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Abstract

The purpose of this course, held during the trimester on �Real Geometry�in
CENTRE EMILE BOREL at Institut Henri Poincaré (Paris) during October-
November 2005, is to present valuation fans and to study theories corresponding
to closure under algebraic extensions of a �eld equipped with a valuation fan.
On the way we shall present other mathematical objects interesting for

Real Algebraic Geometry, like R�places; real holomorphy ring and orderings of
higher level, and give some applications.
Some elements of Model Theory for these theories of �elds will also be pro-

vided.
The frame of the course will be a real �eld K, which means that �1 is not

a �nite sum of squares of elements of K. It is well known from Artin-Schreier
theory that such a �eld can be ordered.

1 Compatibility of a valuation with an ordering.

1.1 Preorderings, orderings.

De�nition 1 A preordering T of K is a subset T � K; satifying :

T + T � T; T:T � T; 0; 1 2 T; � 1 =2 T and T � = Tnf0g is a subgroup of K�:

The preordering T is called a quadratic preordering when K2 � T:

Zorn�s lemma shows the existence of maximal quadratic preorderings which
are orderings.
These are characterized by :
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De�nition 2 A subset P of K is an ordering if :

P + P � P; P:P � P; P [ �P = K;�1 =2 P

>From these properties one can easily deduce that 0; 1 2 P; P \ �P = f0g
and

P
K2 � P

We can also call P a positive cone : to any such ordering P one can associate
a binary relation, which is a total order relation, as follows :

b� a 2 P , a �P b:

Then P is the set of positive elements.

Example 3 The �eld R admits only one ordering with positive cone P = R2:

Example 4 The �eld Q( 2
p
2) :=

�
a+ b 2

p
2 j a; b 2 Q

	
admits two orderings,

one making 2
p
2 positive and the other making 2

p
2 negative :

Example 5 R((X)) the power series �eld admits also two orderings making X
in�netisimal positive or negative.

Example 6 R(X) admits in�nitely many orderings. For any a 2 R one can
de�ne Pa;+ and Pa;� making X�a respectively in�nitesimal positive or negative.

1.2 Real Valuations

De�nition 7 A Krull valuation v on a �eld K is a surjective map

v : K� � �

where � is a totally ordered abelian group, such that
(1) v(xy) = v(x) + v(y) for any x; y in K�;
(2) v(x+ y) � min fv(x); v(y)g ; for any x; y in K�; with x+ y in K�:

The valuation ring of v is

Av := fx 2 K j x = 0 or v(x) � 0g

and its maximal ideal is

Iv := fx 2 K j x = 0 or v(x) > 0g

Uv := Av n Iv will denote the group of units and kv := Av=Iv the residue
�eld of the valuation.

De�nition 8 Such a valuation v is said to be real if and only if the residue �eld
kv is formally real (which means �1 =2

P
k2v):

Remark 9 A �eld admits real valuations if and only if it is formally real.
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Of course a real �eld admits real valuations at least the trivial one.
Given a ordering P in a �eld K, one can de�ne the convex hull of Q :

A(P ) := fx 2 K j 9r 2 Q r � x 2 Pg

which is a valuation ring (means that for any x 2 K either x or x�1belongs to
the ring) and

I(P ) := fx 2 K j 8r 2 Q� r � x 2 Pg

is its unique maximal ideal.
A(P ) is clearly a subring of K ; it is a valuation ring because assuming

b =2 A(P ) we can prove b�1 2 A(P ) : let b =2 A(P ); assume b > 0; since b =2 A(P )
we have in particular 1 < b;therefore 0 < b�1 < 1 which implies that b�1 2 A(P )
because A(P ) is convex from its de�nition as convex hull of Q for P:
We shall see later that this valuation is compatible with the ordering P and

pushes down on the residue �eld an archimedean ordering, hence the valuation
is real.
Conversely we shall see below that the well known Baer-Krull theorem ensure

that if kv admits an ordering, then K admits also at least one ordering.

1.3 Compatibility of an ordering with a valuation

De�nition 10 A quadratic preordering T is said to be fully compatible with a
valuation v if and only if 1 + Iv � T:
In this case T induces on the residue �eld kv a quadratic preordering T :

In the special case of an ordering P; we just say that P is compatible with
v, then P induced by P in the residue �eld kv is an ordering of kv.

Example 11 The trivial valuation, sending every element of K to 0; is com-
patible with any ordering of K:

Example 12 The valuation associated to an ordering P with valuation ring

A(P ) := fx 2 K j 9r 2 Q r � x 2 Pg

The valuation associated to a valuation ring A of K, with maximal ideal
I, is de�ned by v : K� ! � where � := K�=(AnI), and � is ordered by
v(x) � v(y), yx�1 2 A:
I(P ) := fx 2 K j 8r 2 Q� r � x 2 Pg being the maximal ideal we have

1 + I � P hence the valuation is compatible with P: Then P induces on the
corresponding residue �eld an archimedean ordering P .
Clearly P is closed under addition and multiplication and P [ �P = kv; if

�1 was in P we would have �1 = a for some a 2 P \A(P ): Then 1+ a 2 I(P );
hence �a 2 1 + I(P ) � P; so we would get a = 0 which is impossible.
Also for any x 2 A(P ) there exist some r 2 Z such that �r < x < r; hence

in the residue �eld we have �r < x < r and P is an archimedean ordering of
kv:
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Theorem 13 Let P be an ordering of K and v a valuation on K;the following
are equivalent :
(1) 0 <P a �P b) v(a) � v(b) in � the value group of v:
(2) the valuation ring Av is convex with respect to P:
(3) the maximal ideal Iv of Av is convex with respect to P:
(4) v is compatible with P (i.e. 1 + Iv � P ):

