
The periods of Pn or why you should care about motives

Thomas Sera�ni

These are written notes from a talk I gave for the AGES (Algebraic Geometry Examples
Seminar), in which I hope to showcase the usefulness of �motivic thinking�.
The question starts as follows : given an algebraic di�erential k-form ω on a smooth algebraic
variety X, and a smooth k-cycle σ on Xan, we call the complex number∫

σ
ω

a period. This de�nition is somewhat unsatisfactory, as not every element in the k-th de
Rham cohomology group of an algebraic variety is the class of an algebraic k-form, but a pair-
ing between algebraic de Rham cohomology and singular homology can be formed nonetheless.

Maybe the simplest nontrivial case of a period is with X = Gm, k = 1, then the cycle
should be the circle and the di�erential form should be dz

z . Complex analysis tells us this
should evaluate to 2iπ. The next interesting case might be that of the projective line, or
projective space in general, but we run into a problem : there are no well-de�ned algebraic
di�erential forms on Pn, so any hope of �nding a genuine algebraic di�erential form is lost.
We could (and it is a fun exercise) unwind the de�nition of de Rham cohomology in the case
of Pn and compute the periods this way, but I wish to showcase another path. By embracing
the more heavy and modern formalism, we can pretty e�ciently compute the periods of Pn,
and then some more. In the �rst section, we recall the various de Rham cohomologies that
exist on a smooth algebraic variety, and the comparison theorem with Betti cohomology. The
second section is dedicated to computing the periods of Pn with some insight along the way,
and the last section contains some nice bonus calculations.

1 The period isomorphism

De�nition 1.1. Let M be a smooth manifold. The de Rham cohomology of M is the coho-
mology of the complex

(A•
M , d)

where Ak
M is the vector space of C-valued di�erential forms on X and d is the exterior deriva-

tive. We denote it by Hk
dR(M,C) when we want to insist on the complex coe�cients, or just

Hk
dR(M).

De�nition 1.2. Let M be a complex analytic manifold. The analytic de Rham cohomology
of M is the hypercohomology

Hk(Ω•
M )

where Ωk
M is the sheaf of holomorphic di�erential k-forms.

We also denote this by Hk
dR(M,C) or Hk

dR(M), we will soon explain why the two de Rham
cohomologies we just de�ned are naturally isomorphic.
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First, a quick refresher on hypercohomology is in order. First, recall that sheaf cohomology
is constructed by taking an injective (or �asque, �ne, ...) resolution I• of the sheaf F and
setting

Hk(X,F) = Hk(I•(X)).

If we see F as a complex with a single term concentrated at 0, say

F• = · · · → 0 → F → 0 → · · ·

then taking a resolution I• can be reformulated as taking a complex of injective sheaves I•

with a map ε : F• → I• that induces an isomorphism in cohomology. We call such a map a
quasi-isomorphism.
The procedure to de�ne hypercohomology of a complex of sheaves F is then exactly this :
take a complex with injective (�asque, ...) terms that is quasi-isomorphic to F•, evaluate then
compute cohomology.

We need to ensure two things : �rst, that injective resolutions always exist and second,
that they all compute the same cohomology. The existence of a resolution can be seen by �rst
taking a resolution of each term, then constructing a double complex with injective terms, and
checking that the associated total complex is quasi-isomorphic to the original complex. The
fact that all injective resolutions compute the same cohomology is very similar to the sheaf
cohomology case.

In our case, we have a special resolution of Ω•
M . De�ne, for U ⊆ M open Ak

M (U) as the
space of smooth k-forms on M , seen as a smooth manifold.

Lemma 1.3 (Poincaré lemma). The complex A•
M is quasi-isomorphic to its subcomplex C

concentrated in degree 0.

Lemma 1.4 (Holomorphic Poincaré lemma). The complex Ω•
M is quasi-isomorphic to its

subcomplex C concentrated in degree 0.

These lemma can be rephrased as : a closed smooth (resp. holomorphic) di�erential form
is always locally exact, i.e. it is locally the di�erential of a smooth (resp. holomorphic) form.
The Ak

M , being �ne sheaves, are acyclic, meaning that hypercohomology is swiftly computed
as

Hk(A•
M ) = Hk(A•

M ).

