# Monogenous Algebras. Back to KRONECKER

# DANIEL FERRAND

August 2019

ABSTRACT. - This Note develops some properties of the finite A-algebras B which can be generated by a single element, after, if need be, some faithfully flat base change; they are called *locally monogenous*. Several characterisations of this notion show it appears to be commonly satisfied; in particular, the morphisms between rings of algebraic integers are locally monogenous.

For a finite locally free A-algebra B, we have to consider its ring of parameters  $\text{Sym}_A(B^{\vee})$ , now denoted by S, and its generic element  $\xi_B \in S \otimes_A B$ ; they are both immediately definable when B is free with a basis  $e_1, \ldots, e_n$ : in fact one then has an isomorphism  $S \simeq A[T_1, \cdots, T_n]$ , and we may write  $\xi_B = \sum T_i e_i \in S \otimes_A B$ .

The norm map  $B \to A$  extends to norm maps  $S \otimes_A B \to S$ , and  $S[X] \otimes_A B \to S[X]$ , both still denoted by N; the generic characteristic polynomial is  $F_{B/A}(X) = N(X - \xi_B) \in S[X]$ .

Guided by the point of view of torsors, we bring to the fore front a (non conventional) morphism  $\mu_B: S \to S[T]$  which induces a smooth morphism

$$S/N(\xi_B)S \to S[X]/(F_{B/A}(X)).$$

It relates, in a sense,  $N(\xi_B)$  and  $F_{B/A}(X)$ .

Then we update an idea KRONECKER introduced at the early beginning of the algebraic theory of numbers : namely that some properties of a finite free A-algebra B can be read through the generic characteristic polynomial  $F = F_{B/A}(X)$ ; in fact, since  $\xi$  is a root of F (Hamilton-Cayley) we dispose of a canonical morphism, called the Kronecker morphism

$$S[X]/(F) \to S \otimes_A B.$$

We show that this morphism is A-universally injective if and only if B is locally monogenous over A. Thus this injectivity property is true in the context of the theory of numbers; that is thoroughly, though implicitly, used by HILBERT in the Zahlbericht; besides, the very beginning of this memoir was an inspiration to us for this Note.

In particular, we extend to locally monogenous algebra  $A \to B$  the fact, quoted by HILBERT, that the discriminant of B/A is equal to the content (relative to  $A \to S$ ) of the discriminant of F.

In this note, all the rings are assumed to be commutative and to possess a unit element, and all the ring morphisms are assumed to map unit element to unit element. A ring morphism  $A \to B$  is said to be finite locally free if it makes B a projective A-module of finite type; the map  $\mathfrak{p} \to \operatorname{rank}_{\kappa(\mathfrak{p})}(B \otimes_A \kappa(\mathfrak{p}))$  is then locally constant (for the Zariski topology) on Spec(A); in other words, A is the finite product of rings  $A_r$  such that  $B \otimes_A A_r$  is locally free of constant rank r as  $A_r$ -module.

#### Contents

- 1. Locally monogenous morphisms
- 2. Tschirnhaus morphisms
- 3. The generic element and its norm
- 4. The Kronecker morphism
- 5. Discriminant of the generic characteristic polynomial.

## 1. Locally monogenous morphisms

**Definition 1.1** A morphism  $A \to B$  between rings is called *monogenous* if B can be generated, as an A-algebra, by a single element, in other words if there exists a surjective morphism of A-algebras  $A[X] \to B$ .

A morphism  $A \to B$  is called *locally monogenous* if there exists a faithfully flat morphism  $A \to A'$  such that  $A' \to A' \otimes_A B$  is monogenous.

Before giving some examples and characterizations of these morphisms, we first recall the central rôle they play in the theory of the norm functor (see [F]) : to any finite and locally free morphism  $A \to B$ , is associated a covariant functor

$$N_{B/A} : \mathbf{Mod}_B \longrightarrow \mathbf{Mod}_A,$$

which extends the usual one defined for invertible *B*-modules *L* (roughly speaking, by then taking the norm of a cocycle associated to *L*); for a *B*-algebra  $B \to C$ , there exists a morphism to the Weil restriction  $N_{B/A}(C) \to \mathbf{R}_{B/A}(C)$  which is an isomorphism if B/A is étale. The point is that the norm of a locally free *B*-module is a locally free *A*-module when *B* is étale over *A*, or, more generally if *B* is locally monogenous over *A*; but that may fail to be true in general, even if *B* is a complete intersection over *A* (see [F] 4.3.4 and 4.4).

**Examples 1.2** Consider a ring A and the diagonal morphism  $A \to A^n$ . An element  $x = (x_1, \ldots, x_n) \in A^n$  is a generator of that A-algebra if and only if the powers  $1, x, x^2, \ldots, x^{n-1}$  form a basis of the A-module  $A^n$ . Writing down these powers with respect to the canonical basis of  $A^n$ , one sees that x is a generator of the A-algebra  $A^n$  if and only if the Van der Monde determinant

$$\prod_{i < j} (x_j - x_i)$$

is invertible in A.

The existence of a sequence  $(x_1, \ldots, x_n)$  with this property is clear if A contains an infinite field, but  $\mathbf{F}_p \to \mathbf{F}_p^n$  is *not* monogenous if n > p. It is also clear that such a sequence cannot exist if the group  $A^{\times}$  of invertible elements is too small, i.e. if  $Card(A^{\times}) < \frac{n(n-1)}{2}$ ; thus  $\mathbf{Z} \to \mathbf{Z}^n$  is *not* monogenous if n > 3.

of invertible elements is too small, i.e. if  $\operatorname{Card}(A^{\times}) < \frac{n(n-1)}{2}$ ; thus  $\mathbb{Z} \to \mathbb{Z}^n$  is not monogenous if  $n \geq 3$ . On the other hand, there is a canonical way to adjoin to any ring A a sequence of n elements  $(x_1, \ldots, x_n)$  making the Van der Monde determinant invertible. Just take the ring of fractions  $A' = A[X_1, \ldots, X_n]_V$ , where  $V = \prod_{i < j} (X_j - X_i)$  and, for  $x_i$ , take the image in A' of  $X_i$ ; the morphism  $A \to A'$  is faithfully flat (and smooth), and the morphism  $A' \to A'^n$  is monogenous; thus for any n and any ring A, the morphism  $A \to A^n$  is locally monogenous.

A slight generalization :

A finite étale morphism  $A \rightarrow B$  is locally monogenous.

If  $A \to B$  is of constant rank r, then B is locally isomorphic to  $A^r$ , and thus it is locally monogenous. We can reduce to this case by considering the finite decomposition  $A = A_0 \times A_1 \times \cdots \times A_m$  defined by the condition that  $B_r := B \otimes_A A_r$  be locally free of constant rank r over  $A_r$ ; it is thus locally isomorphic to  $A_r^r$ ; the A-algebra  $B = B_0 \times \cdots \times B_m$ , is clearly locally monogenous.