(1) ) (2) A is convex means that x <P y <P z; with x; z 2 A ) y 2 A
; equivalently 0 <P a <P b with b 2 A ) a 2 A: From (1) we deduce that
v(a) � v(b) � 0 in � hence a 2 A:
(2) ) (3) Assume 0 <P a �P b with b 2 A then 0 <P b�1 <P a�1; but

b�1 =2 A so using (2) we deduce a�1 =2 A hence a 2 I; I being the ideal of non
invertible elements of A:
(3) ) (4) Let m 2 I; if 1 +m =2 P then 1 +m 2 �P; so 1 +m <P 0 hence

0 <P 1 < �m and using the convexity of I for P;since �m 2 I too, this yields
1 2 I which is impossible.
(4) ) (1) Assume 0 <P a �P b but v(a) < v(b) in � ; we deduce 0 <

v(b)� v(a) = v( ba ) hence
b
a 2 I, and also �

b
a ; From (4) we get 1 + (� b

a ) 2 P ,
so a�b

a > 0; hence a > b which is impossible.

Theorem 14 Proof.

Theorem 15 Let F be the family of all valuation rings compatible with a given
ordering P ; then
(1) The valuation rings in F form a chain under inclusion.
(2) The smallest element of F is A(P ):

(a) Suppose A;B 2 F and A " B;let a 2 AnB and a > 0; we shall prove
that B � A; Consider 0 < b 2 B; from convexity of B we cannot have 0 < a � b
so we must have 0 < b � a; from the convexity of A; we deduce b 2 A:
(b) Let A 2 F , A is convex and contains Z, hence A contains A(P ) the

convex hull of Q:
Note that any subring of K containing a valuation ring must itself be a

valuation ring, hence F consists of all subrings of K containing A(P ); remark
also that A � A0 implies I 0 � I:

De�nition 16 The place associated to a valuation ring A; is an application
� : K ! kv[f1g ; where � jAis the canonical surjection from A to kv:and which
is an homomorphism for sum and product extended to kv [ f1g (x+1 = 1;
and x1 =1 with x 6= 0): In fact if a 2 A then �(a) = a = a+ I and if a =2 A
then �(a) =1:
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1.4 The Baer-Krull theorem.

Theorem 17 Let A be a real valuation ring of K: Let P be an ordering in the
residue �eld kv: Let �v;P be the set of all orderings Pi in K inducing the given P
in kv: Then there is a bijection between �v;P and Hom(�;Z=2) where � denotes
the value group of v:

The proof needs the following Lemma.

Lemma 18 Let K be a �eld and A a real valuation, hence kv admits at least
one ordering with positive cone 
, then there exist at least one ordering on K;
with positive cone P compatible with v (or with �v the place associated with v)
such that P=
:

Let T :=
�
x 2 K j 9y 2 K 9z 2 AnI �v(z) >
 0 and x = y2z

	
; we �rst show

that T is a proper quaratic preordering of K.
It is clear that if x1; x2 2 T then x1x2 2 T and if x 2 T then x2 2 T:
Now suppose that �1 2 T then 9y 2 K 9z 2 AnI such that �v(z) >
 0 and

�1 = y2z; hence z = �y�2; but �v(�y�2) �
 0 so we cannot have �v(z) >
 0;
hence �1 =2 T:
To show that T is closed under sum, let x1; x2 2 T; so x1 = y21z1 and

x2 = y22z2 with z1; z2 2 AnI; �v(z1) >
 0 and �v(z2) >
 0: Write x1 +
x2 = y21z1 + y

2
2z2 = y21z1(1 + z

�1
1 z2y

�2
1 y22); and assume y2y

�1
1 2 A (other-

wise y1y
�1
2 is in A): Let z = 1 + z�11 z2y

�2
1 y22 ; �v(z) = 1 + �v(z

�1
1 z2y

�2
1 y22) =

1+(�v(z1))
�1�v(z2)(�v(y

�1
1 y2))

2 hence z 2 AnI with �v(z) >
 0 and x1+x2 =
(z1z)y

2
1 is in T:

Then there exist P an ordering containing the proper preordering T: A is
convex for P because from 1 + I � T we can deduce 1 + I � P: So suppose
x 2 I; v(x) >
 0 hence v(1 + x) = 0 so 1 + x 2 AnI and �v(1 + x) = 1 >
 0: so
we can write 1 + x = (1 + x)12 and 1 + x 2 T:
And also we have P = 
 since P � T and T = 
 (T � 
 is clear, let z 2 


and z such that �v(z) >
 0; then z 2 AnI and writing z = z12; one gets z 2 T:
Now we can give the proof of Baer-Krull theorem.
>From the lemma we know that there exist an ordering P; with A convex

for P and P = 
: Let Q be any element of �K such that Q is compatible with
v (or with �v) and Q = 
:
De�ne the following mapping
�K �! Hom(�;Z=2)
Q 7!< P;Q >
de�ned by < P;Q > (v(x)) = 0 if x has same sign for P and Q; and

< P;Q > (v(x)) = 1 otherwise.
We �rst show that < P;Q > is a well de�ned group homorphism from � to

Z=2:
It is clear that x 7�!< P;Q > (v(x)) is a group homomorphism from K� !

