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ABSTRACT. - This Note develops some properties of the finite A-algebras B which can be generated
by a single element, after, if need be, some faithfully flat base change ; they are called locally monogenous.
Several characterisations of this notion show it appears to be commonly satisfied ; in particular, the
morphisms between rings of algebraic integers are locally monogenous.

For a finite locally free A-algebra B, we have to consider its ring of parameters SymA(Bv), now
denoted by S, and its generic element ξB ∈ S ⊗A B ; they are both immediately definable when B is
free with a basis e1, . . . , en : in fact one then has an isomorphism S ' A[T1, · · · , Tn], and we may write
ξB =

∑
Tiei ∈ S ⊗A B.

The norm map B → A extends to norm maps S ⊗A B → S, and S[X] ⊗A B → S[X], both still
denoted by N ; the generic characteristic polynomial is FB/A(X) = N(X − ξB) ∈ S[X].

Guided by the point of view of torsors, we bring to the fore front a (non conventional) morphism
µB : S → S[T ] which induces a smooth morphism

S/N(ξB)S → S[X]/(FB/A(X)).

It relates, in a sense, N(ξB) and FB/A(X).
Then we update an idea Kronecker introduced at the early beginning of the algebraic theory of

numbers : namely that some properties of a finite free A-algebra B can be read through the generic
characteristic polynomial F = FB/A(X) ; in fact, since ξ is a root of F (Hamilton-Cayley) we dispose of
a canonical morphism, called the Kronecker morphism

S[X]/(F )→ S ⊗A B.

We show that this morphism is A-universally injective if and only if B is locally monogenous over
A. Thus this injectivity property is true in the context of the theory of numbers ; that is thoroughly,
though implicitly, used by Hilbert in the Zahlbericht ; besides, the very beginning of this memoir was
an inspiration to us for this Note.

In particular, we extend to locally monogenous algebra A→ B the fact, quoted by Hilbert, that the
discriminant of B/A is equal to the content (relative to A→ S) of the discriminant of F .

In this note, all the rings are assumed to be commutative and to possess a unit element, and all the
ring morphisms are assumed to map unit element to unit element. A ring morphism A → B is said to
be finite locally free if it makes B a projective A-module of finite type ; the map p→ rankκ(p)(B ⊗A κ(p))
is then locally constant (for the Zariski topology) on Spec(A) ; in other words, A is the finite product of
rings Ar such that B ⊗A Ar is locally free of constant rank r as Ar-module.
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1. Locally monogenous morphisms

Definition 1.1 A morphism A → B between rings is called monogenous if B can be generated, as
an A-algebra, by a single element, in other words if there exists a surjective morphism of A-algebras
A[X]→ B.
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A morphism A → B is called locally monogenous if there exists a faithfully flat morphism A → A′

such that A′ → A′ ⊗A B is monogenous.

Before giving some examples and characterizations of these morphisms, we first recall the central rôle
they play in the theory of the norm functor (see [F]) : to any finite and locally free morphism A→ B, is
associated a covariant functor

NB/A : ModB −→ ModA,

which extends the usual one defined for invertible B-modules L (roughly speaking, by then taking the
norm of a cocycle associated to L) ; for a B-algebra B → C, there exists a morphism to the Weil restriction
NB/A(C)→ RB/A(C) which is an isomorphism if B/A is étale. The point is that the norm of a locally free
B-module is a locally free A-module when B is étale over A, or, more generally if B is locally monogenous
over A ; but that may fail to be true in general, even if B is a complete intersection over A (see [F] 4.3.4
and 4.4).

Examples 1.2 Consider a ring A and the diagonal morphism A→ An. An element x = (x1, . . . , xn) ∈
An is a generator of that A-algebra if and only if the powers 1, x, x2, . . . , xn−1 form a basis of the A-
module An. Writing down these powers with respect to the canonical basis of An, one sees that x is a
generator of the A-algebra An if and only if the Van der Monde determinant∏

i<j

(xj − xi)

is invertible in A.
The existence of a sequence (x1, . . . , xn) with this property is clear if A contains an infinite field, but

Fp → Fnp is not monogenous if n > p. It is also clear that such a sequence cannot exist if the group A×

of invertible elements is too small, i.e. if Card(A×) < n(n−1)
2 ; thus Z→ Zn is not monogenous if n ≥ 3.

On the other hand, there is a canonical way to adjoin to any ring A a sequence of n elements
(x1, . . . , xn) making the Van der Monde determinant invertible. Just take the ring of fractions A′ =
A[X1, . . . , Xn]V , where V =

∏
i<j(Xj − Xi) and, for xi, take the image in A′ of Xi ; the morphism

A→ A′ is faithfully flat (and smooth), and the morphism A′ → A′
n is monogenous ; thus for any n and

any ring A, the morphism A→ An is locally monogenous.

A slight generalization :
A finite étale morphism A→ B is locally monogenous.

If A→ B is of constant rank r, then B is locally isomorphic to Ar, and thus it is locally monogenous.
We can reduce to this case by considering the finite decomposition A = A0 × A1 × · · · × Am defined by
the condition that Br := B⊗AAr be locally free of constant rank r over Ar ; it is thus locally isomorphic
to Arr ; the A-algebra B = B0 × · · · ×Bm, is clearly locally monogenous.

Example 1.3 More generally, let A be a ring, and let B1, . . . , Bs be a sequence of finite and locally
monogenous A-algebras. The product B1 × · · · ×Bs is locally monogenous over A.

To see this, it is enough, by induction on s, to prove the result for two factors, which we now denote
by B and C. Let us choose generators b ∈ B and c ∈ C and monic polynomials P (T ) and Q(T ) in A[T ]
such that P (b) = 0 and Q(c) = 0 ; one then has a surjective morphism

A[T ]/(P )×A[T ]/(Q)→ B × C,

and it is enough to prove that the product A[T ]/(P )×A[T ]/(Q) is locally monogenous over A. Consider
the ring of fractions A′ = A[X]R(X) where we have made invertible the resultant ([A] IV 6.6)

R(X) = resT (P (T +X), Q(T )).

Let x be the image of X in A′. Using the standard property of the resultant (see e.g [A] IV 6.6 Cor.1 to
Prop. 7), we see that the polynomials P (T + x) and Q(T ) are co-maximal in A′[T ] (i.e. they generate
the unit ideal). Therefore, the "Chinese remainder theorem" shows that the morphism

A′[T ] −→ A′[T ]/(P (T + x))×A′[T ]/(Q(T ))
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is surjective. Moreover, the A′-algebras A′[T ]/(P (T )) and A′[T ]/(P (T + x)) are clearly isomorphic. The-
refore, it remains to show that the morphism A→ A′ is faithfully flat ; as it is clearly flat, we have to show
that any prime ideal p of A is the restriction of a prime ideal of A′. Let A→ K be the morphism of A to
an algebraic closure K of the residue field κ(p) ; it is enough to see that this morphism factors through
A′ = A[X]R(X). Considering the images in K[T ] of the two monic polynomials P (T ) and Q(T ) and their
roots in K, it is clear that there exists x ∈ K such that P (T+x) and Q(T ) have no common root, i.e. such
that the resultant R(x) is non zero in K ; this element x gives rise to a morphism A′ = A[X]R(X) → K.

