The periods of P or why you should care about motives

Thomas Serafini

These are written notes from a talk I gave for the AGES (Algebraic Geometry Examples
Seminar), in which T hope to showcase the usefulness of «motivic thinkingy.
The question starts as follows : given an algebraic differential k-form w on a smooth algebraic
variety X, and a smooth k-cycle o on X", we call the complex number

e

a period. This definition is somewhat unsatisfactory, as not every element in the k-th de
Rham cohomology group of an algebraic variety is the class of an algebraic k-form, but a pair-
ing between algebraic de Rham cohomology and singular homology can be formed nonetheless.

Maybe the simplest nontrivial case of a period is with X = G,,, ¥ = 1, then the cycle
should be the circle and the differential form should be %. Complex analysis tells us this
should evaluate to 2im. The next interesting case might be that of the projective line, or
projective space in general, but we run into a problem : there are no well-defined algebraic
differential forms on P, so any hope of finding a genuine algebraic differential form is lost.
We could (and it is a fun exercise) unwind the definition of de Rham cohomology in the case
of P™ and compute the periods this way, but I wish to showcase another path. By embracing
the more heavy and modern formalism, we can pretty efficiently compute the periods of P”,
and then some more. In the first section, we recall the various de Rham cohomologies that
exist on a smooth algebraic variety, and the comparison theorem with Betti cohomology. The
second section is dedicated to computing the periods of P™ with some insight along the way,
and the last section contains some nice bonus calculations.

1 The period isomorphism

Definition 1.1. Let M be a smooth manifold. The de Rham cohomology of M is the coho-
mology of the complex

(A}, d)
where A’fw is the vector space of C-valued differential forms on X and d is the exterior deriva-

tive. We denote it by H (’fR(M ,C) when we want to insist on the complex coefficients, or just
Hlp (M).

Definition 1.2. Let M be a complex analytic manifold. The analytic de Rham cohomology
of M is the hypercohomology

H*(Q3,)
where Q]j{/l is the sheaf of holomorphic differential k-forms.

We also denote this by HE. (M, C) or HE, (M), we will soon explain why the two de Rham
cohomologies we just defined are naturally isomorphic.



First, a quick refresher on hypercohomology is in order. First, recall that sheaf cohomology
is constructed by taking an injective (or flasque, fine, ...) resolution Z* of the sheaf F and
setting

H*(X,F) = HF(Z*(X)).

If we see F as a complex with a single term concentrated at 0, say
Fo=-50>F—=>0—--

then taking a resolution Z® can be reformulated as taking a complex of injective sheaves Z°
with a map ¢ : F* — Z° that induces an isomorphism in cohomology. We call such a map a
quasi-isomorphism.

The procedure to define hypercohomology of a complex of sheaves F is then exactly this :
take a complex with injective (flasque, ...) terms that is quasi-isomorphic to F*®, evaluate then
compute cohomology.

We need to ensure two things : first, that injective resolutions always exist and second,
that they all compute the same cohomology. The existence of a resolution can be seen by first
taking a resolution of each term, then constructing a double complex with injective terms, and
checking that the associated total complex is quasi-isomorphic to the original complex. The
fact that all injective resolutions compute the same cohomology is very similar to the sheaf
cohomology case.

In our case, we have a special resolution of €15,. Define, for U C M open AIfW(U) as the
space of smooth k-forms on M, seen as a smooth manifold.

Lemma 1.3 (Poincaré lemma). The complex A3, is quasi-isomorphic to its subcomplez C
concentrated in degree 0.

Lemma 1.4 (Holomorphic Poincaré lemma). The complex QY is quasi-isomorphic to its
subcompler C concentrated in degree 0.

These lemma can be rephrased as : a closed smooth (resp. holomorphic) differential form
is always locally exact, i.e. it is locally the differential of a smooth (resp. holomorphic) form.
The A’fw, being fine sheaves, are acyclic, meaning that hypercohomology is swiftly computed
as

HF(A3)) = HF(A3)).
Since inclusions C — 3, and C — A}, are quasi-isomorphisms, the inclusion €23, — A3, is
also a quasi-isomorphism. We therefore have a canonical isomorphism

HF(QY,) = HM(AY)
and the two de Rham cohomologies we defined are one and the same.

Definition 1.5. Let X be a smooth algebraic variety over a field K C C. The de Rham
cohomology of X is the hypercohomology of the de Rham complex of X :

Hip(X) = HY(Q%).