Z=2 with kernel containing AnI; because if x 2 AnI then �v(x) >
 0 or �v(x) <

0; so for any Q such that Q = 
 we have x >Q 0 or x <Q 0; hence having same
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sign for P and Q we get < P;Q > (v(x)) = 0. Hence < P;Q > is a well de�ned
group homomorphism from � to Z=2:
The mapping Q 7!< P;Q > is injective because < P;Q > and P entirely

de�ne Q (sign of x for Q follows from knowing sign of x for P and < P;Q >
(v(x)):
We now have to show that the mapping Q 7!< P;Q > is surjective. Let

' 2 Hom(�;Z=2): Now de�ne
Q := fx 2 K j x = 0 or ('(v(x)) = 0 and x 2 P ) or ('(v(x)) = 1 and x 2 �Pg
We have to prove that Q is a positive cone of an ordering. It is obvious that

Q 6= K; Q:Q � Q; K2 � Q; and Q [ �Q = K:
We just prove that Q + Q � Q: Let x; y 2 Qn f0g ; assume x�1y 2 A

(otherwise xy�1 2 A); we distinguish two cases.
If x�1y 2 I; v(x�1y) > 0; then v(1 + x�1y) = 0; 1 + x�1y 2 AnI and

1 + x�1y 2 P because 1 + I � P: Hence 1 + x�1y 2 (AnI) \ P which implies
that 1 + x�1y 2 Q since (AnI) \ P � Q: Writing x + y = x(1 + x�1y) we get
x+ y 2 Q as product of two elements of Q:
If x�1y =2 I then x�1y 2 AnI and v(x�1y) = 0 implying 'v(x�1y) = 0:

Since x�1y 2 Q we deduce from the de�nition of Q that x�1y 2 P: Thus
1+x�1y 2 P; but also 1+x�1y 2 A and since �v(1+x�1y) = �v(1)+�v(x�1y)
we get �v(1 + x�1y) > 0 so 1 + x�1y =2 I: Finally 1 + x�1y 2 (AnI) \ P hence
belongs to Q: Again writing x+ y = x(1 + x�1y) we get x+ y 2 Q as product
of two elements of Q:
Verify now that A is Q� convex : let m 2 I; v(m) > 0 hence v(1 +m) = 0;

�v(1 + m) = 1 >
 0; so 1 + m 2 P ; v(1 + m) = 0 and 1 + m 2 P imply
1 +m 2 Q:
Also Q = 
 is obvious from P = 
 and de�nition of Q:
As a consequence, of the Baer-Krull theorem, if �=2� has, as vector space

over Z=2; a basis of n classes, then �v;P has 2n elements Pi ; hence the lifting
of P to K is unique if and only if � is 2�divisible.

2 Quadratic preorderings and Fans

The compatibility of a preordering with a valuation can be of two kinds. Given
T a proper quadratic preordering of a real �eld K, v is compatible with T if it
is compatible with some ordering P containing T , and v is fully compatible with
T if it is compatible with every ordering P containing T: In other words we give
the following equivalent de�nitions.

De�nition 19 Given T a proper quadratic preordering of a real �eld K and v
a valuation of K with unique maximal ideal I :
(1) v is fully compatible with T if and only if 1 + I � T
(2) v is compatible with T if and only if (1 + I) \ �T = ;; if and only if T

is a preordering in the residue �eld kv:

In the sequence we shall denote by �=T := fP ordering j P � Tg:
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A way of building fully compatible preorderings is to use the �wedge product�
introduced in 1978 by Becker in [ ] and Becker and Brocker in [ ].

De�nition 20 Let K be a real �eld, A a valuation ring of K, and � : A �! kv
the projection map ; let T be a preordering of K and S a preordering of kv such
that S � T : The wedge product denoted by T ^ S := T:��1(Snf0g).

We refer the reader to Lam�s book [L] p. 21 to verify that T ^ S is a
preordering of K fully compatible with v and such that residually T ^ S = S:
There is also an alternative de�nition for the wedge product :

T ^ S = \
n
orderings P � T j P 2 �=S

o
2.1 Fans

Fans in the context of preorderings have been presented �rst by Becker and
Kopping in [ ].

De�nition 21 Let K be a real �eld and T a proper quadratic preordering of
K: T is a fan if and only if for any S � T with �1 =2 S and S� = Snf0g is a
subgroup of K� such that [K� : S�] = 2 then S is an ordering of K:

Note that if T is a fan any preordering containing T is again a fan. There
is an alternative useful de�nition of a fan given in [L] p. 40, with proof of
equivalence of de�nitions.

De�nition 22 A preordering T is a fan if and only if for any a 2 K�n� T we
have T + aT � T [ aT: (such an element a is said T � rigid):

Examples of fans are provided by what is called trivial fans : orderings P
and intersection of two ordeings P1 \ P2: Further examples will be given later
with orderings of higher level.
Another example is the pullback bS of a trivial fan S in kv; namely bS =

K2^S = K2:��1(S�) is a fan in K: In fact the trivialization theorem of Bröcker
given later says that all fans arise in this way.
It is important to understand minimal fans, de�ned as T0 such that for

any quadratic preordering T1 � T0; T1 cannot be a fan. Such a minimal fan
T0 is the pullback of a trivial fan with respect to the valuation associated to
the valuation ring (convex hull of Q with respect to T0) given by A(T0) =
fx 2 K j 9r 2 Q r � x 2 T0g :

Theorem 23 Let K be a real �eld, v a valuation, and T a preordering; then
the following hold :
(a) if v is compatible with T , T is a fan implies that T is a fan
(b) if v is fully compatible with T , T is a fan if and only if T is a fan

Proof of (a) using second de�nition of a fan. Let b 2 AnI such that b =2 �T
we shall show that b is T � rigid: T being a fan let t1 + t2b 2 T + bT � T [ bT
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hence there exist t3 or t4 such that t1 + t2b = t3 or t1 + t2b = t4b: Going down
to kv we get t1 + t2b = t3 or t1 + t2b = t4b hence t1 + t2b 2 T [ bT ; and T is a
fan.
Proof of (b) using �rst de�nition of a fan. Assume v is fully compatible

with T and T is a fan we have to prove that T is a fan. Let W � T be
such that �1 =2 W; W � = Wnf0g is a subgroup of K� and [K� :W �] = 2;
we have to prove that W is an ordering. We �rst show that W is an ordering
; if �1 = w for some w 2 W \ A; then �1 = w + m for some m 2 I; so
�w = 1 +m 2 1 + I � T � W hence �1 2 W which is impossible. Since T
is a fan and W � a subgroup of k�v such that

�
k�v :W

�
�
= 2; W is an ordering.