Since inclusions C ↪→ Ω•
M and C ↪→ A•

M are quasi-isomorphisms, the inclusion Ω•
M ↪→ A•

M is
also a quasi-isomorphism. We therefore have a canonical isomorphism

Hk(Ω•
M ) = Hk(A•

M )

and the two de Rham cohomologies we de�ned are one and the same.

De�nition 1.5. Let X be a smooth algebraic variety over a �eld K ⊆ C. The de Rham
cohomology of X is the hypercohomology of the de Rham complex of X :

Hk
dR(X) = Hk(Ω•

X).

Unlike the previous two cohomologies we de�ned, these a K-vector spaces and not C-vector
spaces.

As expected, this is again the same de Rham cohomology.
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Theorem 1.6 ([Gro66], Theorem 1'). If X is a smooth complex algebraic variety, then

Hk
dR(X)

∼−→ Hk
dR(X

an).

This should be at least a little surprising, especially given that X is not at all supposed
projective here !

If X a smooth algebraic variety de�ned over K ⊆ C, then we can form XC and have
Hk

dR(XC) = Hk
dR(X) ⊗K C. Therefore, the complexi�cation of Hk

dR(X) is Hk
dR(X

an), where
we allow ourselves to write Xan for Xan

C .
Now that we have introduced all the de Rham players, all that is left to state the comparison

isomorphism is to de�ne Betti cohomology.

De�nition 1.7. Let S be a topological space. The Betti cohomology of S, noted Hk
B(S,Q)

or Hk
B(S) is the cohomology of the constant sheaf Q on S.

We will also write Hk
B(S,C) for Betti cohomology with complex coe�cients, it is the coho-

mology of the constant sheaf C and is isomorphic to Hk
B(S)⊗Q C.

Remark. For S a reasonable (for instance a manifold) topological space, the cohomology
Hk

B(S,Q) is naturally the singular cohomology of S with coe�cients in Q, that is to say,
it is the dual of the singular homology of X :

Hk
B(X,Q) = Hk(X,Q)∨.

For a proof of this fact, see [Spa66], corollary 8 of section 8 and corollary 7 of section 9.

Theorem 1.8. Let M be a smooth manifold. The quasi-isomorphism C ∼−→ A•
M induces an

isomorphism
Hk

dR(M,C) ∼−→ Hk
B(X,C).

Remark. If we recall that Hk
B(M) is the dual Hk(M,Q)∨ of the k-th singular homology of M ,

the de Rham theorem is given by integration of di�erential forms against cycles, i.e. to the
class of a di�erential form ω we associate the linear form

σ 7→
∫
σ
ω.

This only makes sense if σ is a smooth cycle and it should be checked that it does not depend
on the choice of ω and σ in the homology and cohomology classes. The �rst item is solved by
approximating continuous functions by smooth functions and the second one is a consequence
of the Stokes formula.

A direct consequence of this theorem is the famous period isomorphism.

Theorem 1.9 (Period isomorphism). Let X be a smooth algebraic variety over a �eld K ⊆ C.
We have a comparison isomorphism

c : Hk
dR(X)⊗K C ∼−→ Hk

B(X
an)⊗Q C

What we just did is a very usual process : we have added extra structure on the cohomology
of our space. Here, the cohomology can be thought of as a triple (VK , VQ, c) where VK and VQ
are vector spaces over K and Q respectively and

c : VK ⊗K C ∼−→ VQ ⊗Q C

is an isomorphism (the comparison isomorphism). This is worth making into a de�nition !
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De�nition 1.10. A (K,Q)-vector space is a triple (VK , VQ, α) where VK and VQ are �nite
dimensional K- and Q-vector spaces respectively and

α : VK ⊗K C ∼−→ VQ ⊗Q C

is an isomorphism.

Example. The simplest example of a (K,Q)-vector space is the triple (K,Q, a) with a ∈ C×.
When a = 2iπ, we give it a special name and call it Q(−1).