**Example 1.3** More generally, let A be a ring, and let  $B_1, \ldots, B_s$  be a sequence of finite and locally monogenous A-algebras. The product  $B_1 \times \cdots \times B_s$  is locally monogenous over A.

To see this, it is enough, by induction on s, to prove the result for two factors, which we now denote by B and C. Let us choose generators  $b \in B$  and  $c \in C$  and monic polynomials P(T) and Q(T) in A[T]such that P(b) = 0 and Q(c) = 0; one then has a surjective morphism

$$A[T]/(P) \times A[T]/(Q) \to B \times C,$$

and it is enough to prove that the product  $A[T]/(P) \times A[T]/(Q)$  is locally monogenous over A. Consider the ring of fractions  $A' = A[X]_{R(X)}$  where we have made invertible the *resultant* ([A] IV 6.6)

$$R(X) = \operatorname{res}_T(P(T+X), Q(T)).$$

Let x be the image of X in A'. Using the standard property of the resultant (see e.g [A] IV 6.6 Cor.1 to Prop. 7), we see that the polynomials P(T + x) and Q(T) are co-maximal in A'[T] (i.e. they generate the unit ideal). Therefore, the "Chinese remainder theorem" shows that the morphism

$$A'[T] \longrightarrow A'[T]/(P(T+x)) \times A'[T]/(Q(T))$$

is surjective. Moreover, the A'-algebras A'[T]/(P(T)) and A'[T]/(P(T+x)) are clearly isomorphic. Therefore, it remains to show that the morphism  $A \to A'$  is faithfully flat; as it is clearly flat, we have to show that any prime ideal  $\mathfrak{p}$  of A is the restriction of a prime ideal of A'. Let  $A \to K$  be the morphism of A to an algebraic closure K of the residue field  $\kappa(\mathfrak{p})$ ; it is enough to see that this morphism factors through  $A' = A[X]_{R(X)}$ . Considering the images in K[T] of the two monic polynomials P(T) and Q(T) and their roots in K, it is clear that there exists  $x \in K$  such that P(T+x) and Q(T) have no common root, i.e. such that the resultant R(x) is non zero in K; this element x gives rise to a morphism  $A' = A[X]_{R(X)} \to K$ .

**Proposition 1.4** (Characterizations). Let B be a finite A-algebra. The following conditions are equivalent :

i) The morphism  $A \rightarrow B$  is locally monogenous.

ii) There exists a morphism  $A \to A'$  such that  $A' \to A' \otimes_A B$  is monogenous, and  $\text{Spec}(A') \to \text{Spec}(A)$ surjective (i.e the flatness of the base change is superfluous).

iii) For any morphism  $A \to K$  where K is an algebraically closed field, each local factor of  $K \otimes_A B$  is a monogenous K-algebra.

iv) For any prime ideal  $\mathfrak{p}$  of A, there exists a finite extension  $\kappa(\mathfrak{p}) \to k$  such that  $k \otimes_A B$  is monogenous over k.

v) The B-module  $\Omega^1_{B/A}$  is monogenous.

vi)  $\Omega_{B/A}^2 = 0.$ 

Recall that a finite algebra R over a field is the direct product of the local rings  $R_{\mathfrak{m}}$ , where  $\mathfrak{m}$  runs through the (finite) set of the maximal ideals; these local rings are called in the sequel the *local factors* of R.

All the ingredients used in the following proof come from EGA IV, but, for the convenience of the reader, they are given in some detail instead of scattered references.

**Lemma 1.4.1** Let  $A \to B$  be a finite morphism. We suppose an A-algebra  $A \to E$  exists such that  $E \otimes_A B$  is monogenous over E. Then, there exists a sub-A-algebra  $F \subset E$  of finite type such that  $F \otimes_A B$  is monogenous over F.

Proof: Let  $x = \sum_{i=1}^{n} x_i \otimes b_i \in E \otimes_A B$  be a generator as *E*-algebra; the sub-*A*-algebra  $E' = A[x_1, \ldots, x_n] \subset E$  is of finite type. Let us consider the morphism

$$E'[X] \longrightarrow E' \otimes_A B,$$

which maps X to x; its cokernel M is an E'-module of finite type, as  $E' \otimes_A B$  is, and we have  $E \otimes_{E'} M = 0$ . By induction on the number of generators of M, (and by looking at the *quotients* of M) we are reduced to the case where M is monogenous, i.e where M is isomorphic to a quotient E'/I. The hypothesis,  $E \otimes_{E'} M = 0$ , reads then as E = IE, i.e as a relation :  $1 = \sum_{j=1}^{m} a_j y_j$  with  $a_j \in I$  and  $y_j \in E$ . This relation is already true in the A-algebra of finite type  $E'[y_1, \ldots, y_m]$ .

**Lemma 1.4.2** Let  $\mathfrak{p}$  be a prime ideal in a ring A, and let  $\kappa(\mathfrak{p}) \to k$  be a finite field extension. There exist  $t \in A - \mathfrak{p}$ , a finite free morphism  $A_t \to C$  and an isomorphism  $\kappa(\mathfrak{p}) \otimes_A C \to k$ .

Proof : We write  $S = A - \mathfrak{p}$ . By induction on the number of generators of the  $\kappa(\mathfrak{p})$ -algebra k, we are reduced to proving the following.

Let  $A_t \to C$  be a finite free morphism such that  $k = \kappa(\mathfrak{p}) \otimes_A C$  is a field, and let  $k \to k' = k[x]$  be a finite morgenous field extension. Then there exist  $s \in S$  and a finite free morphism  $C_s \to C'$  such that  $\kappa(\mathfrak{p}) \otimes_A C' \simeq k'$ .

Let  $F(X) \in S^{-1}C[X]$  be a monic polynomial whose image modulo  $\mathfrak{p}$  is the minimal polynomial of x(such a polynomial F exists because the morphism  $S^{-1}C \to S^{-1}C/\mathfrak{p}S^{-1}C \simeq k$  is surjective). If  $s \in S$ denotes the product of the denominators of the coefficients of F, one has  $F \in C_s[X]$ . The morphism

$$A_{st} \to C_s \to C' = C_s[X]/(F)$$

is then free, and one gets an isomorphism  $\kappa(\mathfrak{p}) \otimes_A C' \simeq k'$ .

Proof of the proposition. It is clear that i) implies ii).

Let us prove that ii) implies iii). Let A' be an A-algebra such that  $A' \otimes_A B$  is generated by one element, and such that the map  $\operatorname{Spec}(A') \to \operatorname{Spec}(A)$  is surjective. By the above lemma 1.4.1 there exists a sub-A-algebra  $F \subset A'$ , of finite type, such that  $F \otimes_A B$  is monogenous over F. Let  $A \to K$  be a morphism where K is an algebraically closed field, and denote by  $\mathfrak{p}$  its kernel. By hypothesis, the prime ideal  $\mathfrak{p}$  is the restriction to A of a prime ideal  $\mathfrak{p}'$  of A'; it is also the restriction of the prime ideal  $\mathfrak{q} = \mathfrak{p}' \cap F$ of F, therefore  $\kappa(\mathfrak{p}) \otimes_A F \neq 0$ . Then, as K is algebraically closed, the "Hilbert Nullstellensatz" ([AC] V 3.3 Prop. 1) implies that the given morphism  $\kappa(\mathfrak{p}) \to K$  factors through  $\kappa(\mathfrak{p}) \otimes_A F$ . But the morphism  $\kappa(\mathfrak{p}) \otimes_A F \longrightarrow \kappa(\mathfrak{p}) \otimes_A F \otimes_A B$  is monogenous. Therefore, the K-algebra  $K \otimes_A B$  is monogenous, and a fortiori each of its factors is.