Unlike the previous two cohomologies we defined, these a K-vector spaces and not C-vector
spaces.
As expected, this is again the same de Rham cohomology.



Theorem 1.6 (|Gro66], Theorem 1°). If X is a smooth complex algebraic variety, then
Hir(X) = Hig(X™).

This should be at least a little surprising, especially given that X is not at all supposed
projective here !

If X a smooth algebraic variety defined over K C C, then we can form X¢ and have
HY (Xc) = HY:(X) @k C. Therefore, the complexification of HEp (X) is HE, (X?), where
we allow ourselves to write X" for X&".

Now that we have introduced all the de Rham players, all that is left to state the comparison
isomorphism is to define Betti cohomology.

Definition 1.7. Let S be a topological space. The Betti cohomology of S, noted HQ(S, Q)
or HE(S) is the cohomology of the constant sheaf Q on S.

We will also write HE(S, C) for Betti cohomology with complex coefficients, it is the coho-
mology of the constant sheaf C and is isomorphic to HE(S) ®¢g C.

Remark. For S a reasonable (for instance a manifold) topological space, the cohomology
HE(S,Q) is naturally the singular cohomology of S with coefficients in Q, that is to say,
it is the dual of the singular homology of X :

For a proof of this fact, see [Spa66], corollary 8 of section 8 and corollary 7 of section 9.

Theorem 1.8. Let M be a smooth manifold. The quasi-isomorphism C = A3, induces an
isomorphism

Remark. If we recall that HE(M) is the dual Hy(M, Q)" of the k-th singular homology of M,
the de Rham theorem is given by integration of differential forms against cycles, i.e. to the
class of a differential form w we associate the linear form

0'|—>/(JJ.
o

This only makes sense if ¢ is a smooth cycle and it should be checked that it does not depend
on the choice of w and ¢ in the homology and cohomology classes. The first item is solved by
approximating continuous functions by smooth functions and the second one is a consequence
of the Stokes formula.

A direct consequence of this theorem is the famous period isomorphism.

Theorem 1.9 (Period isomorphism). Let X be a smooth algebraic variety over a field K C C.
We have a comparison isomorphism

c: Hiz(X) @xg C 5 HE(X™) @9 C

What we just did is a very usual process : we have added extra structure on the cohomology
of our space. Here, the cohomology can be thought of as a triple (Vik, Vg, c) where Vi and Vg
are vector spaces over K and Q respectively and

c:VK®K(C1>VQ®@C

is an isomorphism (the comparison isomorphism). This is worth making into a definition !



Definition 1.10. A (K, Q)-vector space is a triple (Vi, Vi, a) where Vi and Vg are finite
dimensional K- and Q-vector spaces respectively and

a: Vg ®g C =5 Vg C

is an isomorphism.

Example. The simplest example of a (K, Q)-vector space is the triple (K, Q, a) with a € C*.
When a = 2i7w, we give it a special name and call it Q(—1).

Remark. People more familiar with Hodge structures or Galois representation might be sur-
prised. Indeed, Q(—1) should respectively be the Hodge structure of dimension Q with the
filtration F* = 0, F! = Q or Q,(—1) should be the dual of the cyclotomic character of the
Gq,- The entire point of motives is that these objects should all be one and the same : H2(P)
is Q(—1), be it as a (K, Q)-vector space, a Hodge structure or a Galois representation.

Being cheeky, one can also point out that Q(—1) can indeed be interpreted as the cyclotomic
character of the absolute Galois group Gr of the real numbers, as the complex conjugate of
29 is —2im.

(K,Q)-vector spaces can be made into an abelian category, with tensor products and
internal homs (such a category is called a tannakian category). Everything is defined in the
obvious way and there is no major difficulty. We give the definition of morphisms for the
example : a morphism f: V — W of (K, Q)-vector spaces is a couple (fx, fg) of linear maps,
fx : Vi = Wk, fo: Vo — Wg making the following diagram commute :

VK®C@WK®C

Jev Jew

C
Ve C %5 weec

A few remarks are in order : first, we have exact, faithful, additive tensor functors wx and
wg sending V' to Vi and Vg respectively. These functors are also conservative in the sense
that for f : V' — W a morphism, it is an isomorphism if and only if wx (f) or wg(f) is an
isomorphism.