Remark. People more familiar with Hodge structures or Galois representation might be sur-
prised. Indeed, Q(−1) should respectively be the Hodge structure of dimension Q with the
�ltration F 0 = 0, F 1 = Q or Qp(−1) should be the dual of the cyclotomic character of the
GQp . The entire point of motives is that these objects should all be one and the same : H2(P1)
is Q(−1), be it as a (K,Q)-vector space, a Hodge structure or a Galois representation.
Being cheeky, one can also point out that Q(−1) can indeed be interpreted as the cyclotomic
character of the absolute Galois group GR of the real numbers, as the complex conjugate of
2iπ is −2iπ.

(K,Q)-vector spaces can be made into an abelian category, with tensor products and
internal homs (such a category is called a tannakian category). Everything is de�ned in the
obvious way and there is no major di�culty. We give the de�nition of morphisms for the
example : a morphism f : V → W of (K,Q)-vector spaces is a couple (fK , fQ) of linear maps,
fK : VK → WK , fQ : VQ → WQ making the following diagram commute :

VK ⊗ C WK ⊗ C

VQ ⊗ C WQ ⊗ C

fK⊗C

αV αW

fQ⊗C

A few remarks are in order : �rst, we have exact, faithful, additive tensor functors ωK and
ωQ sending V to VK and VQ respectively. These functors are also conservative in the sense
that for f : V → W a morphism, it is an isomorphism if and only if ωK(f) or ωQ(f) is an
isomorphism.

This turns out to be incredibly useful : when we want to prove a statement on algebraic de
rham cohomology for some construction that commutes with the comparison isomorphism, it
is possible to turn around and do a purely algebraic topological proof to prove the isomorphism
for Betti cohomology.

Since our goal is to compute periods, we should wonder what kind of object we can expect
to recover from a (K,Q)-vector space V . By choosing bases for VK and VQ, we can get an ac-
tual period matrix P ∈ GLn(C) representing the isomorphism α, but it is well de�ned only up
to a change of basis : choosing di�erent bases for VK and VQ will give the matrix BPA−1 with
B ∈ GLn(Q) and A ∈ GLn(K) the base change matrices. Therefore, a (K,Q)-vector space
gives a unique, well-de�ned class P ∈ GLn(Q)\GLn(C)/GLn(K). As one would expect, the
class of this matrix uniquely determines the (K,Q)-vector space up to isomorphism because
the (K,Q)-vector spaces (Kn,Qn, P ) and (Kn,Qn, BPA−1) are isomorphic via the morphism
(B,A).

From now on, for X a smooth algebraic variety, we write Hk(X) for the (K,Q)-vector
space (Hk

dR(X), Hk(Xan,Q), c).
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2 Computing H2k(Pn) as a (K,Q)-vector space

We keep our goal in mind, computing the � period matrix � of H2k(Pn
K) (actually just a period

since those have dimension 1), which we will achieve by computing H2k(Pn) as a (K,Q)-vector
space. Our �rst step will be the case n = 1, easiest to compute and a good stepping stone for
the general case. We will then use the result to compute H2(Pn) for all n, and �nally use this
to compute H2k(Pn) in all generality.

Proposition 2.1.

H2(P1) = Q(−1).

The way we go about proving this is by using the Mayer-Vietoris exact sequence with
U = A1

0 and V = A1
∞ the two a�ne charts on P1 and U ∩V = Gm. If we accept for a moment

that the Mayer-Vietoris exact sequence commutes with the comparison isomorphism, i.e. that
it is an exact sequence of (K,Q) vector spaces, then we have

· · · → H1(A1
0)⊕H1(A1

∞) → H1(Gm) → H2(P1) → H2(A1
0)⊕H2(A1

∞) → · · ·

Since H1(A1) = H2(A1) = 0, we get an isomorphism of (K,Q) vector spaces

H1(Gm)
∼−→ H2(P1).

All that is left is to check that H1(Gm) = Q(−1), which is guaranteed by the computation∫
U

dz

z
= 2iπ.