 $iii) \Rightarrow iv$ ). Let K be an algebraic closure of a residue field  $\kappa(\mathfrak{p})$  of A. By the hypothesis iii) and the example **1.3**, the K-algebra  $K \otimes_A B$  is monogenous; by lemma 1.4.1, there exists a finite sub-extension  $k \subset K$  such that  $k \otimes_A B$  is a monogenous k-algebra.

 $iv \Rightarrow i$  First suppose we have already shown that for each prime ideal  $\mathfrak{p}$  of A there exit an element  $t \in A - \mathfrak{p}$  and a finite free morphism  $A_t \rightarrow C$  such that  $C \rightarrow C \otimes_A B$  is monogenous.

Then the image of the morphism  $\operatorname{Spec}(C) \to \operatorname{Spec}(A)$  is the open set D(t), and it contains  $\mathfrak{p}$ . As  $\operatorname{Spec}(A)$  is quasi-compact, a finite number of such morphisms  $A \to C_i, i = 1, \ldots, n$ , are enough for covering  $\operatorname{Spec}(A)$ . Hence we can take  $A' = C_1 \times \cdots \times C_n$ ; it is faithfully flat over A, and  $A' \to A' \otimes_A B$  is monogenous.

It remains to prove the existence of those morphisms  $A_t \to C$ . So let  $\mathfrak{p}$  be a prime ideal in A. According to iv), there exists a finite extension  $\kappa(\mathfrak{p}) \to k$  such that  $k \to k \otimes_A B$  is monogenous. By lemma 1.4.2, one can choose an element  $t \in S = A - \mathfrak{p}$ , a finite free morphism  $A_t \to C$  and an isomorphism  $\kappa(\mathfrak{p}) \otimes_A C \xrightarrow{\sim} k$ . The morphism  $C \to \kappa(\mathfrak{p}) \otimes_A C \simeq k$  is the composite of the surjection  $S^{-1}C \to S^{-1}(C/\mathfrak{p}C)$  and of the localization  $C \to S^{-1}C$ . Then, a generator  $\xi$  of  $k \otimes_A B = S^{-1}(C/\mathfrak{p}C) \otimes_A B$  may be lifted as an element  $x \in S^{-1}(C \otimes_A B)$ .

For proving x is a generator of the  $S^{-1}C$ -algebra  $S^{-1}(C \otimes_A B)$  consider the following diagram :

The cokernel of the injective map  $j: S^{-1}C[x] \to S^{-1}(C \otimes_A B)$ , is a finitely generated module over  $S^{-1}A = A_{\mathfrak{p}}$ , which is zero modulo  $\mathfrak{p}$ . The Nakayama lemma thus implies this cokernel be zero, showing that j is an isomorphism, and that x is a generator of the  $S^{-1}C$ -algebra  $S^{-1}(C \otimes_A B)$ . Finally, there is a  $s' \in S$  such that  $x \in C_{s'} \otimes_A B$ . Using again the above finiteness property of the cokernel, we can find a  $s'' \in S$  such that the map  $C_{s's''}[x] \to C_{s's''} \otimes_A B$  is an isomorphism. The morphism  $A_{s's''t} \to C_{s's''}$  has the required properties.

 $i) \Rightarrow v$ )  $\Rightarrow vi$ ). If B is monogenous over A, then the B-module  $\Omega^1_{B/A}$  is generated by one element, namely the differential  $d_{B/A}(x)$  of any generator x of the A-algebra B. Therefore its square wedge is zero. The same conclusion is true if B is locally monogenous because of the isomorphism  $A' \otimes_A \Omega^1_{B/A} \simeq \Omega^1_{A' \otimes_A B/A'}$ .

 $vi) \Rightarrow iii)$ . Suppose that  $\Omega_{B/A}^2 = 0$ . Let  $A \to K$  be a morphism to an algebraically closed field K. Let R be a local factor of  $K \otimes_A B$ . By assumption, one has  $\Omega_{R/K}^2 = 0$ . We write  $\Omega = \Omega_{R/K}^1$ , and we denote by  $\mathfrak{m}$  be the maximal ideal of R. Since  $\wedge^2(\Omega/\mathfrak{m}\Omega) = 0$  the dimension of the  $R/\mathfrak{m}$ -vector space  $\Omega/\mathfrak{m}\Omega$  is  $\leq 1$ . As K is algebraically closed,  $K \to R/\mathfrak{m}$  is an isomorphism. Now the well-known (see below) K-linear isomorphism

$$\delta:\mathfrak{m}/\mathfrak{m}^2 \quad \widetilde{\longrightarrow} \quad \Omega/\mathfrak{m}\Omega$$

implies that  $\mathfrak{m}/\mathfrak{m}^2$  is a K-vector space of dimension  $\leq 1$ . From the Nakayama lemma we then deduce that the ideal  $\mathfrak{m}$  may be generated by one element. Thus R is a monogenous K-algebra.

(For lack of an elementary reference, we briefly recall that  $\delta$  is induced by the differential  $d_{R/K} : \mathfrak{m} \to \Omega$ , and that the inverse of  $\delta$  is defined as follows. Let  $s : R \to R/\mathfrak{m} \simeq K$  be the canonical morphism. The map  $R \to \mathfrak{m}/\mathfrak{m}^2$ ,  $x \mapsto \text{class of } x - s(x) \mod \mathfrak{m}^2$  is a derivation. By the universality of  $\Omega$ , this derivation extends to a linear map  $\Omega/\mathfrak{m}\Omega \to \mathfrak{m}/\mathfrak{m}^2$ , which is easily seen to be the inverse of  $\delta$ .)

**Corollary 1.5** Let  $A \xrightarrow{u} B \xrightarrow{v} C$  be finite morphisms. Then the composite vu is locally monogenous if either :

- u is locally monogenous and v is net (i.e unramified), or
- u is net and v is locally monogenous.

This result, which generalizes 1.3, is easily deduced from the equivalence i  $\Leftrightarrow v$  of the above proposition and from the exact sequence

$$\Omega^1_{B/A} \otimes_A C \to \Omega^1_{C/A} \to \Omega^1_{C/B} \to 0.$$

**Corollary 1.6** Let A be a Dedekind domain,  $K \to L$  a finite separable extension of its field of fractions, and let B be the integral closure of A in L. Suppose that all the residue field extensions are separable (This is the case if  $A = \mathbf{Z}$ ). Then  $A \to B$  is locally monogenous.