Proposition 1.4 (Characterizations). Let B be a finite A-algebra.The following conditions are equi-
valent :
i) The morphism A→ B is locally monogenous.
ii) There exists a morphism A → A′ such that A′ → A′ ⊗A B is monogenous, and Spec(A′) →Spec(A)
surjective (i.e the flatness of the base change is superfluous).
iii) For any morphism A→ K where K is an algebraically closed field, each local factor of K ⊗A B is a
monogenous K-algebra.
iv) For any prime ideal p of A, there exists a finite extension κ(p)→ k such that k ⊗A B is monogenous
over k.
v) The B-module Ω1

B/A is monogenous.
vi) Ω2

B/A = 0.

Recall that a finite algebra R over a field is the direct product of the local rings Rm, where m runs
through the (finite) set of the maximal ideals ; these local rings are called in the sequel the local factors
of R.

All the ingredients used in the following proof come from EGA IV, but, for the convenience of the
reader, they are given in some detail instead of scattered references.

Lemma 1.4.1 Let A → B be a finite morphism. We suppose an A-algebra A → E exists such that
E⊗AB is monogenous over E. Then, there exists a sub-A-algebra F ⊂ E of finite type such that F ⊗AB
is monogenous over F .

Proof : Let x =
∑n
i=1 xi ⊗ bi ∈ E ⊗A B be a generator as E-algebra ; the sub-A-algebra E′ =

A[x1, . . . , xn] ⊂ E is of finite type. Let us consider the morphism

E′[X] −→ E′ ⊗A B,

which mapsX to x ; its cokernelM is an E′-module of finite type, as E′⊗AB is, and we have E⊗E′M = 0.
By induction on the number of generators of M , (and by looking at the quotients of M) we are reduced
to the case where M is monogenous, i.e where M is isomorphic to a quotient E′/I. The hypothesis,
E ⊗E′ M = 0, reads then as E = IE, i.e as a relation : 1 =

∑m
j=1 ajyj with aj ∈ I and yj ∈ E. This

relation is already true in the A-algebra of finite type E′[y1, . . . , ym].

Lemma 1.4.2 Let p be a prime ideal in a ring A, and let κ(p)→ k be a finite field extension. There
exist t ∈ A− p, a finite free morphism At → C and an isomorphism κ(p)⊗A C →̃ k.

Proof : We write S = A − p. By induction on the number of generators of the κ(p)-algebra k,we are
reduced to proving the following.

Let At → C be a finite free morphism such that k = κ(p)⊗A C is a field, and let k → k′ = k[x] be a
finite monogenous field extension. Then there exist s ∈ S and a finite free morphism Cs → C ′ such that
κ(p)⊗A C ′ ' k′.

Let F (X) ∈ S−1C[X] be a monic polynomial whose image modulo p is the minimal polynomial of x
(such a polynomial F exists because the morphism S−1C → S−1C/pS−1C ' k is surjective). If s ∈ S
denotes the product of the denominators of the coefficients of F , one has F ∈ Cs[X]. The morphism

Ast → Cs → C ′ = Cs[X]/(F )

is then free, and one gets an isomorphism κ(p)⊗A C ′ ' k′.

Proof of the proposition. It is clear that i) implies ii).
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Let us prove that ii) implies iii). Let A′ be an A-algebra such that A′ ⊗A B is generated by one
element, and such that the map Spec(A′)→ Spec(A) is surjective. By the above lemma 1.4.1 there exists
a sub-A-algebra F ⊂ A′, of finite type, such that F ⊗A B is monogenous over F . Let A → K be a
morphism where K is an algebraically closed field, and denote by p its kernel. By hypothesis, the prime
ideal p is the restriction to A of a prime ideal p′ of A′ ; it is also the restriction of the prime ideal q = p′∩F
of F , therefore κ(p)⊗A F 6= 0. Then, as K is algebraically closed, the "Hilbert Nullstellensatz" ([AC] V
3.3 Prop. 1) implies that the given morphism κ(p) → K factors through κ(p) ⊗A F . But the morphism
κ(p)⊗A F −→ κ(p)⊗A F ⊗A B is monogenous. Therefore, the K-algebra K ⊗A B is monogenous, and a
fortiori each of its factors is.

iii) ⇒ iv). Let K be an algebraic closure of a residue field κ(p) of A. By the hypothesis iii) and the
example 1.3, the K-algebra K ⊗A B is monogenous ; by lemma 1.4.1, there exists a finite sub-extension
k ⊂ K such that k ⊗A B is a monogenous k-algebra.

iv) ⇒ i) First suppose we have already shown that for each prime ideal p of A there exit an element
t ∈ A− p and a finite free morphism At → C such that C → C ⊗A B is monogenous.

Then the image of the morphism Spec(C) → Spec(A) is the open set D(t), and it contains p. As
Spec(A) is quasi-compact, a finite number of such morphisms A → Ci, i = 1, . . . , n, are enough for
covering Spec(A). Hence we can take A′ = C1 × · · · × Cn ; it is faithfully flat over A, and A′ → A′ ⊗A B
is monogenous.

It remains to prove the existence of those morphisms At → C. So let p be a prime ideal in A. According
to iv), there exists a finite extension κ(p)→ k such that k → k⊗AB is monogenous. By lemma 1.4.2, one
can choose an element t ∈ S = A−p, a finite free morphism At → C and an isomorphism κ(p)⊗AC −̃→ k.
The morphism C → κ(p) ⊗A C ' k is the composite of the surjection S−1C → S−1(C/pC) and of the
localization C → S−1C. Then, a generator ξ of k⊗A B = S−1(C/pC)⊗A B may be lifted as an element
x ∈ S−1(C ⊗A B).

For proving x is a generator of the S−1C -algebra S−1(C ⊗A B) consider the following diagram :

S−1C −−−−→ S−1C[x] −−−−→ S−1C ⊗A By y y
k −−−−→ k[ξ] k ⊗A B

.