Form the wedge product W ^W = W:��1(Wnf0g) = W (1 + I) � W:T � W
(W:��1(Wnf0g) =W (1+I) from [L] p.22) thenW^W �W; henceW =W^W
is an ordering.

2.2 Trivialization of fans

A very important theorem is the Brocker�s theorem of trivialization of fans.

Theorem 24 Let K be a real �eld and T be a fan. Then there exist a valuation
v fully compatible with T such that the pushdown T in the residue �eld kv is a
trivial fan.

we refer the reader to Lam ???
or write down the proof ???

3 R�places
3.1 R�place associée à un ordre
For a complete presentation of these notions one can refer to [L] and [Schü]
Let K be a real �eld and P an ordering on K; from previous results we

know that (kv;P ) can be uniquely embedded in (R;R2) since P is archimedean.
Denote i this embedding and � the canonical application from K into kv [f1g
(where if a =2 A(P ); then �(a) =1):

De�nition 25 The R� place associated to P is �P : K ! R[ f1g de�ned by
the following commutative diagram :

K
�P�! R [ f1g

� & % i

kv [ f1g

Explicitely �P (a) = 1 when a =2 A(P ); and if a 2 A(P ), then �P (a) =
inffr 2 Q j a �P rg = supfr 2 Q j r �P ag:
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3.2 Space of R�places
De�nition 26 The space of R-places of a �eld is M(K) = f�P j P 2 �(K)g;
where �(K) denotes the space of orderings of K.

M(K) is equipped with the coarsest topology making continuous the evalu-
ation mappings de�ned for every a 2 K by

ea : M(K) �! R [ f1g

� 7! �(a)

M(K) with this topology is a compact Hausdor¤ space and the mapping

� : �(K) �!M(K)

P 7! �P

is continuous, surjective and closed.

De�nition 27 The usual topology on �(K) is the Harrison topology generated
by the open-closed Harrison sets :

H(a) = P 2 �(K) j a 2 Pg:

With this topology � (K) is a compact totally disconnected space.
Craven has shown in [C] that every compact totally disconnected space is

homeomorphic to the space of orderings �(K) of some �eld K:
Remark that the topology of M(K) is also the quotient topology inherited

from �(K).

4 Orderings of higher level

>From now on preorderings will not be supposed to be quadratic. Hence the
general de�nition of a preordering will be :
A preordering T of K is a subset T � K; satifying :

T + T � T; T:T � T; 0; 1 2 T; � 1 =2 T and T � = Tnf0g is a subgroup of K�:

First examples are provided by the Becker�s orderings of higher level, which
are only partial orders.

De�nition 28 (Becker [Be1]) : Let K be a commutative formally real �eld,
P � K is an ordering of level n if :

P
K2n � P; P + P � P; P:P � P (hence

P � is a subgroup of K�); and if K�=P � ' Z=2nZ the ordering is of exact level
n.

The notation
P
K2n denotes the set of all �nite sums of 2n-th powers of

elements of K:
The level 1 orderings are the total usual orders.
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Theorem 29 (Becker [Be1]) :
P
K2n = \

level of P divides n
P

Theorem 30 (Becker [Be1]) : Let p be a prime,
P
K2 6=

P
K2p if and only

if K admits orderings of exact level p:

There exists another approach for such objects with higher level signatures.

De�nition 31 (Becker [Be3]) : A signature of level n is a morphism of abelian
groups

� : K� ! �2n

where �2n denotes the group of 2n-th roots of 1 and such that the kernel is
additively closed.

Clearly if � is a signature of level n; then P = ker� [ f0g is an ordering of
higher level, and its level divides n.

Example 32 Let K = R((X)), K admits two usual orders namely

P+ = K
2 [XK2 and P� = K

2 [ �XK2

and for any prime p there exist two orderings of exact level p :

Pp;+ = K
2p [XpK2p and Pp;� = K

2p [ �XpK2p

These higher level orderings have important links with sums of powers.
In the sequence

P
K2p will denote the set of �nite sums of 2p-th powers of

elements of K:

Theorem 33 The following are equivalent (p prime) :
(1)

P
K2 6=

P
K2p

(2) K admits an ordering of exact level p.

Theorem 34 For any integer n � 1 holdsX
K2n = \

P ordering whose level divides n
P

Example 35 If K = R((X)); there exist two usual oredrings

P+ = K
2 [XK2 et P� = K

2 [ �XK2

and for every prime p premier there exist two oredrings of exact level p :

Pp;+ = K
2p [XpK2p et Pp;� = K

2p [ �XpK2p

All these orderings are associated to the unique R�place of R((X)), and for the
associated valuation they all induce on the residue �eld the same archimedean
ordering.
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>From Becker�s works one can deduce :

Theorem 36 The following are equivalent :
(1) 8a 2 K a2 2

P
K4 ;

(2) every real valuation of K has a 2-divisible value group;
(3) K does not admit any ordering of exact level 2.

As a corollary we obtain that �P = �Q if and only if P and Q are the begin-
ning of a 2-primary chain of higher level orderings (such a chain has been de�ned
by Harman [H] as (Pn) = (P0;P1; :::; Pn; :::), P0 usual ordering, Pn ordering of
exact level 2n�1 satifying the condition Pn[�Pn = (P0\Pn�1)[�(P0\Pn�1))
The mapping � : �(K) �! M(K) is a bijection if and only if K does not

admit any ordering of exact level 2:

5 Valuation fans

De�nition 37 (Jacob [J1]) : a valuation fan is a preordering T such that there
exists a real valuation v; compatible with T , (meaning 1+ Iv � T ), inducing an
archimedean ordering on the residue �eld kv.