Proof : Let  $\mathfrak{n}$  be a maximal ideal of B, and let  $\mathfrak{m} = A \cap \mathfrak{n}$ . As  $B_{\mathfrak{n}}$  is a discrete valuation ring, the  $\kappa(\mathfrak{n})$ -vector space  $\mathfrak{n}/\mathfrak{n}^2$  is of dimension 1. Since  $\kappa(\mathfrak{n})$  is supposed to be separable over  $\kappa(\mathfrak{m})$  one has  $\Omega^1_{\kappa(\mathfrak{n})/\kappa(\mathfrak{m})} = 0$ . Therefore, the exact sequence

$$\mathfrak{n}/\mathfrak{n}^2 \to \Omega^1_{B/A} \otimes_B B/\mathfrak{n} \to \Omega^1_{\kappa(\mathfrak{n})/\kappa(\mathfrak{m})} \to 0$$

shows that  $\Omega^1_{B/A} \otimes_B B/\mathfrak{n}$  is a vector space of rank  $\leq 1$ . Hence for each maximal ideal  $\mathfrak{n}$  one has  $\Omega^2_{B/A} \otimes_B B/\mathfrak{n} = 0$ , and the Nakayama lemma gives  $(\Omega^2_{B/A})_{\mathfrak{n}} = 0$ . Since this is true for each maximal ideal of B, we may conclude that  $\Omega^2_{B/A} = 0$ .

#### 2. Tschirnhaus morphisms

I am indebted to the late DAN LAKSOV (KTH) for discussing this subject together, few years ago.

**2.1. Definition** Let A be a ring. A morphism  $u: B \to C$  between locally free A-algebras of the same constant rank is said a **Tschirnhaus morphism** if it is "universally norm compatible"; that means that for any morphism  $A \to A'$  the following triangle is commutative



where  $N_{B'}$  is a shortland for the norm map  $N_{A'\otimes_A B/A'}$ , and idem for  $N_{C'}$ .

See (2.4) below for a justification of the choice of this patronymic instead of the adjective *universally* norm compatible.

(2.1.2) An isomorphism, and even an injective morphism, are Tschirnhaus morphisms. With A' = A[X], we see that a Tschirnhaus morphism is compatible with the characteristic polynomials (and in particular with traces) : for any  $b \in B$ , one has

$$\operatorname{Pol.char}_{B/A}(X, b) = \operatorname{Pol.char}_{C/A}(X, u(b)).$$

Note that the norm maps being *polynomial laws* the squares

$$\begin{array}{c|c} B \longrightarrow A' \otimes_A B \\ & & & \downarrow^{N_B} \\ A \longrightarrow A' \end{array}$$

are commutative for any base change  $A \to A'$ ; thus, we have the following descent property : if  $A \to A'$  is only injective and if the above triangle (2.1.1) is commutative, then the original one is also commutative, i.e.  $N_B = N_C \circ u$ .

(2.1.3) Let  $u : B \to C$  be a Tschirnhaus morphism between locally free A-algebras of rank n. Then Ker(u) is a nilideal in B.

In fact, let  $b \in B$  such that u(b) = 0; one has  $\operatorname{Pol.char}_{B/A}(X, b) = \operatorname{Pol.char}_{C/A}(X, u(b)) = X^n$ , and from Hamilton-Cayley we deduce  $b^n = 0$ .

The main source of Tschirnhaus morphisms is given by the following classical result (cf. e.g. [F], 4.3.1).

**2.2.** Proposition Let  $A \to C$  be a finite and locally free morphism of rank n. Let  $c \in C$ , and let  $F(X) = N_{C/A}(X-c)$  be the characteristic polynomial of the map  $C \to C$ ,  $t \mapsto tc$ . The Hamilton-Cayley theorem gives a morphism of A-algebras

$$A[X]/(F) \to C, \quad X \mapsto c.$$

This is a Tschirnhaus morphism. In particular, for  $c = a \in A$ ,  $A[X]/((X - a)^n) \to C$ ,  $x \mapsto a$  is a Tschirnhaus morphism.

Proof. Let B = A[X]/(F) and let  $u : B \to C$  be the morphism which sends the class x of X to c. Since the hypotheses are preserved by any base change, it is enough to proving that  $N_C \circ u = N_B$ . One has  $N_B(X - x) = F(X)^1 = N_C(X - u(x))$ , thus for  $a \in A$ ,  $N_B(a - x) = N_C(a - u(x))$ . Due to the multiplicativity of norms, we are reduced to proving that any  $b \in B$  may be written as a product of elements of the form a - x; but b = Q(x) for some polynomial Q with deg  $Q(X) < \deg F(X)$ ; b may also be written as b = G(x), where G = Q + F is now a monic polynomial in A[X]; thus there exists a free extension A' of A such that, in A'[X], one has  $G(X) = \prod_i (X - a_i)$ , showing that in  $A' \otimes_A B$  one has  $b = (x - a_1) \cdots (x - a_n)$ .

**2.3. Corollary** Let A be a ring and  $\xi = (\xi_1, \dots, \xi_n)$  be an element of  $A^n$ . Let  $F(X) \in A[X]$  be a monic polynomial of degree n such that  $F(\xi_i) = 0$  for all i. Then the morphism of A-algebras

$$A[X]/(F) \to A^n$$

which sends the class of X to  $\xi$ , is a Tschirnhaus morphism if and only if  $F(X) = \prod_i (X - \xi_i)$ .

**2.4** (Tschirnhaus transformation)

Let  $G(X) \in A[X]$  be a monic polynomial, and let  $P(X) \in A[X]$  be any polynomial. Recall that the traditional *Tschirnhaus transfomation of G by P* is the polynomial whose roots are the images by P of those of G; precisely, let introduce a finite free extension A' of A such that G splits in A'[X] as  $G(X) = \prod_i (X - \xi_i)$ ; then the coefficients of  $F(X) = \prod_i (X - P(\xi_i))$  are symmetric expressions of the roots of G, thus  $F \in A[X]$ ; it is the transformation of G by P. But one can define F without any reference to the roots of G as follows : let y be the class of Y in the free A-algebra C = A[Y]/(G(Y)); then F(X) is nothing but the characteristic polynomial of  $c \mapsto cP(y)$ , i.e. the norm

$$F(X) = N_{C[X]/A[X]}(X - P(y))$$

From (2.2), the morphism which sends X to P(y) induces a Tschirnhaus morphism

$$A[X]/(F) \to A[Y]/(G).$$

Conversely, given two monic polynomials  $F, G \in A[X]$  of the same degree, and a Tschirnhaus morphism  $u: A[X]/(F) \to A[Y]/(G)$ , then F is the Tschirnhaus transformation of G by (any) polynomial P such that  $u(x) \equiv P(Y) \mod G$ .

**2.5** To pay a tribute to L. KRONECKER, and also to show the power of the property of norms from being polynomial laws, we give the following criterium; it will not be used below.