The cokernel of the injective map j : S−1C[x] → S−1(C ⊗A B), is a finitely generated module over
S−1A = Ap , which is zero modulo p. The Nakayama lemma thus implies this cokernel be zero, showing
that j is an isomorphism, and that x is a generator of the S−1C -algebra S−1(C ⊗A B). Finally, there is
a s′ ∈ S such that x ∈ Cs′ ⊗A B. Using again the above finiteness property of the cokernel, we can find
a s′′ ∈ S such that the map Cs′s′′ [x] → Cs′s′′ ⊗A B is an isomorphism. The morphism As′s′′t → Cs′s′′

has the required properties.
i) ⇒ v) ⇒ vi). If B is monogenous over A, then the B-module Ω1

B/A is generated by one element,
namely the differential dB/A(x) of any generator x of the A-algebra B. Therefore its square wedge is
zero. The same conclusion is true if B is locally monogenous because of the isomorphism A′ ⊗A Ω1

B/A '
Ω1
A′⊗AB/A′

.
vi)⇒ iii). Suppose that Ω2

B/A = 0. Let A→ K be a morphism to an algebraically closed field K. Let
R be a local factor of K ⊗A B. By assumption, one has Ω2

R/K = 0. We write Ω = Ω1
R/K , and we denote

by m be the maximal ideal of R. Since ∧2(Ω/mΩ) = 0 the dimension of the R/m-vector space Ω/mΩ is
≤ 1. As K is algebraically closed, K → R/m is an isomorphism. Now the well-known (see below) K-linear
isomorphism

δ : m/m2 −̃→ Ω/mΩ

implies that m/m2 is a K-vector space of dimension ≤ 1. From the Nakayama lemma we then deduce
that the ideal m may be generated by one element. Thus R is a monogenous K-algebra.

(For lack of an elementary reference, we briefly recall that δ is induced by the differential dR/K : m → Ω,
and that the inverse of δ is defined as follows. Let s : R → R/m ' K be the canonical morphism.The
map R→ m/m2, x 7→ class of x− s(x) mod.m2 is a derivation. By the universality of Ω, this derivation
extends to a linear map Ω/mΩ→ m/m2, which is easily seen to be the inverse of δ.)

Corollary 1.5 Let A u→ B
v→ C be finite morphisms. Then the composite vu is locally monogenous if

either :
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- u is locally monogenous and v is net (i.e unramified), or
- u is net and v is locally monogenous.

This result, which generalizes 1.3, is easily deduced from the equivalence i) ⇔ v) of the above
proposition and from the exact sequence

Ω1
B/A ⊗A C → Ω1

C/A → Ω1
C/B → 0.

Corollary 1.6 Let A be a Dedekind domain, K → L a finite separable extension of its field of
fractions, and let B be the integral closure of A in L. Suppose that all the residue field extensions are
separable (This is the case if A = Z). Then A→ B is locally monogenous.

Proof : Let n be a maximal ideal of B, and let m = A ∩ n. As Bn is a discrete valuation ring, the
κ(n)-vector space n/n2 is of dimension 1. Since κ(n) is supposed to be separable over κ(m) one has
Ω1
κ(n)/κ(m) = 0. Therefore, the exact sequence

n/n2 → Ω1
B/A ⊗B B/n→ Ω1

κ(n)/κ(m) → 0

shows that Ω1
B/A ⊗B B/n is a vector space of rank ≤ 1. Hence for each maximal ideal n one has

Ω2
B/A ⊗B B/n = 0, and the Nakayama lemma gives (Ω2

B/A)n = 0. Since this is true for each maximal
ideal of B, we may conclude that Ω2

B/A = 0.

2. Tschirnhaus morphisms

I am indebted to the late Dan Laksov (KTH) for discussing this subject together, few years ago.

2.1. Definition Let A be a ring. A morphism u : B → C between locally free A-algebras of the same
constant rank is said a Tschirnhaus morphism if it is “universally norm compatible” ; that means that
for any morphism A→ A′ the following triangle is commutative

(2.1.1) A′ ⊗A B

NB′ $$

1⊗u // A′ ⊗A C

NC′zz
A′

where NB′ is a shortland for the norm map NA′⊗AB/A′ , and idem for NC′ .

See (2.4) below for a justification of the choice of this patronymic instead of the adjective universally
norm compatible.

(2.1.2) An isomorphism, and even an injective morphism, are Tschirnhaus morphisms. With A′ = A[X],
we see that a Tschirnhaus morphism is compatible with the characteristic polynomials (and in particular
with traces) : for any b ∈ B, one has

Pol.charB/A(X, b) = Pol.charC/A(X,u(b)).

Note that the norm maps being polynomial laws the squares

B //

NB

��

A′ ⊗A B

NB′

��
A // A′

are commutative for any base change A→ A′ ; thus, we have the following descent property : if A→ A′ is
only injective and if the above triangle (2.1.1) is commutative, then the original one is also commutative,
i.e. NB = NC ◦ u.
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(2.1.3) Let u : B → C be a Tschirnhaus morphism between locally free A-algebras of rank n. Then
Ker(u) is a nilideal in B.

In fact, let b ∈ B such that u(b) = 0 ; one has Pol.charB/A(X, b) = Pol.charC/A(X,u(b)) = Xn, and
from Hamilton-Cayley we deduce bn = 0.

The main source of Tschirnhaus morphisms is given by the following classical result (cf. e.g. [F], 4.3.1).

2.2. Proposition Let A → C be a finite and locally free morphism of rank n. Let c ∈ C, and let
F (X) = NC/A(X − c) be the characteristic polynomial of the map C → C, t 7→ tc. The Hamilton-Cayley
theorem gives a morphism of A-algebras

A[X]/(F )→ C, X 7→ c.

This is a Tschirnhaus morphism. In particular, for c = a ∈ A, A[X]/((X − a)n) → C, x 7→ a is a
Tschirnhaus morphism.

Proof. Let B = A[X]/(F ) and let u : B → C be the morphism which sends the class x of X to c.
Since the hypotheses are preserved by any base change, it is enough to proving that NC ◦ u = NB . One
has NB(X − x) = F (X) 1 = NC(X − u(x)), thus for a ∈ A, NB(a − x) = NC(a − u(x)). Due to the
multiplicativity of norms, we are reduced to proving that any b ∈ B may be written as a product of
elements of the form a−x ; but b = Q(x) for some polynomial Q with degQ(X) < degF (X) ; b may also
be written as b = G(x), where G = Q + F is now a monic polynomial in A[X] ; thus there exists a free
extension A′ of A such that, in A′[X], one has G(X) = Πi(X − ai), showing that in A′ ⊗A B one has
b = (x− a1) · · · (x− an).

2.3. Corollary Let A be a ring and ξ = (ξ1, · · · , ξn) be an element of An. Let F (X) ∈ A[X] be a
monic polynomial of degree n such that F (ξi) = 0 for all i. Then the morphism of A-algebras

A[X]/(F )→ An

which sends the class of X to ξ, is a Tschirnhaus morphism if and only if F (X) = Πi(X − ξi).