The reason why the Mayer-Vietoris commutes with the comparison isomorphism is that it
is a general construction, functorial in the complex of sheaves, in hypercohomology. Explaining
it takes some time, the curious reader can consult [Stacks, Tag 01E9] where it is done for a sheaf
instead of a complex of sheaves but works the same way mutatis mutandis for hypercohomology.
Since the sequence is functorial in the complex of sheaves and comparison isomorphism is
induced by the quasi-isomorphism C → Ω•

X , the Mayer-Vietoris sequence is really a sequence
of (K,Q) vector spaces.
Now that we have computed H2(P1), we can use this to compute H2(Pn) for all n.

Proposition 2.2. For n ⩾ 2, the embedding j : Pn−1 ↪→ Pn induces an isomorphism

j∗ : H2(Pn)
∼−→ H2(Pn−1).

Therefore, H2(Pn) = Q(−1).

This comes down to the de�nition of the pullback of cycles and di�erential forms. A
morphism f : X → Y of smooth algebraic varieties induces a pushforward

f∗ : Hk(X
an,Q) → Hk(Y

an,Q)

dual to the pullback
f∗ : Hk

B(Y,Q) → Hk
B(X,Q).

Considering smooth de Rham cohomology, we also have a pullback on di�erential forms, and
it induces a pullback f∗ : Hk

dR(Y
an) → Hk

dR(X
an).

By unwinding the de�nition of the integral of a di�erential form ω on a smooth singular
k-cycle σ : ∆k → X, we can see that∫

f∗σ
ω =

∫
∆k

(f∗σ)
∗ω =

∫
∆k

σ∗f∗ω =

∫
σ
f∗ω
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hence the pullback commutes with the comparison isomorphism.

In order to understand how the pullback is de�ned on Hk
dR(X), we need a more hyper-

cohomological description. Take f : X → Y a morphism of smooth algebraic varieties and
F• a complex of sheaves on T . Choose an injective resolution I• of F• : since f−1 is exact,
an injective resolution J • of f−1I• will be a resolution of f−1F•. Consider the morphism of
complexes

I• → f∗f
−1I• → f∗J •

where the �rst map is the unit map from the adjunction between f∗ and f−1. Evaluating on
Y gives a map

I•(X) → J •(X)

which corresponds to a morphism Hk(Y,F•) → Hk(X, f−1F•).
For F• = Q we are done since f−1Q = Q. In order to get the pullback on de Rham cohomol-
ogy, one should go one step further compose this with the map f−1Ω•

Y → Ω•
X given by the

pullback of di�erential forms. It is not immediately obvious that this does correspond to the
pullback of global di�erential forms in de smooth description of de Rham cohomology but one
can check.
We could also directly check using that description that the comparison isomorphism com-
mutes with pullback, by explicitly writing things out and using the fact that both f−1ΩY an

and ΩXan are resolutions of C on Xan.

All that is left to do is check that the pullback is an isomorphism in some realization, i.e.
that

H2(Pn) → H2(Pn−1)

is an isomorphism for any cohomology (smooth de Rham, analytic de Rham, Betti,...).

We give two ways of doing this : the �rst one hinges on the fact that H2
dR(Pn,C) has

dimension 1 and is generated by its Kähler form

ωn =
n∑

i=1

dzidzi
(1 + |zi|2)2

.

Clearly, j∗ωn = ωn−1, so j∗ is an isomorphism.

Another way to prove this fact is by cellular homology : CPn has a natural CW-complex
structure. Indeed, consider the closed ball B ⊆ Cn and the map B → CPn given by

z = (z1, ..., zn) 7→
[√

1− |z|2 : z1 : ... : zn
]
.

The interior B of the ball is sent homeomorphically to Cn ⊆ CPn, and the boundary of the
ball, where |z|2 = 1, is sent to CPn−1 at in�nity. By iterating this construction, we �nd a
cellular decomposition of CPn where the 2k-skeleton is CPk. This implies, by usual facts on
cellular homology, that j∗ : H2(CPn−1) → H2(CPn) is an isomorphism.

Proposition 2.3. For all 1 ≤ k ≤ n, we have a natural isomorphism

H2k(Pn) = H2(Pn)⊗k.
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The tool we use in order to prove this is the cup-product and wedge product on singular
and de Rham cohomology. The crucial fact here is that it again commutes with the comparison
theorem, i.e. that the comparison theorem interchanges cup product and wedge product, i.e.
c(ω ∧ η) = c(ω) ⌣ c(β).