**2.5.1 Proposition** Let A be a ring and let  $u : B \to C$  be a morphism between locally free Aalgebras of the same rank r. For u to be a Tschirnhaus morphism it is necessary and sufficient that  $u \otimes 1_{A[T]} : B[T] \to C[T]$  be norm compatible.

<sup>1.</sup> As any undergraduate student knows, the matrix of  $b \mapsto xb$  relative to the basis  $(1, x, \dots, x^{n-1})$  is the "companion matrix" of the polynomial F, which thus appears as the characteristic polynomial of the matrix.

Proof. In this proof we lighten notations by letting  $A_{[n]} = A[T_1, \dots, T_n]$ . For proving sufficiency we first show that if  $u_{[1]} : A_{[1]} \otimes_A B \to A_{[1]} \otimes_A C$  is norm compatible, then for any positive integer  $n, u_{[n]}$  is norm compatible. For doing so we use the *Kronecker substitution* : let d > 1 be an integer ; the Kronecker substitutions (relative to d)  $\theta_d : A_{[n]} \to A_{[1]}$ , is the morphism of A-algebras

$$\theta_d: A[T_1, \cdots, T_n] \longrightarrow A[T], \text{ defined by } \theta(T_i) = T^{d^{i-1}}$$

The image of a monomial  $T_1^{m_1} \cdots T_n^{m_n}$  is equal to  $T^m$  with  $m = m_1 + m_2 d + \cdots + m_n d^{n-1}$ ; under the condition that  $0 \le m_i < d$  for all *i*, this expression of *m* is its "*d*-adic expansion", and thus it is unique. In other words, if  $\Theta \subset A[T_1, \cdots, T_n]$  denotes the set of polynomials whose all partial degrees are < d, then the restriction of  $\theta_d$  gives an *injective* map (designated by the same letter)

$$\theta_d: \Theta_d \longrightarrow A[T].$$

Now let  $x \in B_{[n]} = A_{[n]} \otimes_A B$ , and let  $u_{[n]}(x)$  its image in  $C_{[n]}$ ; we have to check that the polynomials  $N_{B_{[n]}}(x)$  and  $N_{C_{[n]}}(u_{[n]}(x))$  in  $A_{[n]}$  are equal. Choose an integer d strictly greater than all the partial degrees in the variables  $T_i$  in both these polynomials; thus  $N_{B_{[n]}}(x)$  and  $N_{C_{[n]}}(u_{[n]}(x))$  are inside the subset  $\Theta_d \subset A_{[n]}$ . Consider the following diagram.



The two front faces of the prism are commutative diagrams because norms are polynomial laws; the third is also commutative because it is nothing but a base change; the lower triangle is commutative by assumption, and  $\theta_d$  is an injective map when restricted to  $\Theta_d$ ; thus  $N_{B_{[n]}}(x) = N_{C_{[n]}}(u_{[n]}(x))$ .

Finally, let  $A \to A'$  be any algebra, and let  $y = \sum_{1}^{n} a'_i \otimes b_i$  be an element in  $A' \otimes_A B$ ; consider the morphism of A-algebras  $A_{[n]} \to A'$  defined by  $T_i \mapsto a'_i$ , and let  $z \in A_{[n]} \otimes_A B$  be defined by  $z = \sum T_i \otimes b_i$ ; the preceding step shows that the norm of z and the norm of  $u_{[n]}(z) \in C_{[n]}$  are equal in  $A_{[n]}$ ; so the norm of y and the norm of its image in  $A' \otimes_A C$  are equal.

### 3. The generic element

**3.1** The generic element of a projective A-module M of finite type

Denote by  $M^{\vee} = \operatorname{Hom}_{A}(M, A)$  the dual of the A-module M. We define an isomorphism

$$M^{\mathsf{v}} \otimes_A M \xrightarrow{\sim} \operatorname{End}_A(M)$$

by sending  $u \otimes x \in M^{\vee} \otimes_A M$  to the endomorphism  $y \mapsto u(y)x$ . We let

$$\xi_M \in M^{\mathsf{v}} \otimes_A M$$

be the element corresponding to the identity map of M via the above isomorphism; explicitly, let  $(x_1, \dots, x_n)$  be a generating system for M, and let  $v: A^n \to M$  be the surjective linear map associated to it; since M is projective, one has a map  $u: M \to A^n$  such that  $vu = 1_M$ ; by writing  $u = (u_1, \dots, u_n)$ , we have  $\xi_M = \sum u_i \otimes x_i$ .

When viewing  $\xi_M$  as an element of  $\operatorname{Sym}_A(M^{\mathsf{v}}) \otimes_A M$ , we call it the **generic element** of M, and we call  $\operatorname{Sym}_A(M^{\mathsf{v}})$  the *ring of parameters* for the elements of M. In fact, an element x in M uniquely determines the A-linear map  $M^{\mathsf{v}} \to A$  given by  $u \mapsto u(x)$ . This map extends to a morphism of A-algebras

$$\gamma_x: \operatorname{Sym}_A(M^{\mathsf{v}}) \to A.$$

The morphism  $\gamma_x$  has to be seen as the *specialization of parameters* attached with x because we recover x as the image of the generic element  $\xi_M$  by the morphism

$$\gamma_x \otimes 1 : \operatorname{Sym}_A(M^{\mathsf{v}}) \otimes_A M \to M.$$

More generally,

**3.1.2. Lemma** For any A-algebra A', consider the maps

$$A' \otimes_A M \longrightarrow \operatorname{Hom}_A(M^{\mathsf{v}}, A') \longrightarrow \operatorname{Hom}_{A-\operatorname{Alg}}(\operatorname{Sym}_A(M^{\mathsf{v}}), A')$$

where the first one is given by  $a' \otimes x \longmapsto (u \mapsto u(x)a')$ , and the second map comes from the definition of the symmetric algebra. Then the composite map defines an isomorphism of functors  $\operatorname{Alg}_A \to \operatorname{Ens}$ . In the opposite direction, a morphism of A-algebras  $\gamma : \operatorname{Sym}_A(M^{\mathsf{v}}) \to A'$  induces a morphism  $\gamma \otimes 1_M :$  $\operatorname{Sym}_A(M^{\mathsf{v}}) \otimes_A M \to A' \otimes_A M$ , from which we get the element  $(\gamma \otimes 1_M)(\xi_M) \in A' \otimes_A M$ .