2.4 (Tschirnhaus transformation)

Let G(X) ∈ A[X] be a monic polynomial, and let P (X) ∈ A[X] be any polynomial. Recall that
the traditional Tschirnhaus transfomation of G by P is the polynomial whose roots are the images by
P of those of G ; precisely, let introduce a finite free extension A′ of A such that G splits in A′[X] as
G(X) = Πi(X−ξi) ; then the coefficients of F (X) = Πi(X−P (ξi)) are symmetric expressions of the roots
of G, thus F ∈ A[X] ; it is the transformation of G by P . But one can define F without any reference to
the roots of G as follows : let y be the class of Y in the free A-algebra C = A[Y ]/(G(Y )) ; then F (X) is
nothing but the characteristic polynomial of c 7→ cP (y), i.e. the norm

F (X) = NC[X]/A[X](X − P (y))

From (2.2), the morphism which sends X to P (y) induces a Tschirnhaus morphism

A[X]/(F )→ A[Y ]/(G).

Conversely, given two monic polynomials F,G ∈ A[X] of the same degree, and a Tschirnhaus morphism
u : A[X]/(F ) → A[Y ]/(G), then F is the Tschirnhaus transformation of G by (any) polynomial P such
that u(x) ≡ P (Y ) mod G.

2.5 To pay a tribute to L. Kronecker, and also to show the power of the property of norms from
being polynomial laws, we give the following criterium ; it will not be used below.

2.5.1 Proposition Let A be a ring and let u : B → C be a morphism between locally free A-
algebras of the same rank r. For u to be a Tschirnhaus morphism it is necessary and sufficient that
u⊗ 1A[T ] : B[T ]→ C[T ] be norm compatible.

1. As any undergraduate student knows, the matrix of b 7→ xb relative to the basis (1, x, · · · , xn−1) is the “companion
matrix” of the polynomial F , which thus appears as the characteristic polynomial of the matrix.
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Proof. In this proof we lighten notations by letting A[n] = A[T1, · · · , Tn]. For proving sufficiency we
first show that if u[1] : A[1] ⊗A B → A[1] ⊗A C is norm compatible, then for any positive integer n, u[n] is
norm compatible. For doing so we use the Kronecker substitution : let d > 1 be an integer ; the Kronecker
substitutions (relative to d) θd : A[n] → A[1], is the morphism of A-algebras

θd : A[T1, · · · , Tn] −→ A[T ], defined by θ(Ti) = T d
i−1

.

The image of a monomial Tm1
1 · · ·Tmn

n is equal to Tm with m = m1 + m2d + · · · + mnd
n−1 ; under the

condition that 0 ≤ mi < d for all i, this expression of m is its “d-adic expansion”, and thus it is unique.
In other words, if Θ ⊂ A[T1, · · · , Tn] denotes the set of polynomials whose all partial degrees are < d,
then the restriction of θd gives an injective map (designated by the same letter)

θd : Θd −→ A[T ].

Now let x ∈ B[n] = A[n] ⊗A B, and let u[n](x) its image in C[n] ; we have to check that the polynomials
NB[n]

(x) and NC[n]
(u[n](x)) in A[n] are equal. Choose an integer d strictly greater than all the partial

degrees in the variables Ti in both these polynomials ; thus NB[n]
(x) and NC[n]

(u[n](x)) are inside the
subset Θd ⊂ A[n]. Consider the following diagram.

B[n]

u[n] //

θd⊗1B

��

NB[n] !!

C[n]

θd⊗1C

��

NC[n]}}
A[n]

θd

��

B[1]

NB[1] !!

u[1] // C[1]

NC[1]}}
A[1]

The two front faces of the prism are commutative diagrams because norms are polynomial laws ; the
third is also commutative because it is nothing but a base change ; the lower triangle is commutative by
assumption, and θd is an injective map when restricted to Θd ; thus NB[n]

(x) = NC[n]
(u[n](x)).

Finally, let A → A′ be any algebra, and let y =
∑n

1 a
′
i ⊗ bi be an element in A′ ⊗A B ; consider the

morphism of A-algebras A[n] → A′ defined by Ti 7→ a′i, and let z ∈ A[n]⊗AB be defined by z =
∑
Ti⊗bi ;

the preceding step shows that the norm of z and the norm of u[n](z) ∈ C[n] are equal in A[n] ; so the norm
of y and the norm of its image in A′ ⊗A C are equal.

3. The generic element

3.1 The generic element of a projective A-module M of finite type

Denote by M v = HomA(M,A) the dual of the A-module M . We define an isomorphism

M v ⊗AM −̃→ EndA(M)

by sending u⊗ x ∈M v ⊗AM to the endomorphism y 7→ u(y)x. We let

ξM ∈M v ⊗AM

be the element corresponding to the identity map of M via the above isomorphism ; explicitely, let
(x1, · · · , xn) be a generating system for M , and let v : An → M be the surjective linear map associated
to it ; since M is projective, one has a map u : M → An such that vu = 1M ; by writing u = (u1, · · · , un),
we have ξM =

∑
ui ⊗ xi.

When viewing ξM as an element of SymA(M v) ⊗A M , we call it the generic element of M , and
we call SymA(M v) the ring of parameters for the elements of M . In fact, an element x in M uniquely
determines the A-linear mapM v → A given by u 7→ u(x). This map extends to a morphism of A-algebras

γx : SymA(M v)→ A.
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The morphism γx has to be seen as the specialization of parameters attached with x because we recover
x as the image of the generic element ξM by the morphism

γx ⊗ 1 : SymA(M v)⊗AM →M.

More generally,

3.1.2. Lemma For any A-algebra A′, consider the maps

A′ ⊗AM −→ HomA(M v, A′) −→ HomA−Alg(SymA(M v), A′)

where the first one is given by a′ ⊗ x 7−→ (u 7→ u(x)a′), and the second map comes from the definition
of the symmetric algebra. Then the composite map defines an isomorphism of functors AlgA → Ens.
In the opposite direction, a morphism of A-algebras γ : SymA(M v) → A′ induces a morphism γ ⊗ 1M :
SymA(M v)⊗AM → A′ ⊗AM , from which we get the element (γ ⊗ 1M )(ξM ) ∈ A′ ⊗AM .

3.1.3. If M is a free A-module with basis (ei), and if (evi ) denotes the dual basis, one has :

ξM =
∑
i

evi ⊗ ei.

The ring of parameters SymA(M v) is then isomorphic to the polynomial ring A[T1, ..., Tn], where Ti stands
for the linear form evi ; with these notations, SymA(M v)⊗AM is isomorphic to the A[T1, ..., Tn]-module
M [T1, · · · , Tn], and the generic element may be written as

ξM =
∑
i

eiTi ∈ M [T1, · · · , Tn].

3.2 The generic element of a locally free algebra A→ B

Applying the above construction to the A-module B, we get the generic element

ξB ∈ SymA(Bv)⊗A B.

Writing ξB =
∑
βi ⊗ xi, with βi ∈ Bv and xi ∈ B, one has by definition, for b ∈ B, b =

∑
βi(b)xi, and,

in particular
1B =

∑
βi(1B)xi.