This turns out to be incredibly useful : when we want to prove a statement on algebraic de
rham cohomology for some construction that commutes with the comparison isomorphism, it
is possible to turn around and do a purely algebraic topological proof to prove the isomorphism
for Betti cohomology.

Since our goal is to compute periods, we should wonder what kind of object we can expect
to recover from a (K, Q)-vector space V. By choosing bases for Vi and Vg, we can get an ac-
tual period matrix P € GL,,(C) representing the isomorphism «, but it is well defined only up
to a change of basis : choosing different bases for Vx and Vg will give the matrix BPA~! with
B € GL,(Q) and A € GL,(K) the base change matrices. Therefore, a (K, Q)-vector space
gives a unique, well-defined class P € GL,(Q)\GL,(C)/GL,(K). As one would expect, the
class of this matrix uniquely determines the (K, Q)-vector space up to isomorphism because
the (K, Q)-vector spaces (K™, Q", P) and (K", Q", BPA~!) are isomorphic via the morphism
(B, A).

From now on, for X a smooth algebraic variety, we write H*(X) for the (K,Q)-vector
space (HY; (X), H*(X*,Q), c).



2 Computing H*(P") as a (K, Q)-vector space

We keep our goal in mind, computing the « period matrix » of H?*(PL) (actually just a period
since those have dimension 1), which we will achieve by computing H?*(P") as a (K, Q)-vector
space. Our first step will be the case n = 1, easiest to compute and a good stepping stone for
the general case. We will then use the result to compute H?(P") for all n, and finally use this
to compute H?*(P") in all generality.

Proposition 2.1.
HA(P') = Q(~1).
The way we go about proving this is by using the Mayer-Vietoris exact sequence with
U= Atl) and V = Aéo the two affine charts on P! and UNV = G,,. If we accept for a moment

that the Mayer-Vietoris exact sequence commutes with the comparison isomorphism, i.e. that
it is an exact sequence of (K, Q) vector spaces, then we have

= HYAY) @ HY(AL) = HYGp) — H*(PY) — H*(A)) © HX(AL) — -
Since H'(A!) = H%(A') = 0, we get an isomorphism of (K, Q) vector spaces
HY(G,,) = H*(P").
All that is left is to check that H!(G,,) = Q(—1), which is guaranteed by the computation
d
£~ 9ir.
U <
The reason why the Mayer-Vietoris commutes with the comparison isomorphism is that it
is a general construction, functorial in the complex of sheaves, in hypercohomology. Explaining
it takes some time, the curious reader can consult [Stacks, Tag 01E9] where it is done for a sheaf
instead of a complex of sheaves but works the same way mutatis mutandis for hypercohomology.
Since the sequence is functorial in the complex of sheaves and comparison isomorphism is
induced by the quasi-isomorphism C — Q%, the Mayer-Vietoris sequence is really a sequence

of (K,Q) vector spaces.
Now that we have computed H?(P!), we can use this to compute H?(P") for all n.

Proposition 2.2. For n > 2, the embedding j : P"~' < P" induces an isomorphism
g% HA2(P™) = H2(P ).
Therefore, H*(P") = Q(—1).

This comes down to the definition of the pullback of cycles and differential forms. A
morphism f: X — Y of smooth algebraic varieties induces a pushforward

fot H(X™,Q) — Hp (Y™, Q)

dual to the pullback

' Hy(Y,Q) = HE(X, Q).
Considering smooth de Rham cohomology, we also have a pullback on differential forms, and
it induces a pullback f* : Hi; (Y20) — HEL (X).

By unwinding the definition of the integral of a differential form w on a smooth singular
k-cycle o : A¥ — X, we can see that

/ww = [ (foyo= [ oru= [ o
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hence the pullback commutes with the comparison isomorphism.

In order to understand how the pullback is defined on H (’fR(X ), we need a more hyper-
cohomological description. Take f : X — Y a morphism of smooth algebraic varieties and
F* a complex of sheaves on 7. Choose an injective resolution Z® of F* : since f~! is exact,
an injective resolution J°® of f~!Z°® will be a resolution of f~!F*. Consider the morphism of
complexes

I° = fuf M — [T

where the first map is the unit map from the adjunction between f, and f~!. Evaluating on
Y gives a map
8(X) = JH(X)

which corresponds to a morphism HF(Y, F*) — HF(X, f~1F*).