It is, again, not immediately clear that the wedge product is de�ned on algebraic de Rham
cohomology. To get an idea of how it should be done, notice that the wedge induces a morphism
of complex of K-vector spaces

Ω•
X ⊗K Ω•

X → Ω•
X .

This gives rise to a map Hk(Ω•
X ⊗K Ω•

X) → Hk
dR(X).

Say I• is an injective resolution of Ω•
X : even though the complex I•⊗KI• does not necessarily

have injective terms anymore, it is quasi-isomorphic to Ω•
X ⊗ Ω•

X , because tensoring over a
�eld is always exact. Therefore, if we choose an injective resolution J • of I• ⊗K I•, it is also
a resolution of Ω•

X ⊗K Ω•
X .

Since
Hk (I•(X)⊗K I•(X)) =

⊕
p+q=k

Hp(Ω•
X)⊗Hq(Ω•

X)

by composing the maps

Hk (I•(X)⊗K I•(X)) → Hk(Ω•
X ⊗ Ω•

X) → Hk(Ω•
X)

we get a map ⊕
p+q=k

Hp
dR(X)⊗Hq

dR(X) → Hk
dR(X)

induced by the wedge. It is possible, but maybe a little tedious, to check that applying this
same construction to the de Rham cohomology gives the usual wedge product, so it is com-
patible with the isomorphism Hk

dR(X)⊗ C = Hk
dR(X

an).

This same construction, applied to C instead of Ω•
X , gives a map⊕

p+q=k

Hp
B(X,C)⊗Hq

B(X,C) → Hk
B(X,C)

which corresponds to the cup product. Since multiplication C ⊗ C → C corresponds to the
wedge Ω•

X ⊗ Ω•
X → Ω•

X , we have proved that the wedge product and cup product are inter-
changed by the comparison isomorphism.

We now borrow a theorem from algebraic topology, namely that the ring H∗
B(Pn,Q) is

generated as a Q-algebra by a (linear) generator of H2
B(Pn,Q) (see [Hatcher], theorem 3.19).

This implies that the map
H2

B(Pn,Q)⊗k → H2k
B (Pn,Q)

given by α1⊗· · ·⊗αn 7→ α1 ⌣ · · · ⌣ αn is an isomorphism, and same with the corresponding
map

H2
dR(Pn)⊗k → H2k

dR(Pn).

These map commute with the comparison isomorphism, yielding the announced isomorphism
of (K,Q)-vector spaces.

All in all, we have proven the following :

Theorem 2.4. For 0 ≤ k ≤ n,
H2k(Pn) = Q(−k).
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Before ending this section, a word of caution : since all constructions on cohomology we
have seen so far seem to commute with the comparison isomorphism, one could be tempted
to believe that everything always commutes with comparison isomorphisms. Here is a coun-
terexample. For the sake of example, consider the smooth algebraic curve A1 and S ⊆ A1

�nite. There exists a residue map res : H1
dR(A1 \ S) → H0

dR(S) sending a di�erential form to
the collection of its residues at the points of S.
The natural corresponding map on homology is the so-called tube map T , sending [s] ∈ H0(S)
to [γs] ∈ H1(A1 \S), the class of a small circle around s. If we denote by T∨ the corresponding
map on cohomology, then the square

H1
dR(A1 \ S,C) H0

dR(S,C)

H1
B(A1 \ S,C) H0

B(S,C)

res

c c

T∨

is not commutative ! Indeed, complex analysis tells you that∫
σ
ω = 2iπ

∑
s∈S

Inds(σ)ress(ω).

In other words, c(ω) = 2iπ
∑

ress(ω)Inds, where Inds is the index around s, and the Inds
form a basis of H1

B(A1 \ S). Applying T∨, which sends Inds to [s]∨, gives

T∨ ◦ c(ω) = 2iπ
∑
s∈S

ress(ω)[s]
∨.

Going the other way around the square sends ω to
∑

s∈S ress(ω)1s (this is the residue map),
and then the comparison isomorphism between H0

dR(S,C) and H0
B(S,C) sends 1s to [s]∨.