3.2.1 Lemma. Let f : A→ B be a finite locally free algebra. If the linear map f is injective, it admits
a retraction, that is a A-linear map τ : B → A such that τ(1B) = 1A ; in other words, the sequence of
A-modules 0→ A→ B → B/A→ 0 is split, where we write B/A for the cokernel of f ; it is a projective
A-module.

Proof. This is stated in [AC, II §5, Exerc.4], but it may be given a direct proof, as follows. First note
that the linearity of τ means that, for a ∈ A and b ∈ B, one has τ(f(a)b) = aτ(b) ; that implies, with
b = 1B , that τ ◦ f = IdA ; so τ is indeed a retraction of f . Now, keeping the notations of the beginning
of (3.2), let I be the ideal in A generated by the elements βi(1B) ; since B = IB the usual Nakayama
trick implies the existence of a ∈ I such that (1A − a)1B = 0 ; but f is injective, so 1A = a ; since I is
generated by the βi(1B), one has 1A =

∑
aiβi(1B), so τ =

∑
aiβi is a retraction of f .

3.2.2 Remark. Let f : A → B a finite locally free algebra ; let J = Ker(f). We will show that there
exists an idempotent e ∈ A, such that J is generated by 1− e, and such that B = eB.

In fact, for any A/J-module M , one has HomA/J(B,M) = HomA(B,M), thus B is projective also as
an A/J-module. From the above lemma there exists a retraction τ : B → A/J ; the projectivity of B as
an A-module implies the existence of a A-linear map τ ′ and a commutative triangle

B

τ ′

}}
τ

��
A // A/J
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Let e = τ ′(1B) ; one has 1A − e ∈ J , so 0 = f(1A − e) = 1B − f(e) ; that implies B = eB ; but τ ′ is
A-linear thus eJ = τ ′(1BJ) = 0, hence e is an idempotent, and 1− e generates J .

In conclusion, f is injective if and only if, for each prime ideal p of A, the rank of B at p is > 0, i.e.
κ(p) ⊗A B 6= 0, or, equivalently, if and only if the map Spec(B) → Spec(A) be surjective ; it is the case
when B is of constant rank > 0.

3.2.3. Below we shall introduce a morphism µ : SymA(Bv) → SymA(Bv)[T ] - not the canonical one-,
which will appears “natural” from the point of view of vector bundles, in the sense of [EGA I, (9.4.9)].

Recall that, for an A-moduleM ,V(M) denotes the vector bundle associated toM , that is the covariant
functor from the category of A-algebras to the category of groups,

A′ 7→ HomA−Mod(M,A′) = HomA−Alg(SymA(M), A′).

Thus this functor is represented by SymA(M).

A linear map ϕ : M → N induces, by composition on the right, v 7→ vϕ, a morphism of functors

V(N)
V(ϕ)−−−→ V(M), and a morphism of A-algebras SymA(M)

SymA(ϕ)−−−−−−→ SymA(N).

Let 0→M ′ →M
p→M ′′ → 0 be an exact sequence of A-modules. We have a morphism of functors

(3.2.3.1) V(M ′′)×V(M) −→ V(M)×V(M ′) V(M), (u′′, u) 7−→ (u′′p+ u, u).

It is clearly an isomorphism and thus it allows one to see V(M) as a torsor in the category of functors
over V(M ′) under the additive group V(M ′′). Note that the projection onto the left hand factor of the
fiber product over V(M ′), namely

(3.2.3.2) V(M ′′)×V(M) −→ V(M)

is associated to the linear map
M −→M ′′ ×M, x 7−→ (px, x)

3.2.4 Suppose now that the morphism f : A → B is injective ; from lemma (3.2.1), the following
sequence of A-modules is exact :

(3.2.4.1) 0→ (B/A)v → Bv β 7→β|A−−−−→ Av → 0.

We write S = SymA(Bv), and S0 = SymA((B/A)v) for this A-subalgebra of S.
We now apply the construction from 3.2.3. to the above sequence. The map p : M → M ′′ is here

the map Bv → Av, β 7→ β|A “restriction to A” ; denoting by T the canonical basis of the A-module Av,
we have a canonical isomorphism SymA(Av) = A[T ], and the morphism Bv → Av may be written as
β 7→ β(1)T . The projection (3.2.3.2) induces on the A-algebras representing the involved functors the
morphism of S0-algebras

µ : S = SymA(Bv) −→ SymA(Av)⊗A SymA(Bv) ' A[T ]⊗A SymA(Bv) = S[T ];

it is given by extending to the symmetric algebra the map defined, for β ∈ Bv, by

β 7−→ β(1)T + β.

This morphism µ : S → S[T ] is clearly not the usual canonical morphism of S-algebras ; however it
is faithfully flat and smooth. In fact, from lemma 3.2.1 we may choose a retraction τ : B → A of f , in
order to get a linear bijection (B/A)v ⊕Av −̃→ Bv, and thus an isomorphism of algebras

Sym((B/A)v)⊗ Sym(Av) = S0[T ] −̃→ S = Sym(Bv).

This isomorphism depends on the choice of τ (and it should have been referred to by the slogan : « a
torsor with a rational point is trivial ») ; at any rate we get from it a morphism ϕ : S0 → S0[T ] ' S
which is faithfully flat and smooth.
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3.2.5. Now, the isomorphism (3.2.3.1) between functors implies that the following square is cocartesian :

S
µ // S[T ]

S0

ϕ

OO

ϕ
// S

can

OO
.

From this square it is clear that µ is faithfully flat and smooth.

(3.3) Norm of the generic element

The morphism of S0⊗AB-algebras µB := µ⊗1B : S⊗AB → S[T ]⊗AB is faithfully flat and smooth ;
one has

µB(ξB) = T ⊗ 1 + ξB .

In fact, if we write ξB =
∑
βi⊗xi, with βi ∈ Bv and xi ∈ B, one has µB(

∑
βi⊗xi) =

∑
(βi(1)T+βi)⊗xi =

T ⊗ (
∑
βi(1)xi) + ξB = T ⊗ 1 + ξB .

In the sequel, we shall write T instead of T ⊗ 1 ∈ S[T ]⊗B.

To lighten the expression of the norm maps, we write, for any A-algebra A→ A′,

NB;A′ := NA′⊗AB/A′ ;

so the second index indicates the target of the norm map. The polynomial FB/A(T ) = NB;S[T ](T − ξB) ∈
S[T ] is the generic characteristic polynomial discussed in the next paragraph (cf. 4.1).

Proposition 3.3.1. Let A→ B be a locally free morphism of rank n. With the notations above, one has :
1. The generic element ξB is regular in S ⊗A B, and the quotient of that ring by the ideal generated

by ξB is smooth over B ;
2. the morphism µ induces a faithfully flat morphism

S/NB;S(ξB)S −→ S[T ]/(F ),

where F = FB/A(T ) ; this morphism is smooth of relative dimension 1 ;
3. the S0-algebra S/NB;S(ξB)S is locally free of rank n.