More precisely a preordering T is a valuation fan if and only if A(T ) = fx 2
K j 9r 2 Q r � x 2 Tg is a valuation ring with associated valuation v fully
compatible with T; and T in kv is an (archimedean) ordering.

Example 38 Usual orderings P are valuation fans (of level 1; i.e:
P
K2 � P ).

Example 39 Pn orderings of exact level n are valuation fans of level n.

Example 40 Let ��1(�) = fPi j �Pi = �g (where � is the mapping : �(K) �!
M(K) de�ned by P 7! �P ); then T = \Pi is a valuation fan and it is a minimal
level 1 valuation fan.

De�nition 41 ( Schwartz [S2]) : a generalized signature is a morphism of
abelian groups, � : K� ! G; such that the kernel is a valuation fan

Example 42 Example 43 If � is a group morphism, � : K� �! f�1g ; with
kernel additivily closed, then � is a signature, and P = ker�[f0g is an ordering.

Example 44 If � : K� ! �2n is a morphismof abelian groups, with additively
closed kernel, then P = ker� [ f0g is an ordering whose exact level divides n.

6 Algebraic closure of a �eld equipped with a
valuation fan

Many notions of real closure, under algebraic extensions, of a �eld equipped with
either higher level orderings or higher level signatures, either valuation fans or
generalized signatures have been introduced and studied.
All these attempts of closures can be uni�ed in one theory, the theory of

Henselian Residually Real-Closed Fields (HRRC �elds)
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De�nition 45 (Becker, Berr, Gondard [BBG]) : A �eld K is henselian resid-
ually real-closed (HRRC) if and only if it admits an henselian valuation v with
real-closed residue �eld kv:

Recall that a valuation v : K� � �v is henselian if it satis�es Hensel�s
lemma : �for any monic polynomial f 2 Av[X] , if f has a simple root � 2 kv,
then f has a root b 2 Av such that b = � �
In the litterature there exist other names for the same theory : the henselian

residually real-closed �elds are called real henselian �elds in Brown [Br], real-
closed with respect to a signature in Schwartz [S2] and almost real-closed �elds
in Delon-Farre [DF].

6.1 Examples of HRRC �elds

The basic examples of henselian residually real-closed �elds are constructed as
follows. Let K = R((�)) where R((�)) = f

P


a
t


 j 
 2 �; a
 2 Rg is the set of

generalized power series, with support of
P


a
t


 well ordered, R a real-closed

�eld and � a totally ordered abelian group. In K = R((�)) one can de�ne :
- product by t
t� = t
+�;
- sum by

P


a
t


 +
P
�

b�t
� =

P
�
(a� + b�)t

�;

- order by
P


a
t


 >K 0, am >R 0

where m = min(support
P


a
t


);

- valuation as v : R((�))! � de�ned by v(
P


a
t


) = m = min(support
P


a
t


):

Then it is known that R((�)) is a �eld, admitting v as henselian valuation
with real-closed residue �eld R and value group �; hence R((�)) is an HRRC
�eld.

6.2 Subtheories of the theory of HRRC �elds

Let v be a real valuation on a �eld K, kv its residue �eld and �v its value group.
Let S be a set of primes.
Relations between theories are described by the following diagram where

arrows map to subtheories.

Henselian Residually Real-Closed Fields (HRRC)
v henselian valuation , kv real-closed �eld

closed for generalized signature, or for valuation fan, or for R�place
#

HRRC �eld of type S (p =2 S ) �v p-divisible)

12



. &
S�generalized real-closed �eld (S �nite) Rolle �eld
if p =2 S then �v is p-divisible �v odd divisible
if p 2 S and �v is not p-divisible then HRRC �eld of type f2g
�v=p�v ' Z=pZ ; closed for
higher level ordering or chain signature

# & . #
Real-closed �eld Chain-closed �eld
;-generalized real-closed {2g-generalized real-closed
�v divisible �v=2�v ' Z=2Z
closed for a usual order closed for an ordering of level 2k

As said in the diagram above, any of these theories corresponds to a notion of
closure, under algebraic extensions, of a �eld equipped with some object: with an
order (real-closed �eld), with an ordering of two power exact level (chain-closed
�eld), with an ordering of p�power exact level where p is prime (fpg�real-
closed �elds), with an ordering of exact level n (generalized real-closed �elds of
exact type S (p 2 S , �v not divisible) and for all p 2 S , p j n with S �nite),
or with a valuation fan (henselian residually real-closed �eld).
Note that for HHRC �elds, an alternative object is a R�place (de�ned part

3); because to any R� place of a formally real �eld it is possible to associate a
canonical level 1 valuation fan in the �eld . Hence we can consider closures of a
�eld equipped with a R�place: These special closures must play some important
role in Real Algebraic Geometry (see [BG2] and [G4]).

6.3 On the question of uniqueness of closure

For a �eld equipped with a true usual order it is well known that the real closure
is unique up to K� isomorphism.
Even for chain-closed �elds this is no more true.
In order to recover such a uniqueness for chain-closed �elds one needs to

consider a closure for a whole chain of two power levels orderings in the sense
of Harman :

De�nition 46 (Harman [H]) : a 2-primary chain of orderings is

(Pn)n2N = (P0;P1; :::; Pn; :::)

P0 being a usual order, Pn an ordering of level 2n�1; such that

Pn[ � Pn= (P 0\Pn�1) [ �(P 0\Pn�1)

Theorem 47 (Harman [H]) : a �eld K; with a two power level chain of order-
ings, admits a closure under algebraic extensions unique up to K� isomorphism:
The closure is called a chain-closed �eld and it is equal to the intersection of the
two real-closures of K for P1 and P2:

13



For generalized real-closed �elds, Niels Schwartz has introduced the notion
of chain signature in order to recover the uniqueness up to K-isomorphism.