For F* = Q we are done since f~'Q = Q. In order to get the pullback on de Rham cohomol-
ogy, one should go one step further compose this with the map f_lQ;/ — Q% given by the
pullback of differential forms. It is not immediately obvious that this does correspond to the
pullback of global differential forms in de smooth description of de Rham cohomology but one
can check.

We could also directly check using that description that the comparison isomorphism com-
mutes with pullback, by explicitly writing things out and using the fact that both f~!Qyan
and Qxan are resolutions of C on Xa".

All that is left to do is check that the pullback is an isomorphism in some realization, i.e.
that
H*(P") — H?*(P"1)

is an isomorphism for any cohomology (smooth de Rham, analytic de Rham, Betti,...).

We give two ways of doing this : the first one hinges on the fact that H3g(P",C) has
dimension 1 and is generated by its Kéhler form

n —
dZidZi
Wy = —_—
"= 2 T P
Clearly, j*w, = wp_1, so0 j* is an isomorphism.

Another way to prove this fact is by cellular homology : CP™ has a natural CW-complex
structure. Indeed, consider the closed ball B C C" and the map B — CP" given by

z=1(21,.y2n) — [\/1 — |22 21 zn} .

The interior B of the ball is sent homeomorphically to C* C CP", and the boundary of the
ball, where |z|?> = 1, is sent to CP"~! at infinity. By iterating this construction, we find a
cellular decomposition of CP" where the 2k-skeleton is CP*. This implies, by usual facts on
cellular homology, that j. : Ho(CP"~!) — Hy(CP") is an isomorphism.

Proposition 2.3. For all 1 < k < n, we have a natural isomorphism

H2lc (Pn) — H2 (Pn)(@k'



The tool we use in order to prove this is the cup-product and wedge product on singular
and de Rham cohomology. The crucial fact here is that it again commutes with the comparison
theorem, i.e. that the comparison theorem interchanges cup product and wedge product, i.e.

c(wAn) = e(w) — c(B).

It is, again, not immediately clear that the wedge product is defined on algebraic de Rham
cohomology. To get an idea of how it should be done, notice that the wedge induces a morphism
of complex of K-vector spaces
This gives rise to a map H¥(Q% ®x Q%) — HiR(X).

Say Z* is an injective resolution of 2% : even though the complex 7°* ® x Z*® does not necessarily
have injective terms anymore, it is quasi-isomorphic to 2% ® €%, because tensoring over a
field is always exact. Therefore, if we choose an injective resolution J°® of Z® @ Z°, it is also
a resolution of Q% ®x N%.
Since
HY(Z*(X) ok T°(X)) = €D HP(2%) @ HY(QY)
pt+q=Fk

by composing the maps
H* (I°(X) ®x I°(X)) — HY(Q% © Q%) — H* (%)

we get a map
D Hin () © Hip(X) > Hi(X)
ptq=k
induced by the wedge. It is possible, but maybe a little tedious, to check that applying this

same construction to the de Rham cohomology gives the usual wedge product, so it is com-
patible with the isomorphism Hf (X) ® C = HE, (X).

This same construction, applied to C instead of %, gives a map

P HE(X,C)® HL(X,C) —» HE(X,C)
ptq=k

which corresponds to the cup product. Since multiplication C ® C — C corresponds to the
wedge Q% ® Q% — %, we have proved that the wedge product and cup product are inter-
changed by the comparison isomorphism.

We now borrow a theorem from algebraic topology, namely that the ring Hj(P", Q) is
generated as a Q-algebra by a (linear) generator of H3(P", Q) (see [Hatcher], theorem 3.19).
This implies that the map

HE(B", Q%" — HE'(P". Q)

given by a1 ® - - - Q@ aiy > 1 — - - - — @, is an isomorphism, and same with the corresponding
map

Hig (P")®F — HI5(P").
These map commute with the comparison isomorphism, yielding the announced isomorphism
of (K, Q)-vector spaces.

All in all, we have proven the following :

Theorem 2.4. For 0 < k <n,
H*(P") = Q(—h).



Before ending this section, a word of caution : since all constructions on cohomology we
have seen so far seem to commute with the comparison isomorphism, one could be tempted
to believe that everything always commutes with comparison isomorphisms. Here is a coun-
terexample. For the sake of example, consider the smooth algebraic curve A' and § C A!
finite. There exists a residue map res : Hiz (Al \ S) — HI;(S) sending a differential form to
the collection of its residues at the points of S.