Recall that an element s in a ring S is said to be regular(= nonzerodivisor) if the map S → S, x 7→ sx
is injective.

Proof : 1) The morphism µB : S ⊗ B → S[T ] ⊗ B is faithfully flat, hence injective, and we have
µB(ξB) = T + ξB ; thus the regularity of ξB follows from the regularity of T + ξB in S[T ]⊗B.

From (3.2.5.) the composite morphism of S0 ⊗B-algebras, induced by µB

S ⊗B/(ξB)
µB−−→ S[T ]⊗B/(T + ξB)

T 7→−ξB−−−−−→ S ⊗B

is faithfully flat and smooth. (If, for example, A = B, then S ⊗ B = A[X], and ξB = X ; so the above
map is nothing but the familiar one : A[X]/(X)

X 7→T+X−−−−−−→ A[X + T ]/(X + T )
T 7→−X−−−−−→ A[X].)

2) The following square with straight arrows is cocartesian

S ⊗B
µB //

NB;S

��

S[T ]⊗B

NB;S[T ]

��
S

µ
//

OO

S[T ]

OO

Therefore the curved square with the norm maps is commutative ; thus one has

µ(NB;S(ξB)) = NB;S[T ](µB(ξB)) = NB;S[T ](T + ξB).
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From this and (3.2.5), we deduce that the following square is cocartesian, where P (T ) = NB;S[T ](T +ξB)

S/NB;S(ξ)S // S[T ]/(P (T ))

S0

OO

ϕ
// S

OO

3) Since P (T ) = NB;S[T ](T + ξB) is a monic polynomial of degree n with coefficients in S, and using the
faithfull flatness of ϕ, one sees that S/NB;S(ξ)S is locally free of rank n over S0. Finally, (−1)nP (−T ) =
NB;S[T ](T − ξB) is the characteristic polynomial of ξB , which is denoted by FB/A in the next section.

4. The Kronecker morphism

4.1 Definition and examples

Let A→ B be a finite and locally free morphism. Let

FB/A(X) ∈ SymA(Bv)[X]

be the characteristic polynomial of the generic element of B ; from now on this polynomial will be called
the generic characteristic polynomial.

The relation FB/A(X) = 0 is called by Hilbert (Zahlbericht, ch.IV, §10) the fundamental equation of
the A-algebra B. The generic element is a root of this equation (Hamilton-Cayley theorem), therefore
there exists a morphism of SymA(Bv)-algebras

SymA(Bv)[X]/(FB/A) −→ SymA(Bv)⊗A B,

which maps (the class of) X to ξB ; it will be called the Kronecker morphism of B/A.

4.1.1 As a first example, consider B = An, and choose the canonical basis (ei) for An. The ring of
parameters SymA(Bv) is then isomorphic to S = A[T1, . . . , Tn], where Ti stands for the i-th projection
An → A. An immediate calculation gives

FB/A(X) =

n∏
i=1

(X − Ti),

and the Kronecker morphism
S[X]/(

∏
(X − Ti)) −→ Sn

is defined by X 7→ (T1, . . . , Tn).
It is injective since the Van der Monde determinant

∏
i<j(Tj − Ti) is a regular element in S (but it is

not invertible if n ≥ 2).

More generally, let A → B be a finite étale morphism of rank n ; its generic characteristic poly-
nomial FB/A is locally isomorphic to

∏n
i=1(X − Ti), thus, for n ≥ 2, the morphism SymA(Bv) →

SymA(Bv)[X]/(FB/A) is not étale.

4.1.2 The next example is not illuminating ! Let B = A[Y ]/(G) be the A-algebra of rank 3 defined
by the polynomial

G(Y ) = Y 3 + a2Y
2 + a1Y + a0.

If we write the generic element of B as ξB = T0 + T1y + T2y
2, then

FB/A(X) = (X − T0)3 + (X − T0)2[a2T1 + (2a1 − a22)T2]

+(X − T0)[a1T
2
1 + (3a0 − a1a2)T1T2 + (a21 − 2a0a2)T 2

2 ]

+[a0T
3
1 − a0a2T 2

1 T2 + a0a1T1T
2
2 − a20T 3

2 ].
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From this, it is not even clear if the Kronecker morphism is injective ; in fact it is (cf. 4.2 below).

4.1.3 Let B = A[u, v] with u2 = v2 = 0 ; so A → B is a complete intersection morphism ; the ideal
J = uB+ vB is a free A-module of rank 3, and J3 = 0 ; thus B is a radicial A-algebra of rank 4. Writing
the generic element as ξ = T0 + T1u+ T2v + T3uv, we find

FB/A(X) = (X − T0)4.

Since (ξ − T0)3 = 0, the Kronecker morphism is not injective in that case.

Theorem 4.2 (Injectivity of the Kronecker morphism) Let A→ B be a finite and locally free morphism
of rank n. Then the following conditions are equivalent :

i) B is locally monogenous over A.
ii) The Kronecker morphism

SymA(Bv)[X]/(FB/A) −→ SymA(Bv)⊗A B,

is injective, and it remains injective after any base change A→ A′.

Proof. i) ⇒ ii). We can suppose B to be monogenous, hence of the form A[Y ]/(G), where G is a
monic polynomial of degree n. We write y the class of Y in B, and we choose the basis {1, y, . . . , yn−1} for
B. The ring of parameters SymA(Bv) will then be seen as the polynomial ring S = A[T0, T1, . . . , Tn−1],
in such a way that the generic element would be written as

ξ = T0 + T1y + · · ·+ Tn−1y
n−1.

Checking the injectivity of the Kronecker morphism amounts to proving the following property : any
relation of the form

s0 + s1ξ + ...+ sn−1ξ
n−1 = 0

with the si in S, implies that all the si are zero ; in other words, one has to show that the family
(1, ξ, ..., ξn−1) of elements of S ⊗A B is free over S. For doing so, we consider the determinant of the
matrix of the ξj on the basis (yi), and we show it is a regular (i.e nonzerodivisor) element in S.
Let Uij ∈ S be the polynomials defined by

ξj = U0,j + U1,jy + · · ·+ Un−1,jy
n−1.

Each of the polynomials Uij is homogeneous in T0, T1, . . . , Tn−1, of degree j ; in fact, introducing a
new variable T , we have to check the equality Uij(TT0, TT1, · · · , TTn−1) = T jUij(T0, · · · , Tn−1) ; but the
left hand side is nothing but the coefficient of (Tξ)j on the basis element yi ; hence the equality. Therefore
the determinant U = det(Uij) is a homogeneous polynomial of degree N = 1 + 2 + · · ·+ n− 1.