Therefore, the square is missing a 2iπ factor to commute - the residue / tube map actually
de�nes a morphism

H1(A1 \ S) → H0(S)⊗Q(−1).

This is true in more generality : for any smooth variety X and Z smooth subvariety of codi-
mension 1, there are a residue and a tube morphism that induce a morphism of (K,Q)-vector
spaces Hk(X) → Hk−1(X)(−1).

Poincaré duality is another case where care is needed. Indeed, for a smooth projective
variety X, Poincaré duality is obtained by the cup-product / wedge product

Hk(X)⊗H2n−k(X) → H2n(X).

The (K,Q) vector space H2n has dimension 1, but it is not necessarily trivial - see the example
of Pn, where we just computed it to be Q(−n). Therefore, in the case of projective space (and,
spoiler, in every other case), the dual of Hk(X) as a (K,Q)-vector space is H2n−k(X)(n).

3 Computing periods

Now that we have successfully computed the periods of Pn, let us ride on that high and com-
pute a few more periods.

Any smooth projective variety X of dimension n over K is a rami�ed covering of Pn, i.e.
there always exists a �nite map

π : X
m:1−−→ Pn
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Such a map induces an isomorphism of (K,Q)-vector spaces

π∗ : H2n(Pn)
∼−→ H2n(X)

simply given by multiplication by m.

This implies, quite suprpisingly, that the integral of a top algebraic form over any smooth
projective algebraic variety is always in 2πiK×. This

The last thing we will do is compute the determinant of an matrix of elliptic integrals. Let
X be an elliptic curve de�ned over K ⊆ Q - one may for instance think of an elliptic curve in
the Legendre family, given by y2 = x(x− 1)(x− λ) with λ ∈ K.
Fix a basis ω, η of H1

dR(X,K) and a basis σ, δ of H1(X,Q). The isomorphism H1
dR(X,C) ∼−→

H1
B(X,C) is given in the given bases by the matrix[∫

σ ω
∫
σ η∫

δ ω
∫
δ η

]
.

Again, if X is a curve given by the equation y2 = x(x − 1)(x − λ), everything can be made
very explicit, as ω can be the class of dx

y and η can be the class of the form with a pole with

no residue dx
(x−λ)y . A choice of σ and δ can be explicitly made by viewing X as a covering of

P1, rami�ed at 0, 1, λ and ∞.
This can be used to give a purely analytic and very concrete description of the involved
integrals, which we will not present in detail here. The book [CMP17] presents all of it in
great detail in its introduction. Imagine now that we want to compute the determinant of the
matrix of periods. This seems like quite the complicated task a priori. However, we can notice
that if we write α : H1

dR(X,C) → H1
B(X,C) the isomorphism, then the determinant we are

looking for is the � matrix � of the map

Λ2α : Λ2H1
dR → Λ2H1

B

in the bases ω ∧ η and σ ∧ η.
We can compute this as follows. Since X is an elliptic curve, the space H1(X) is a (K,Q)
vector space of dimension 2, and we have a (surjective) morphism of (K,Q) vector spaces

H1(X)⊗H1(X) → H2(X)

given by the cup-product. Since the cup-product is anticommutative, this factors as a mor-
phism

Λ2H1(X) → H2(X).

Since both objects have dimension 1 and the morphism is not 0 by general facts on the
cohomology of tori, this is an isomorphism.
Explicitly, we have an isomorphism(

Λ2H1
dR,Λ

2H1
B,Λ

2α
)
≃ H2(X) = Q(−1) = (K,Q, 2iπ).

Therefore, if the bases of H1
dR and H1

B are bases of H1
dR(X,K) and H1

B(X,Q) then the matrix
of Λ2α in the bases we have chosen has to be of the form 2iπq with q ∈ K×

This extends to any algebraic torus T of dimension n : the morphism

H1(T )⊗2n → H2n(T )

is nonzero and 2n-alternating, so it induces a morphism

Λ2nH1(T ) → H2n(T ) = Q(−n)

so the determinant of a period matrix of H1(T ) is always in (2πi)nK×.
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