De�nition 48 (Schwartz, [S1]) : A chain signature is a homomorphism

' : K� ! f1;�1g � bZ
such that ker' is a valuation fan, with bZ =QbZp where bZp denotes the additive
group of p-adic integers,

One can recover orderings of higher level by taking :
Pn(') = '

�1(1� nbZ)
Theorem 49 (Schwartz, [S1]) : A �eld K equipped with a chain signature '
admits a closure under algebraic extensions unique up to K� isomorphism:
This closure is a HHRC �eld.

In the more general situation of a �eld equipped with a valuation fan we can
also ensure the uniqueness of the closure by considering a �eld equipped, not
only with a single valuation fan, but with a whole chain of valuation fans.
>From Brown�s work we can derive the following :

Theorem 50 ( Brown [Br]) : Let R and R0 be two algebraic HRRC �elds,
extensions of a �eld K, then the followings are equivalent:
(1) R and R0 are K � isomophic:
(2) R2n \K = R02n \K for all n 2 N .

In fact these Tn = R2n\K are valuation fans, which form a chain of valuation
fans (Tn)n2N as de�ned below; this chain is said to be induced by R:

De�nition 51 (Becker-Berr-Gondard [BBG]) : A chain of valuation fans is
de�ned as (Tn)n2N such that:
(1) K2n � Tn
(2) Tn:m � Tn
(3) (Tn)m � Tn:m
(4) T �n=T

�
n:m � T �1 =T �n:m is the subgroup of elements of exponent m.

Theorem 52 (Becker-Berr-Gondard [BBG]) : Any �eld K; equipped with a
chain of valuation fans (Tn)n2N; admits a closure R; under algebraic extensions,
unique up to K�isomorphism ; then R is a HRRC �eld and R induces (Tn)n2N
(i.e. Tn = R2n \K for all n):
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6.4 Properties of HHRC �elds

Henselian residually real-closed �elds have a lot of nice properties ; we list
without proof some of them below.

Let R be an HRRC �eld then :

(1) R is a real �eld;

(2) Every algebraic extension of R is a radical extension;

(3) R has no real extension of degree p 2 PnS.
Note that whenever 2 2 S; one can replace (3) by (3�) �R has no extension

of degree p 2 PnS �;

(4) 8n 2 N , K is pythagorean K2n +K2n = K2n;

(5) K is hereditarily pythagorean, which means that every algebraic exten-
sion is again a pythagorean �eld;

(6) 8n 2 N , K2n is a fan :
0; 1 2 K2n; �1 =2 K2n; K2n +K2n = K2n;
K2n� is a subgroup of K�;
8x =2 �K2n holds K2n + xK2n = K2n [ xK2n;

(7) 8n 2 N , K2n is a valuation fan, i.e. it is a preordering such that :
8x =2 �K2n holds 1� x 2 K2n or 1� x�1 2 K2n;

(8) all real valuations of K are henselian;

(9) The set of real valuation rings is totally ordered by inclusion;

(10) The smallest real valuation ring is :

A(K2) = A(K2n) = H(K)

where A(T ) = fx 2 K j 9n 2 N n� x 2 Tg, with T a valuation fan, and where
H (K ) is the real holomorphy ring (equal to the intersection of all real valuation
rings);

(11) This ring A(K2) is associated to a valuation v corresponding to the
unique R� place of K;

(12) The Jacob�s ring J(\K2n) is the biggest valuation ring with real-closed
residue �eld. This ring is de�ned as follows : if T is a valuation fan, the ring
J(T ) is equal to J1(T ) [ J2(T ) with

J1(T ) = fx 2 K j x =2 �T et 1 + x 2 Tg
et J2(T ) = fx 2 K j x 2 �T et xJ1(T ) � J1(T )g)

The importance of this Jacob�s ring will appear later with the transfer the-
orem obtained by Delon and Farré.
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7 Some Model Theory for HHRC Fields and
Applications

We make a review of the model theoretic results obtained for the theory of
HRRC �elds and its subtheories.

7.1 Axiomatization for Rolle �elds

A Rolle �eld is an ordered �eld where Rolle theorem holds for polynomials.
Below is an axiomatization for the theory of Rolle �elds; these axioms are �rst
order in the language of �elds, hence the theory is elementary.

Theorem 53 (Gondard [G1]) :
(1) axioms for commutative �elds ;
(2) �K formally real � :
for each n > 1

8x1:::8xn e(�1 = x21 + :::+ x2n)

(3) �K does not have any algebraic extension of odd degree� :
for each p > 0

8x0:::8x2p+19y
(x2p+1 = 0 _ x0 + x1y + :::+ x2p+1y2p+1 = 0)

(4) �K2 is a fan � :

8x8y8z9t(x = �t2 _ y2 + xz2 = t2 _ y2 + xz2 = xt2)

(5)�K is pythagorean at level 2 � :

8x8y9z(x4 + y4 = z4)

The three �rst sets of axioms are the same as in the theory of real-closed
�elds, to get a real-closed �eld axiomatization, just replace (4) and (5) by

8x9y(x = y2 _ x = �y2)

In [G1] it is also shown that :

Theorem 54 For any Rolle �eld K having a �nite number 2n of orders, there
exists n + 1 orders Pi; such that K is the is the intersection of the n + 1 real
closures Ri of K ordered by Pi:
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7.2 Elementary theory of HRRC �elds

Theorem 55 (Becker, Berr, Gondard [BBG]) : The class of HRRC �elds ad-
mits the following axiomatization :
(1) R is a commutative �eld ;
(2) R is a hereditarily pythagorean �eld ;
(3) for all n 2 N; R2n is a fan.

