as a global

section of the twist H? defined by the Chern class chy(¢). Denote by P the primitive part of the
cohomology, that is, the orthogonal complement to chy(§)(—1). This is an ¢-adic local system of rank
21 on which the the restriction pairing is perfect if ¢ fd.

Over Maqz,, one can consider the ZP-sheaf H%p = ]_[#p H?, as well as a Chern class chs, (§) €

For every prime /¢ the stack M comes equipped with an f-adic local system H% of rank 22

H%p (—1). Define the étale sheaf I? over ./\/lgdZ(p) of trivializations of H%p, i.e. such that for any scheme
B — Maqz,,

IP(B) = {Isometries 1 : Lq ®z ZP = HZ, ,(=1) |n(e - df) = chz, ()}
If K = K,KP? is an admissible level, K? acts on the right of I? by precomposition. A section [n] €

HO(B,I?/KP) is called a KP-level structure on B. Define M$, K2y, the relative moduli problem over
B (p
M;dﬂ(m attaching to T' — M;dﬂ(m the set of level structures on B.

Fact 2.2 ([3], Proposition 2.11). Sd,KZ(p) is finite etale over Mgd,Z(,,y For KP small enough it is
an algebraic space over Z,).

We denote by P%{J the pullback of P? to Mgd,K,Z(m'

2.4. Orthogonal shimura variety. Denote G = SO(V};) which is semisimple over Q. Let X1, denote
the space of oriented negative definite planes in Lgg; then the pair (G, X1) defines a Shimura datum.
We denote by Sh the Shimura variety defined by (G, Xp) with level K ; it is a smooth Deligne-
Mumford stack defined over Q. If K is admissible, we let Shx be the quotient Shimura variety with
level K. It defines a finite étale cover Shx — Sh over Q with C-points

Shye(C) = GQ\(Xz x GA)/K).



If K is neat, then Shy is a smooth quasi-projective variety over Q.

Definition 2.5. We set

Sh, = lim Shg,, ko
KPCKY

where the prime-to-p component K? is allowed to vary within the compact open subgroups of K id.
One of the main results of [4] is that Shy, admits a so called smooth integral canonical model.

Fact 2.3 ([4], Proposition 7.9). There ezists a regular, formally smooth Z,-model Sy, of Sh,
satisfying the following smooth extension property: for any regular, formally smooth Z,-scheme R,
any map Rq — Shg, over Q extends uniquely to a map R — Sk, .

In turn, one of the main results of [3] is a relation between the moduli space M;dKZ( > and the
s B & (p
integral model .k for some admissible levels K.

Fact 2.4 ([3], Corollary 4.15). For any neat admissible level K, there is a (non-canonical) open im-

mersion pg - M;d,K,Z<p) — YK

From now-on we fix such an open immersion. It pulls back over Q to an open immersion

2.5. Canonical local systems on orthogonal Shimura varieties. For each prime £ # p Madapusi
defines a local system Ly on .“f, using the so-called special endomorphisms of a certain Kuga-Sataka
construction. The pullback of L, to the generic fiber Shy, is also denoted L,. For every admissible
level K the local system passes to the quotient and defines local systems Ly on i and Shg.

Fact 2.5 (|3, 3.2). For any n > 1 there exists an admissible subgroup K({") C K such that the
trivializing cover of Shy of the finite local system L o/0" L ¢ is Shg(en).

Denote by Ly, (resp. Lg s+,) the product over £ # p of all L, (resp. L ) over Shy, (resp. Sh).

Corollary 2.1. For any N prime to p there exists an admissible subgroup K(N) C K such that the
trivializing cover of Shy of the finite local system L g,/ NL gy s Shpc(ny -

The Shimura varieties Shx parametrize certain quadratic lattices with extra structure. From Fact
2.5 above one expects the local systems Lx  to be related to such lattices; ideally Lg ¢ would be the
universal Zy-lattice over Shx. We see from Remark 1 that the primitive cohomology of K3 surfaces
precisely yields lattices of this nature. It is then a reasonable guess to assume that under the open
immersion (1) the local system Ly, pulls back to P%(,f‘ This is true.

Fact 2.6 ([6], Proposition 3.9). pk induces an isometry pi Lo — P%(,f over Mgd,K,Z<p)'

Any primitively polarized K3 family over a base B/Q with K level structure corresponds to a map
B — My, i o, hence a map B — Shg. Fact 2.6 says that the pullback of L, under this map gives back
the second primitive cohomology of the polarized K3 family.