**3.1.3.** If M is a free A-module with basis  $(e_i)$ , and if  $(e_i^{\mathsf{v}})$  denotes the dual basis, one has :

$$\xi_M = \sum_i e_i^{\mathsf{v}} \otimes e_i.$$

The ring of parameters  $\operatorname{Sym}_A(M^{\mathsf{v}})$  is then isomorphic to the polynomial ring  $A[T_1, ..., T_n]$ , where  $T_i$  stands for the linear form  $e_i^{\mathsf{v}}$ ; with these notations,  $\operatorname{Sym}_A(M^{\mathsf{v}}) \otimes_A M$  is isomorphic to the  $A[T_1, ..., T_n]$ -module  $M[T_1, \dots, T_n]$ , and the generic element may be written as

$$\xi_M = \sum_i e_i T_i \in M[T_1, \cdots, T_n].$$

#### **3.2** The generic element of a locally free algebra $A \rightarrow B$

Applying the above construction to the A-module B, we get the generic element

$$\xi_B \in \operatorname{Sym}_A(B^{\mathsf{v}}) \otimes_A B.$$

Writing  $\xi_B = \sum \beta_i \otimes x_i$ , with  $\beta_i \in B^{\mathsf{v}}$  and  $x_i \in B$ , one has by definition, for  $b \in B$ ,  $b = \sum \beta_i(b)x_i$ , and, in particular

$$1_B = \sum \beta_i(1_B) x_i.$$

**3.2.1 Lemma.** Let  $f : A \to B$  be a finite locally free algebra. If the linear map f is injective, it admits a retraction, that is a A-linear map  $\tau : B \to A$  such that  $\tau(1_B) = 1_A$ ; in other words, the sequence of A-modules  $0 \to A \to B \to B/A \to 0$  is split, where we write B/A for the cokernel of f; it is a projective A-module.

Proof. This is stated in [AC, II §5, Exerc.4], but it may be given a direct proof, as follows. First note that the linearity of  $\tau$  means that, for  $a \in A$  and  $b \in B$ , one has  $\tau(f(a)b) = a\tau(b)$ ; that implies, with  $b = 1_B$ , that  $\tau \circ f = \mathrm{Id}_A$ ; so  $\tau$  is indeed a retraction of f. Now, keeping the notations of the beginning of (3.2), let I be the ideal in A generated by the elements  $\beta_i(1_B)$ ; since B = IB the usual Nakayama trick implies the existence of  $a \in I$  such that  $(1_A - a)1_B = 0$ ; but f is injective, so  $1_A = a$ ; since I is generated by the  $\beta_i(1_B)$ , one has  $1_A = \sum a_i\beta_i(1_B)$ , so  $\tau = \sum a_i\beta_i$  is a retraction of f.

**3.2.2 Remark.** Let  $f : A \to B$  a finite locally free algebra; let J = Ker(f). We will show that there exists an idempotent  $e \in A$ , such that J is generated by 1 - e, and such that B = eB.

In fact, for any A/J-module M, one has  $\operatorname{Hom}_{A/J}(B, M) = \operatorname{Hom}_A(B, M)$ , thus B is projective also as an A/J-module. From the above lemma there exists a retraction  $\tau : B \to A/J$ ; the projectivity of B as an A-module implies the existence of a A-linear map  $\tau'$  and a commutative triangle



Let  $e = \tau'(1_B)$ ; one has  $1_A - e \in J$ , so  $0 = f(1_A - e) = 1_B - f(e)$ ; that implies B = eB; but  $\tau'$  is A-linear thus  $eJ = \tau'(1_B J) = 0$ , hence e is an idempotent, and 1 - e generates J.

In conclusion, f is injective if and only if, for each prime ideal  $\mathfrak{p}$  of A, the rank of B at  $\mathfrak{p}$  is > 0, i.e.  $\kappa(\mathfrak{p}) \otimes_A B \neq 0$ , or, equivalently, if and only if the map  $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$  be surjective; it is the case when B is of constant rank > 0.

**3.2.3.** Below we shall introduce a morphism  $\mu : \operatorname{Sym}_A(B^{\mathsf{v}}) \to \operatorname{Sym}_A(B^{\mathsf{v}})[T]$  - not the canonical one-, which will appears "natural" from the point of view of vector bundles, in the sense of [EGA I, (9.4.9)].

Recall that, for an A-module M,  $\mathbf{V}(M)$  denotes the vector bundle associated to M, that is the covariant functor from the category of A-algebras to the category of groups,

$$A' \mapsto \operatorname{Hom}_{A-\operatorname{Mod}}(M, A') = \operatorname{Hom}_{A-\operatorname{Alg}}(\operatorname{Sym}_A(M), A').$$

Thus this functor is represented by  $\operatorname{Sym}_A(M)$ .

A linear map  $\varphi : M \to N$  induces, by composition on the right,  $v \mapsto v\varphi$ , a morphism of functors  $\mathbf{V}(N) \xrightarrow{\mathbf{V}(\varphi)} \mathbf{V}(M)$ , and a morphism of A-algebras  $\operatorname{Sym}_A(M) \xrightarrow{\operatorname{Sym}_A(\varphi)} \operatorname{Sym}_A(N)$ .

Let  $0 \to M' \to M \xrightarrow{p} M'' \to 0$  be an exact sequence of A-modules. We have a morphism of functors

$$(3.2.3.1) \mathbf{V}(M'') \times \mathbf{V}(M) \longrightarrow \mathbf{V}(M) \times_{\mathbf{V}(M')} \mathbf{V}(M), \quad (u'', u) \longmapsto (u''p + u, u)$$

It is clearly an isomorphism and thus it allows one to see  $\mathbf{V}(M)$  as a torsor in the category of functors over  $\mathbf{V}(M')$  under the additive group  $\mathbf{V}(M'')$ . Note that the projection onto the left hand factor of the fiber product over  $\mathbf{V}(M')$ , namely

$$(3.2.3.2) \mathbf{V}(M') \times \mathbf{V}(M) \longrightarrow \mathbf{V}(M)$$

is associated to the linear map

$$M \longrightarrow M'' \times M, \quad x \longmapsto (px, x)$$

**3.2.4** Suppose now that the morphism  $f : A \to B$  is injective; from lemma (3.2.1), the following sequence of A-modules is exact :

$$(3.2.4.1) 0 \to (B/A)^{\mathsf{v}} \to B^{\mathsf{v}} \xrightarrow{\beta \mapsto \beta_{|A|}} A^{\mathsf{v}} \to 0.$$

We write  $S = \text{Sym}_A(B^{\vee})$ , and  $S_0 = \text{Sym}_A((B/A)^{\vee})$  for this A-subalgebra of S.