Corollary 56 The class of HRRC �elds is an elementary class.

Remark 57 The class of HRRC �elds of type S is also an elementary class,
just add to the axiomatization in theorem 18 :
(4) for all p 2 PnS , K2 = K2p:

Corollary 54 follows from B. Jacob ([J1]), who �rst proved that the class of
hereditarily pythagorean �elds is elementary.

An alternative proof from [BBG] for �the class of hereditarily-pythagorean
�elds is elementary�is given below. It uses the characterization by Becker ([B1],
thm. 4, p. 94) of hereditarily pythagorean �elds :X

K(X)2 = K(X)2 +K(X)2

which is equivalent to : X
K[X]2 � K(X)2 +K(X)2

By Cassel�s theorem this is also equivalent to :X
K[X]2 = K[X]2 +K[X]2 (�)

Remark that if f; g; h 2 K[X] satisfy f2 = g2 + h2; the degrees of g and h are
less or equal to the degree of f because K is formally real.
Hence (�) is expressible by an in�nite sequence of �rst order sentences in the

language of �elds.

7.3 A tranfer theorem

Theorem 58 (Delon-Farré, [DF]) : Let K and L be a HRRC �elds, then :
(i) K � L , �J(K) � �J(L) ;
(ii) if K � L then
K � L , �J(L) extends �J(K); and �J(K) � �J(L) , where the �0s are the

value groups of the Jacob rings of K and L.

In Delon-Farre it is also proved that the theory of HRRC �elds is elementary,
and the authors established a bijection between theories of HHRC �elds and
certain theories of ordered abelian groups. This bijection preserves completeness
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and sometimes decidability. Finally they proved that the only model-complete
theory among these is that of real-closed �elds.
They also characterized de�nable real valuation rings in such �elds and have

shown that they were in bijection with the de�nable convex subgroups of the
value group of the Becker ring.

In case we have only one real (henselian) valuation ring with real-closed
residue �eld, i.e. the Becker ring equals the Jacob ring, then the model theory
works well, and we are able to get real algebraic results such as a Nullstellensatz
or a Hilbert�s 17th problem at level n.

7.4 Some Applications in HRRC �elds

We shall now give examples of applications of the previous parts in some of the
theories studied. The proofs often make use of the model theoretic results given
above. Further results are mentionned in the bibliography.
Going back to the diagram showing relations between theories, we can list

some results related to real algebraic geometry.

HRRC �elds
Journal of Algebra, 215, 1999

[BBG]
closure for valuation fan chain

#
HRRC �elds of type S

[BBG]
strong Hensel lemma

.&

S-generalized real-closed �elds Rolle �elds
Journal de Crelle 1994 Manuscripta Math. 1990

[BBDG] [G1]
Hilbert�s 17th pb at level n intersection of real closures

# & . #
Real Chain-closed �elds
closed Manuscripta Mathematica 1989
�eld [BG]

Nullstellensatz.

Closures for a �eld with a valuation fan chain has been studied before in part
6, and Rolle �elds as intersection of real closures in part 7. The strong Hensel�s
lemma, which allow sometimes for to lift multiple roots from the residue �eld
is too technical to be given in few words and we refer the reader to the original
paper. We now present below two applications to Real Algebraic Geometry.
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7.4.1 Hilbert�s 17th problem at level n

Let K be a formally real �eld, V an irréductible a¢ ne variety over K; and
K(V ) its function �eld.
In [BBDG] we have searched, depending on K and V; for which n 2 N holds
- strong property Qn : 8f 2 K[V ]

(f 2
X

K(V )2n () 8x 2 Vreg(K) f(x) 2
X

K2n)

- weak property Q
0

n : 8f 2 K[V )]

(f 2
X

K(V )2n () 8x 2 Vreg(K) f(x) 2
X

K(x)2n)

We got for instance :

Theorem 59 (Becker, Berr, Delon, Gondard [BBDG]) :
R((G)); where G = f rs j r; s 2 Z and p - sg; is a fpg-generalized real-

closed �eld with only one henselian valuation with real-closed residue �eld. For
any variety V , property Q

0

n holds for R((G)) if and only if n 2< p > the
multiplicative semi-group with 1.

7.4.2 Nullstellensatz for chain-closed �elds

Theorem 60 (Becker, Gondard [BG]) : let K be a chain-closed �eld with only
one henselian valuation with real-closed residue �eld. Let � 2 K be such that
�2 =2 K4, then for any ideal P 2 K[X]holds :

IK(VK(P)) = ff 2 K[X] j 9k 2 N
9gi; hj 2 K[X] (�f)4k +

X
g4i � �2

X
h4j 2 Pg

where we denote as usual as usual :
VK(P) = fx 2 Kn j 8f 2 P f(x) = 0g; where P an ideal of K[X])
IK(W ) = ff 2 K[X] j 8x 2W f(x) = 0g; where W � Kn

Note that a Positivstellesatz can be found in [F].

8 Application of R�places in Real geometry
8.1 A criterium for separation of connected components

in M(K)

Theorem 61 (Becker-Gondard [BG2]) : Two R�places �P and �Q are in two
distinct components of M(K) if and only if :

9b 2 K� (b 2 P \ �Q et �2 2
X

K4):
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This criterium is obtained using orderings of higher level more precisely of
exact level 2.
�(K) = H(a) [H(�a) and H(a) \H(�a) = ?; but �(H(a)) \ �(H(�a))

might be non empty.
Nevetherless, if there exist b =2

P
K2 with b2 2

P
K4; then there does not

exist P 2 H(b) and Q 2 H(�b) such that �P = �Q .
Otherwise b =2 (P \Q) [ �(P \Q) and �P = �Q imply, as said before that

there exist a level 2 ordering P2; such that

P2 [ �P2 = (P \Q) [ �(P \Q)

with b =2 P2 [ �P2, hence b2 =2 P2 ; so b2 =2
P
K4 = \P2;i; where P2;i run over

the set of all orderings whose level divides 2:

Assume that �P et �Q are in the same connected component C of M(K)
(with P 6= Q); and that there exist b 2 P \�Q with b2 2

P
K4 ; � being closed

C \�(H(b)); and C \�(H(�b)) form a partition of C in two non empty closed
sets, impossible.