The smooth extension property in Definition 2.3, refered to as the Mine-Moonen extension property,
requires "test" schemes mapping to every Shy for all levels K = K, K” as in Definition 2.5. Such test
schemes could for instance be pro-smooth schemes over Z,), which are geometrically more complicated
than the finite type Z,) schemes. For this reason we want to use a weaker version of the smooth
extension property stated in [1], in which maps between pro-objects are replaced with extensions of
étale local systems.

Proposition 2.1 ([1], §1.3). Let X/Z, be smooth with generic fiber X/Q. Let ¢ : X — Shyg be
a map, and suppose that the local system ¢* L ¢, extends to X. Then ¢ extends uniquely to a map
X — yK.

Proof. Let V be the extensions of ¢*Lg ¢+, to X. Let N be an integer prime to p, consider K(N) as in
Corollary 2.1. Let Xy — X be the trivializing étale cover of V/NV, X — X its generic fiber. Then
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XN coincides with the pullback of X along the cover Shg(y) — Shg, i.e. the following squares are
cartesian:

Shy X X

As N varies, the K(N) are cofinal in all admissible levels. The projective limit of all Xy (resp. the
generic fibers X ) defines a regular, formally smooth scheme X, (resp. its generic fiber Xk, ), with a
map Xf, — Shg,. The extension property in Fact 2.3 yields a map Xx, — Sk,. By looking at level
K we find a map

X — yK-

Uniqueness follows from the density of X in X. O

3. POINTWISE CRITERION FOR GOOD REDUCTION

Let X be a smooth, geometrically connected k-variety. Let £ be a prime number and V be an ¢-adic
local system on X. If x € X is any (possibly nonclosed) point of X, denote V, the pullback to the one
point scheme x. We say that V, is unramified if it extends to a local system on S,. Define

| X[,)" = {x € |X]|;V, is unramified}.

To motivate Fact 3.1 below, assume that there exists a model X'/Oy of X such that V extends to a
local system V' on X'. Then for any point  of X the pullback Vg to S, defines an extention of V; to
Sz, in particular closed points are unramified. The converse holds:

Fact 3.1 (|2] Theorem 14). For every semistable model X — S of X over S one has:
V estends to a local system on X <= Im(X(Og) — |X|) C |X]}".

Example 1. Keeping X as above and X — S a semistable model, we apply Fact 3.1 to the following
scenario. Let f : Y — X be a smooth proper morphism, let ¢ denote any nonnegative integer, and
set V = R'f.Zy on X. Fact 3.1 says that if for every x € Im(X(Ok) — |X]|) the fiber Y, has good
reduction over S, then V extends to a local system on X. Indeed, it follows from the smooth proper
base change that V, extends to a local system on S,.

4. STATEMENT AND PROOF OF THE MAIN THEOREM

Definition 4.1. Let ¥ — X be a morphism of k-schemes. We say that it satisfies pointwise good
reduction if for every z € |X| the fiber Y, /k(z) extends to a schematic relative K3 surface V;/Oj(y)-

Theorem 4.1. Let X /Oy be a smooth, geometrically connected scheme with generic fiber X/k. Let
K be a neat admissible level. Let Y — X be a primitively polarized K3 family with K level structure,
satisfying pointwise good reduction. Then the family extends to o K38 family Y — X.

For each ¢ # p let V; denote the local system on X defined by the primitive cohomology of the K3
family Y — X. Example 1 implies that V; extends to a local system over X. By Proposition 2.1 the
map

X — M§d7K7k — Shg
extends to a map of integral models X — Sk o,. Our goal is to show that this latter map factors
through the open immersion pg : M3, ;¢ o, — “K,0,- By property of open immersions it suffices to
do so for closed points of X. Let zs be such a closed point, by smoothness and Henselian property
there exists € |X| such that z; is the closed point in the image of the natural map S; — X'. The
situation is summarized in the following commutative diagram:

o PK
K0, — TKO

I |

(e}
M2d,K,k E— ShK,k

| |

IK,0y

SN

Spec k(z) —*

-




The top row is defined by the pointwise good reduction assumption, while the bottoms row is the
integral extension from Proposition 2.1. The middle row is the generic fiber of both the top and bottom
rows. It follows from the uniqueness in Proposition 2.1 that the top and bottom maps S, — & 0,
coincide. This means that the image of S, in .k o, through the bottom row lies in MSd,K,Okv thus
that zs maps into M3, ¢ » as desired.
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