We now apply the construction from **3.2.3.** to the above sequence. The map  $p: M \to M''$  is here the map  $B^{\mathsf{v}} \to A^{\mathsf{v}}, \beta \mapsto \beta_{|A}$  "restriction to A"; denoting by T the canonical basis of the A-module  $A^{\mathsf{v}}$ , we have a canonical isomorphism  $\operatorname{Sym}_A(A^{\mathsf{v}}) = A[T]$ , and the morphism  $B^{\mathsf{v}} \to A^{\mathsf{v}}$  may be written as  $\beta \mapsto \beta(1)T$ . The projection (3.2.3.2) induces on the A-algebras representing the involved functors the morphism of  $S_0$ -algebras

$$\mu: S = \operatorname{Sym}_A(B^{\mathsf{v}}) \longrightarrow \operatorname{Sym}_A(A^{\mathsf{v}}) \otimes_A \operatorname{Sym}_A(B^{\mathsf{v}}) \simeq A[T] \otimes_A \operatorname{Sym}_A(B^{\mathsf{v}}) = S[T];$$

it is given by extending to the symmetric algebra the map defined, for  $\beta \in B^{\mathsf{v}}$ , by

$$\beta \mapsto \beta(1)T + \beta.$$

This morphism  $\mu: S \to S[T]$  is clearly *not* the usual canonical morphism of S-algebras; however it is faithfully flat and smooth. In fact, from lemma **3.2.1** we may choose a retraction  $\tau: B \to A$  of f, in order to get a linear bijection  $(B/A)^{\vee} \oplus A^{\vee} \longrightarrow B^{\vee}$ , and thus an isomorphism of algebras

$$\operatorname{Sym}((B/A)^{\vee}) \otimes \operatorname{Sym}(A^{\vee}) = S_0[T] \xrightarrow{\sim} S = \operatorname{Sym}(B^{\vee}).$$

This isomorphism depends on the choice of  $\tau$  (and it should have been referred to by the slogan : « a torsor with a rational point is trivial »); at any rate we get from it a morphism  $\varphi : S_0 \to S_0[T] \simeq S$  which is faithfully flat and smooth.

**3.2.5.** Now, the isomorphism (3.2.3.1) between functors implies that the following square is cocartesian:



From this square it is clear that  $\mu$  is faithfully flat and smooth.

#### (3.3) Norm of the generic element

The morphism of  $S_0 \otimes_A B$ -algebras  $\mu_B := \mu \otimes 1_B : S \otimes_A B \to S[T] \otimes_A B$  is faithfully flat and smooth; one has

$$\mu_B(\xi_B) = T \otimes 1 + \xi_B.$$

In fact, if we write  $\xi_B = \sum \beta_i \otimes x_i$ , with  $\beta_i \in B^{\mathsf{v}}$  and  $x_i \in B$ , one has  $\mu_B(\sum \beta_i \otimes x_i) = \sum (\beta_i(1)T + \beta_i) \otimes x_i = T \otimes (\sum \beta_i(1)x_i) + \xi_B = T \otimes 1 + \xi_B$ .

In the sequel, we shall write T instead of  $T \otimes 1 \in S[T] \otimes B$ .

To lighten the expression of the norm maps, we write, for any A-algebra  $A \to A'$ ,

$$\mathbf{N}_{B;A'} := \mathbf{N}_{A' \otimes_A B/A'};$$

so the second index indicates the target of the norm map. The polynomial  $F_{B/A}(T) = \mathcal{N}_{B;S[T]}(T - \xi_B) \in S[T]$  is the generic characteristic polynomial discussed in the next paragraph (cf. 4.1).

**Proposition 3.3.1.** Let  $A \to B$  be a locally free morphism of rank n. With the notations above, one has :

- 1. The generic element  $\xi_B$  is regular in  $S \otimes_A B$ , and the quotient of that ring by the ideal generated by  $\xi_B$  is smooth over B;
- 2. the morphism  $\mu$  induces a faithfully flat morphism

$$S/N_{B;S}(\xi_B)S \longrightarrow S[T]/(F),$$

where  $F = F_{B/A}(T)$ ; this morphism is smooth of relative dimension 1;

3. the  $S_0$ -algebra  $S/N_{B;S}(\xi_B)S$  is locally free of rank n.

Recall that an element s in a ring S is said to be regular(= nonzerodivisor) if the map  $S \to S$ ,  $x \mapsto sx$  is injective.

*Proof*: 1) The morphism  $\mu_B : S \otimes B \to S[T] \otimes B$  is faithfully flat, hence injective, and we have  $\mu_B(\xi_B) = T + \xi_B$ ; thus the regularity of  $\xi_B$  follows from the regularity of  $T + \xi_B$  in  $S[T] \otimes B$ .

From (3.2.5.) the composite morphism of  $S_0 \otimes B$ -algebras, induced by  $\mu_B$ 

$$S \otimes B/(\xi_B) \xrightarrow{\overline{\mu_B}} S[T] \otimes B/(T+\xi_B) \xrightarrow{T \mapsto -\xi_B} S \otimes B$$

is faithfully flat and smooth. (If, for example, A = B, then  $S \otimes B = A[X]$ , and  $\xi_B = X$ ; so the above map is nothing but the familiar one :  $A[X]/(X) \xrightarrow{X \mapsto T+X} A[X+T]/(X+T) \xrightarrow{T \mapsto -X} A[X]$ .)

2) The following square with straight arrows is cocartesian

$$\begin{array}{c} S \otimes B \xrightarrow{\mu_B} S[T] \otimes B \\ \underset{N_{B;S}}{\overset{\wedge}{\left( \begin{array}{c} \uparrow \\ S \end{array} \right)}} S \xrightarrow{\mu} S[T]} \end{array} \\ \begin{array}{c} S \\ \end{array} \\ S \xrightarrow{\mu} S[T] \end{array}$$

Therefore the curved square with the norm maps is commutative; thus one has

$$\mu(N_{B;S}(\xi_B)) = N_{B;S[T]}(\mu_B(\xi_B)) = N_{B;S[T]}(T + \xi_B)$$

From this and (3.2.5), we deduce that the following square is cocartesian, where  $P(T) = N_{B:S[T]}(T + \xi_B)$ 

3) Since  $P(T) = N_{B;S[T]}(T + \xi_B)$  is a monic polynomial of degree *n* with coefficients in *S*, and using the faithfull flatness of  $\varphi$ , one sees that  $S/N_{B;S}(\xi)S$  is locally free of rank *n* over  $S_0$ . Finally,  $(-1)^n P(-T) = N_{B;S[T]}(T - \xi_B)$  is the characteristic polynomial of  $\xi_B$ , which is denoted by  $F_{B/A}$  in the next section.  $\Box$ 

## 4. The Kronecker morphism

# 4.1 Definition and examples

Let  $A \to B$  be a finite and locally free morphism. Let

$$F_{B/A}(X) \in \operatorname{Sym}_A(B^{\mathsf{v}})[X]$$

be the characteristic polynomial of the generic element of B; from now on this polynomial will be called the **generic characteristic polynomial**.

The relation  $F_{B/A}(X) = 0$  is called by Hilbert (Zahlbericht, ch.IV, §10) the fundamental equation of the A-algebra B. The generic element is a root of this equation (Hamilton-Cayley theorem), therefore there exists a morphism of  $\text{Sym}_A(B^{\vee})$ -algebras

$$\operatorname{Sym}_A(B^{\mathsf{v}})[X]/(F_{B/A}) \longrightarrow \operatorname{Sym}_A(B^{\mathsf{v}}) \otimes_A B,$$

which maps (the class of) X to  $\xi_B$ ; it will be called the **Kronecker morphism** of B/A.