Conversely :
If �P et �Q are in C et C 0; two distinct connected components of M(K),

M(K) being a compact Hausdor¤ space there exist an open-closed U � C and
U c =M(K)nU � C 0.
Let X = ��1(U) and Y = ��1(U c) ; X and Y form a partition of �(K) ; �

being surjective we get :

��1(�(��1(U))) = ��1(U)

so ��1(�(X)) = X; and also ��1(�(Y )) = Y:
The following lemma from Harman ensure then the existence of b such that

X = H(b) and Y = H(�b) with b2 2
P
K4, hence we have b 2 P \ �Q with

b2 2
P
K4:

Harman�s Lemma ([H]) : If �(K) = �1 [�2, where �1 and �2 are disjoint
open-closed sets such that ��1(�(�1)) = �1 et �

�1(�(�2)) = �2; then there
exist a such that �1 = H(a) and �2 = H(�a):

8.2 Number of connected components of a smooth real
variety

Theorem 62 (Becker-Gondard [BG2]) : Let Y be a smooth non empty projec-
tive variety on R , with function �eld K = R(Y ): Then j �0(Y (R)) j; the number
of connected components of Y (R); is given by:

j �0(Y (R)) j= 1 + log2[(K�2 \
X

K4) : (
X

K�2)2]
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This result in the spirit of that of Harnack giving as upper bound of the
number of connected components of a smooth projective curve V (R); g + 1,
where g is the genius of V ; but here we give a formula with equality and for
any dimension. And the theorem shows clearly the known fact that the number
of connected components is a birational invariant among the smooth varieties.

The �rst proof (1992) of this result is given in [BG2].

Two new proofs have been found in 2003-2004 by Jean-Louis Colliot-Thélène
[CT] and by Claus Scheiderer [Sche].

In the original proof the theorem is derived from the two following lemmas
which make use of the connected components of the spare of R� places M(K):

Lemma 63 Let Y be a smooth projective variety on R, with function �eld K =
R(Y ): Then j �0(Y (R)) j the number of connected components of Y (R) is equal
to :

j �0(Y (R)) j=j �0(M(R(Y ))) j :

Lemma 64 For any real �eld K :

j �0(M(K)) j= 1 + log2[(K�2 \
X

K4) : (
X

K�2)2]:

Sketch of proof of �rst lemma
We use the center map c : M(K) ! Y ( R); de�ned by x = c(�) = c(V�)

the unique point (Y projective) whose local ring ox is dominated by V�; the
valuation ring associated to the R�place �.
- In this case it is known [e. g. [BCR] Prop. 7.6.2 (ii), p. 133] that c is

surjective , the central points being the closure of regular points. And one can
prove that c is continuous.
- Bröcker proved in an unpublished manuscript that the �ber of a central

point has a �nite number of connected components, and that if x is a regular
point then the �ber is connected.
Now we just have to use the following topological lemma : if a mapping

between two compact spaces X and Y is continuous and surjective and if each
�ber is connected then it induces a bijection between �0(X) and �0(Y ).

Sketch of proof of second lemma
We prove that j �0(M(K)) j= log2[E : E+] where E is the group of units of

the real holomorphy ring H(K) (de�ned part 9) and E+ = E \
P
K2:

Then we can prove that the quotient group (K�2 \
P
K4)=(

P
K�2)2 is iso-

morphic to E=(E+ [ �E+):
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9 R�places and Real Holomorphy Ring
De�nition 65 The real holomorphy ring denoted H(K); is the ring intersection
of all real valuation rings of K:
We also can write H(K) = \

P2�(K)
A(P ); and

H(K) = A(
X

K2) = fa 2 K j 9n 2 N; n � 1 such that n� a 2
X

K2g:

H(K) is a Prüfer ring (ring R � K such that for any prime ideal p the
localized ring Rp is a valuation ring of K), with quotient �eld K:
In the sequence we shall denote

Sper(H(K)) = f� = (p;�); p 2 specH(K); � ordre de quot(H(K)=p)g

the real spectrum of the real holomorphy ring of K.

Theorem 66 (Becker-Gondard [6]) :
The following diagram is commutative :

�(K)
speri�! MinSperH(K)

# � # sp
M(K)

res! Hom(H(K);R) j!MaxSperH(K)
where the horizontal mappings are homeomorphisms, and the vertical ones

continuous surjective mappings.

The mappings of the above diagram are de�ned as follow :

� : �(K) �!M(K) is given by P 7! �P ;

speri : �(K) �!MinSperH(K) is given by P 7! P \H(K) ;

sp : MinSperH(K) �! MaxSperH(K) is given by � 7�! �max (where
�max is the unique maximal specialization of �) ;

res :M(K) �! Hom(H(K);R) is given by � 7! �jH(K) ;

j : Hom(H(K);R) �!MaxSperH(K) is given by ' 7! �' (where following
the notation for real spectrum, �' = '�1( R2); where �' = (ker'; �) with � =
R2 \ quot('(H(K)):

All the spaces in the diagram are compact and the topologies of M(K) and
MaxSperH(K) are the quotient topologies inherited from � and sp:
Hence the space �(K) of orderings of a �eld is homeomorphic toMinSperH(K);

and the space M(K) of R�places is homeomorphic to MaxSperH(K):
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