On the other hand, one has U(0, T1, 0, . . . , 0) = TN1 : in fact consider the morphism of A-algebras
S → S defined by Ti 7→ 0 for i 6= 1, and its extension to S ⊗A B ; it sends ξ to T1y, and thus ξj is
mapped to T j1 y

j ; the image of the matrix (Uij) is the diagonal matrix diag(1, T1, . . . , T
n−1
1 ), and thus

U(0, T1, 0, . . . , 0) = TN1 .
These two facts together imply that U is a monic polynomial in T1. Hence U is a regular element in

S, and it remains regular after any base change A→ A′.

4.2.1. As an explicit example, let us go back to the monogenous algebra of degree 3 in (4.1.2) ; some by
hand calculations give, as expected, a monic polynomial in T1 for the determinant :

U = T 3
1 − 2a2T

2
1 T2 + (a1 + a22)T1T

2
2 + (a0 − a1a2)T 3

2 .

Before proving the implication ii)⇒ i), we recall a linear algebra fact.
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4.2.2. Lemma Let R be a ring, and let u : M → N be a R-linear map between projective R-modules of
the same rank n. The R-modules ∧nM and ∧nN are invertible (i.e. of rank 1), and so is

L = HomR(∧nM,∧nN).

Consider the image of λ = ∧nu in SymR(L), and the quotient Rλ = SymR(L)/(λ− 1). Then
(a) The morphism R → Rλ is flat, and the image of Spec(Rλ) → Spec(R) is the open set U of the

primes p such that Mp → Np is bijective.
(b) The map u is injective if and only if ∧nu is, and this is also equivalent to R→ Rλ being injective ;

in particular, the open set U is then non empty (if R 6= 0).
The notation Rλ is indeed unusual since λ is not an element in R ; but if it were, then the usual

fractions ring Rλ would have been written as R[T ]/(λT − 1), which is exactly SymR(L)/(λ− 1) when L
is free with basis noted T . Since the R-module L is locally isomorphic to R, to check the lemma, we can
suppose that M and N are free, but then the part (a) rests on the well known relations between a square
matrix and its determinant ; the equivalence in part (b) comes from [A], III, §8.2, Prop. 3, p.524.

Proof of the implication ii) ⇒ i) of Theorem 4.2. Suppose now that the Kronecker morphism
is injective ; we will define a faithfully flat morphism A → A′ such that the A′-algebra A′ ⊗A B be
monogenous. Simplify the notation as

u : S[X]/(F ) −→ S ⊗A B.

Both sides are projective S-modules of the same rank n, so we can apply the above lemma whose we adopt
the notations ; now the symbol ∧n denotes the wedge power as S-module. We introduce the invertible
S-module L = HomS(∧n(S[X]/(F )),∧n(S ⊗A B)), and its element λ = ∧nu ; the spectrum of Sλ defines
the open set U ⊂ Spec(S) where u is an isomorphism. So the morphism

uλ : Sλ[X]/(F ) −→ Sλ ⊗A B

is an isomorphism ; in particular, the Sλ-algebra on the right is monogenous. It remains to check that
the morphisme A → Sλ is faithfully flat, i.e. that the morphism U → Spec(A) is surjective ; but it is an
immediate consequence of the hypothesis that u remains injective after any base change A→ A′.

4.2.3. (Back to the Zahlbericht of Hilbert ) In the §§10 and 11 of this memoir, the base ring is A = Z
and the algebra B is the ring of integers of a number field K, hence it is a monogenous Z-algebra. The
generic element ξ is called by Hilbert the fundamental form, and the generic characteristic polynomial is
denoted by F ; the relation F = 0 is said the fundamental equation of the ring.

The theorem 34 of the Zahlbericht says :

The congruence of degree n, F (X) ≡ 0 mod.p is the congruence of lowest degree which is satisfied
modulo p by the fundamental form ξ (i.e by the generic element).

It is an other way for stating the injectivity property ii) of ( 4.2.2), when the base ring is Z.

Remark 4.2.4. An alternative proof of the implication ii) ⇒ i) of (4.2) uses the condition iii) of the
proposition 1.4. We will now give its main step because it seems to be of interest in itself.

Let K be an algebraically closed field, and R a finite local K-algebra. We suppose that there exist a non
zero K-algebra S, a monic polynomial F (X) ∈ S[X] of degree n = rankK(R),and an injective morphism
of S-algebras u : S[X]/(F )→ S ⊗K R. Then R is a monogenous K-algebra.

Proof : We write R = K + J where J is nilpotent. Let m be the lowest integer such that Jm = 0 ;
hence, in the filtration

R ⊃ J ⊃ J2 ⊃ ... ⊃ Jm−1 ⊃ Jm = 0

all those K-subspaces are distinct. Therefore, we have m ≤ dimK(R) = n. Let x denote the class of
X in S[X]/(F ). We write u(x) = s + η ∈ S ⊗K R = S + S ⊗K J , with s ∈ S and η ∈ S ⊗A J . Since
u((x− s)m) = ηm = 0, the injectivity of u implies that F (X) divides (X− s)m. Therefore m = n because
deg(F ) = n ≥ m. Thus, Jn−1 6= 0. But J is a vector space of dimension n − 1, and the filtration above
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is strict ; therefore the vector space J/J2 is of rank one, i.e the ideal J is generated by one element
(Nakayama)and we conclude that R is monogenous.

Corollary 4.2.5. Let A → B be a finite locally free and locally monogenous morphism. If the ring B is
reduced (resp. a domain, a connected ring) then the same is true for the ring S/NB;S(ξB)S.

Proof. By composing the Kronecker morphism (4.2) with the morphism µ from the proposition (3.3), we
get a morphism of A-algebras

S/NB;S(ξB)S −→ S ⊗A B

which is injective, even after any base change A→ A′ ; moreover, the properties of the ring B taken into
account in the statement are transfered to the ring S ⊗A B, and also to its subring S/NB;S(ξB)S.

This result has most probably been noticed already, at least for field extension, as the sentence : If
K → L is a monogenous field extension of degree n, the norm of the generic element is an irreducible
polynomial in K[T1, · · · , Tn].

Remark 4.2.6. The simplest non monogenous field extension is

K = F2(X,Y ) ⊂ L = F2(U, V ),

given by X = U2, Y = V 2. It is a radicial extension of degree 4. The norm of the generic element
ξL = T0 + T1U + T2V + T3UV is (T 2

0 + T 2
1X + T 2

2 Y + T 2
3XY )2 ; it is a reducible polynomial !

Remark 4.3. (O. Loos) The injectivity of the Kronecker morphism means that the characteristic
polynomial FB/A is also the minimum polynomial of the generic element, as already pointed out by
Hilbert. The following remarks, which elaborate this idea, are essentially due to O. Loos.