The natural corresponding map on homology is the so-called tube map 7', sending [s] € Hy(.S)
to [vs] € H1(A'\S), the class of a small circle around s. If we denote by T the corresponding
map on cohomology, then the square

HL (A'\ S,C) - HI.(S,C)

HL(AM\ §,C) — HY(S,C)

is not commutative ! Indeed, complex analysis tells you that

/U w=2im Y Ind,(o)res,(w).

seS

In other words, c¢(w) = 2im Y ress(w)Ind,, where Inds is the index around s, and the Ind,
form a basis of H(A! \ S). Applying T, which sends Ind, to [s]", gives

TV o c(w) = 2im Z ress(w)[s]".
s€S
Going the other way around the square sends w to ) . gress(w)1ls (this is the residue map),
and then the comparison isomorphism between H3(S,C) and HJ3(S,C) sends 1, to [s]".
Therefore, the square is missing a 2im factor to commute - the residue / tube map actually

defines a morphism
HY(A'\ S) — H°(S) ® Q(—1).

This is true in more generality : for any smooth variety X and Z smooth subvariety of codi-
mension 1, there are a residue and a tube morphism that induce a morphism of (K, Q)-vector
spaces H*(X) — HF1(X)(-1).

Poincaré duality is another case where care is needed. Indeed, for a smooth projective
variety X, Poincaré duality is obtained by the cup-product / wedge product
HY(X) @ H*™M(X) — H*™(X).

The (K, Q) vector space H?" has dimension 1, but it is not necessarily trivial - see the example
of P™, where we just computed it to be Q(—n). Therefore, in the case of projective space (and,
spoiler, in every other case), the dual of H*(X) as a (K, Q)-vector space is H*"~*(X)(n).

3 Computing periods

Now that we have successfully computed the periods of P”, let us ride on that high and com-
pute a few more periods.

Any smooth projective variety X of dimension n over K is a ramified covering of P", i.e.
there always exists a finite map



Such a map induces an isomorphism of (K, Q)-vector spaces
™ H*(P") 5 H*™(X)

simply given by multiplication by m.

This implies, quite suprpisingly, that the integral of a top algebraic form over any smooth
projective algebraic variety is always in 27i K. This

The last thing we will do is compute the determinant of an matrix of elliptic integrals. Let
X be an elliptic curve defined over K C Q - one may for instance think of an elliptic curve in
the Legendre family, given by y? = z(z — 1)(z — \) with A € K.
Fix a basis w,n of Hx(X, K) and a basis 0,6 of Hy(X,Q). The isomorphism Hl;(X,C) =
H}(X,C) is given in the given bases by the matrix

ol

Again, if X is a curve given by the equation y? = x(x — 1)(z — \), everything can be made
very explicit, as w can be the class of df and 7 can be the class of the form with a pole with
(xi:f\)y'
P!, ramified at 0,1, A and oo.

This can be used to give a purely analytic and very concrete description of the involved
integrals, which we will not present in detail here. The book [CMP17] presents all of it in
great detail in its introduction. Imagine now that we want to compute the determinant of the
matrix of periods. This seems like quite the complicated task a priori. However, we can notice
that if we write a : HJg(X,C) — HL(X,C) the isomorphism, then the determinant we are
looking for is the « matrix » of the map

Ao N Hig — A*H}

no residue A choice of o and § can be explicitly made by viewing X as a covering of

in the bases w An and o A 7.
We can compute this as follows. Since X is an elliptic curve, the space H'(X) is a (K, Q)
vector space of dimension 2, and we have a (surjective) morphism of (K, Q) vector spaces

HYX)® HY(X) — H*(X)

given by the cup-product. Since the cup-product is anticommutative, this factors as a mor-
phism
A’HY(X) — H*(X).

Since both objects have dimension 1 and the morphism is not 0 by general facts on the
cohomology of tori, this is an isomorphism.
Explicitly, we have an isomorphism

(A’Hjg, A’Hy, A%a) ~ H*(X) = Q(—1) = (K, Q, 2ir).

Therefore, if the bases of Hjp and H} are bases of H) (X, K) and H(X, Q) then the matrix
of A%a in the bases we have chosen has to be of the form 2imq with ¢ € K*
This extends to any algebraic torus T' of dimension n : the morphism

HY(T)®*" — H*™(T)
is nonzero and 2n-alternating, so it induces a morphism
A*"HY(T) — H?™(T) = Q(—n)

so the determinant of a period matrix of H'(T) is always in (2mi)"K*.
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