First suppose that A = K is a field ; let L be the field of fractions of the polynomial ring S =
SymK(Bv) ; denote by ξL ∈ L⊗A B the image of the generic element of S ⊗A B. Let µ[X] ∈ L[X] be the
monic minimum polynomial of ξL ; since the characteristic polynomial FB/A(X) ∈ S[X] is a multiple of
µ(X), a classical result (Dedekind ?) asserts that the coefficients of µ(X) are in the integrally closed ring
S. This polynomial µ(X) ∈ S[X] will be called the generic minimum polynomial.

In the paper [L] on Jordan algebras, O. Loos gives a statement (lemma (2.8)), which looks close to
the above theorem, whose we keep the notations. Instead of the characteristic polynomial FB/A, Loos
consider a monic polynomial G ∈ S[X] of degree n whose the generic element ξ is a root ; let

v : S[X]/(G) −→ S ⊗A B

be the associated morphism of S algebras. Loos does not assume the injectivity of v but only the
injectivity of the maps vK = v ⊗A 1K for all morphisms A → K to a field ; in other words, he supposes
that, for all K, GK is the generic minimum polynomial over K. He proves that such a polynomial G
exists if and only if B is locally monogenous . Assuming that such a polynomial G exists, Loos consider
the open set V ⊂ Spec(S) of those primes n such that vκ(n) is bijective ; he then uses [EGA III] 11.10.10,
to deduce that V is schematically dense in Spec(S), and so that B is locally monogenous, as in the end
of the proof of (4.3).

Conversely, if B is locally monogenous, Loos proves that one can take for G(X) the generic charac-
teristic polynomial.

5 Discriminant of the generic characteristic polynomial

5.1 The Theorem 35 of the Zahlbericht [H] states that

The content of the discriminant of F (X) is equal to the discriminant of B (or of K).

Hilbert pointed out that this property is a consequence of the injectivity of the Kronecker morphism.
The discriminant of F (X) is an element of the ring containing the coefficients of F , namely SymA(Bv) ;
in the context of the Zahlbericht, this ring is isomorphic to the factorial ring Z[T1, . . . , Tn], therefore that
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makes sense to look at the gcd of the coefficients of the discriminant, i.e at its content (Hilbert writes :
the greatest numerical factor).

Although it may mean extending the definition of the content in non factorial situation, we get the
following general result.

5.2 Proposition Let A→ B be a finite locally free and locally monogenous morphism of rank n. Then
the content of the discriminant of FB/A(X) is equal to the discriminant of B.

5.2.1 First recall the general definition of the content (see, for example [SGA 3], VIB , théorème 6.2.3,
p. 374). Let A→ S be an A-algebra, and let u : M → L be a S-linear map between S-modules. Denote
by = the set of those ideals I in A such that u induces the zero map M/IM → L/IL. If = contains a
unique minimal ideal, this ideal is called the content of u and it is denoted by CtS/A(u), or, simply Ct(u)
when the context is clear.

5.2.2. Lemma Let A −→ S be a morphism such that, locally for the Zariski topology on Spec(A), the A-
module S is free, possibly with an infinite basis, and let u : M → L be a S-linear map between S-modules
where L is an invertible S-module. Then u has a content.

Proof. Let L−1 = HomS(L, S) be the inverse of L, and let u′ : M ⊗S L−1 → S be the map associated
with u ; the set of ideals = is the same for u and for u′ ; so one can suppose that L = S, and we denote by
J ⊂ S the ideal Im(u′) ; moreover an easy gluing consideration reduces to the case where S is free over
A. Then, choose a basis (eλ) of S as A-module ; let evλ : S → A be the “coordinate” linear form attached
to eλ. Consider the ideal in A

(5.2.2.1) I =
∑
λ

evλ(J)

generated by the coordinates of the elements in the ideal J . It is clear that I is the sought-for content.
It is also clear that this construction commutes with any base change A→ A′ in the sense that the ideal
Ct(u)A′ ⊂ A′ generated by the image in A′ of the content of u, is the content of the map u ⊗A 1A′ of
A′ ⊗A S modules (For details, see loc. cit., end of the proof, p.375).

Lemma 5.2.3 Let A→ S be as in lemma 5.2.2 above. Let N v→M
u→ L be S-linear maps between three

invertible S-modules. We suppose that v is injective and that it remains injective under any base changes
A→ A′. Then Ct(uv) = Ct(u).

Proof. Since the map v is « universally injective as A-linear map », the very definition of its content
shows that Ct(v) = A. By restricting to affine open sets of Spec(A), we may suppose that S is free, and
using a basis, we dispose, as in the proof of lemma (5.2.2), of a family of A-linear maps wλ : M → N
such that

∑
λ wλ(M) = Ct(v)N = N ; then, we can introduce the affine open subsets Uλ ⊂ Spec(A)

where wλ is surjective, and thus bijective, since M and N are invertible ; on these open sets, one has
Ct(uv) = Ct(u) ; but, due to the expression (5.2.2.1) of the content, these open sets cover Spec(A) since
Ct(v) = A.

5.2.4 Let us recall what the discriminant is. Let S → E be a finite morphism, locally free of rank n ;
we let Ev = HomS(E,S) ; the S-linear map TrE/S : E → S induces a S-linear map

α : E → Ev, x 7→ (y 7→ TrE/S(xy));

its extension to the n-th exterior power ∧nα : ∧nE → ∧n(Ev) = (∧nE)v leads to an S-linear map

dE/S : (∧nE)⊗2 −→ S;

its image is called the discriminant of E/S ([EGA IV4],18.2.7, (ii)).
If F (X) ∈ S[X] is a monic polynomial, the discriminant of the S-algebra E = S[X]/(F ) is the ideal

generated by the usual discriminant of the polynomial F .

5.2.5 Proof of (5.2) In the situation under consideration, the Kronecker morphism

u : E := S[X]/(F ) −→ S ⊗A B
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is compatible with the traces (2.2), namely :

TrE/S = TrS⊗AB/S ◦ u.

Since TrS⊗AB/S = TrB/A ⊗ idS , we get

dE/S = (dB/A ⊗ idS) ◦ (∧nu)⊗2.

The Kronecker morphism u is A-universally injective (4.3). Therefore ∧nu is also A-universally injective
([A] III 8.2 Prop.3), and CtS/A((∧nu)⊗2) = A ; from lemma (5.2.3) we deduce that

CtS/A(dE/S) = CtS/A(dB/A ⊗ idS) = Im(dB/A).

5.2.6 Remark From the proposition 5.2, we see that if A→ B is étale, i.e. if dB/A is an isomorphism, then
CtS/A(dE/S) = A ; but that does not mean that S[X]/(F ) is étale over S ; for example, for B = An, the
characteristic polynomial is, as seen in (4.2.1), F (X) =

∏
(X−Ti) ; it is not separable over A[T1, · · · , Tn]

if n ≥ 2.
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