**4.1.1** As a first example, consider  $B = A^n$ , and choose the canonical basis  $(e_i)$  for  $A^n$ . The ring of parameters  $\text{Sym}_A(B^{\mathsf{v}})$  is then isomorphic to  $S = A[T_1, \ldots, T_n]$ , where  $T_i$  stands for the *i*-th projection  $A^n \to A$ . An immediate calculation gives

$$F_{B/A}(X) = \prod_{i=1}^{n} (X - T_i),$$

and the Kronecker morphism

$$S[X]/(\prod (X - T_i)) \longrightarrow S^n$$

is defined by  $X \mapsto (T_1, \ldots, T_n)$ .

It is injective since the Van der Monde determinant  $\prod_{i < j} (T_j - T_i)$  is a regular element in S (but it is not invertible if  $n \ge 2$ ).

More generally, let  $A \to B$  be a finite étale morphism of rank n; its generic characteristic polynomial  $F_{B/A}$  is locally isomorphic to  $\prod_{i=1}^{n} (X - T_i)$ , thus, for  $n \ge 2$ , the morphism  $\operatorname{Sym}_{A}(B^{\mathsf{v}}) \to \operatorname{Sym}_{A}(B^{\mathsf{v}})[X]/(F_{B/A})$  is **not étale**.

**4.1.2** The next example is not illuminating! Let B = A[Y]/(G) be the A-algebra of rank 3 defined by the polynomial

$$G(Y) = Y^3 + a_2 Y^2 + a_1 Y + a_0.$$

If we write the generic element of B as  $\xi_B = T_0 + T_1 y + T_2 y^2$ , then

$$F_{B/A}(X) = (X - T_0)^3 + (X - T_0)^2 [a_2 T_1 + (2a_1 - a_2^2) T_2] + (X - T_0) [a_1 T_1^2 + (3a_0 - a_1 a_2) T_1 T_2 + (a_1^2 - 2a_0 a_2) T_2^2] + [a_0 T_1^3 - a_0 a_2 T_1^2 T_2 + a_0 a_1 T_1 T_2^2 - a_0^2 T_2^3].$$

From this, it is not even clear if the Kronecker morphism is injective; in fact it is (cf. 4.2 below).

**4.1.3** Let B = A[u, v] with  $u^2 = v^2 = 0$ ; so  $A \to B$  is a complete intersection morphism; the ideal J = uB + vB is a free A-module of rank 3, and  $J^3 = 0$ ; thus B is a radicial A-algebra of rank 4. Writing the generic element as  $\xi = T_0 + T_1u + T_2v + T_3uv$ , we find

$$F_{B/A}(X) = (X - T_0)^4.$$

Since  $(\xi - T_0)^3 = 0$ , the Kronecker morphism is *not* injective in that case.

**Theorem 4.2** (Injectivity of the Kronecker morphism) Let  $A \to B$  be a finite and locally free morphism of rank n. Then the following conditions are equivalent :

i) B is locally monogenous over A.

ii) The Kronecker morphism

$$\operatorname{Sym}_A(B^{\mathsf{v}})[X]/(F_{B/A}) \longrightarrow \operatorname{Sym}_A(B^{\mathsf{v}}) \otimes_A B,$$

is injective, and it remains injective after any base change  $A \to A'$ .

Proof.  $i \Rightarrow ii$ ). We can suppose B to be monogenous, hence of the form A[Y]/(G), where G is a monic polynomial of degree n. We write y the class of Y in B, and we choose the basis  $\{1, y, \ldots, y^{n-1}\}$  for B. The ring of parameters  $\text{Sym}_A(B^{\vee})$  will then be seen as the polynomial ring  $S = A[T_0, T_1, \ldots, T_{n-1}]$ , in such a way that the generic element would be written as

$$\xi = T_0 + T_1 y + \dots + T_{n-1} y^{n-1}.$$

Checking the injectivity of the Kronecker morphism amounts to proving the following property : any relation of the form

$$s_0 + s_1 \xi + \dots + s_{n-1} \xi^{n-1} = 0$$

with the  $s_i$  in S, implies that all the  $s_i$  are zero; in other words, one has to show that the family  $(1, \xi, ..., \xi^{n-1})$  of elements of  $S \otimes_A B$  is free over S. For doing so, we consider the determinant of the matrix of the  $\xi^j$  on the basis  $(y^i)$ , and we show it is a regular (i.e nonzerodivisor) element in S. Let  $U_{ij} \in S$  be the polynomials defined by

$$\xi^{j} = U_{0,j} + U_{1,j}y + \dots + U_{n-1,j}y^{n-1}.$$

Each of the polynomials  $U_{ij}$  is homogeneous in  $T_0, T_1, \ldots, T_{n-1}$ , of degree j; in fact, introducing a new variable T, we have to check the equality  $U_{ij}(TT_0, TT_1, \cdots, TT_{n-1}) = T^j U_{ij}(T_0, \cdots, T_{n-1})$ ; but the left hand side is nothing but the coefficient of  $(T\xi)^j$  on the basis element  $y^i$ ; hence the equality. Therefore the determinant  $U = \det(U_{ij})$  is a homogeneous polynomial of degree  $N = 1 + 2 + \cdots + n - 1$ .

On the other hand, one has  $U(0, T_1, 0, ..., 0) = T_1^N$ : in fact consider the morphism of A-algebras  $S \to S$  defined by  $T_i \mapsto 0$  for  $i \neq 1$ , and its extension to  $S \otimes_A B$ ; it sends  $\xi$  to  $T_1 y$ , and thus  $\xi^j$  is mapped to  $T_1^j y^j$ ; the image of the matrix  $(U_{ij})$  is the diagonal matrix  $\operatorname{diag}(1, T_1, \ldots, T_1^{n-1})$ , and thus  $U(0, T_1, 0, \ldots, 0) = T_1^N$ .

These two facts together imply that U is a monic polynomial in  $T_1$ . Hence U is a regular element in S, and it remains regular after any base change  $A \to A'$ .

**4.2.1.** As an explicit example, let us go back to the monogenous algebra of degree 3 in (4.1.2); some by hand calculations give, as expected, a monic polynomial in  $T_1$  for the determinant :

$$U = T_1^3 - 2a_2T_1^2T_2 + (a_1 + a_2^2)T_1T_2^2 + (a_0 - a_1a_2)T_2^3.$$

Before proving the implication  $ii \rightarrow i$ , we recall a linear algebra fact.

**4.2.2. Lemma** Let R be a ring, and let  $u : M \to N$  be a R-linear map between projective R-modules of the same rank n. The R-modules  $\wedge^n M$  and  $\wedge^n N$  are invertible (i.e. of rank 1), and so is

$$L = \operatorname{Hom}_R(\wedge^n M, \wedge^n N).$$

Consider the image of  $\lambda = \wedge^n u$  in  $\operatorname{Sym}_R(L)$ , and the quotient  $R_{\lambda} = \operatorname{Sym}_R(L)/(\lambda - 1)$ . Then

- (a) The morphism  $R \to R_{\lambda}$  is flat, and the image of  $\operatorname{Spec}(R_{\lambda}) \to \operatorname{Spec}(R)$  is the open set  $\mathcal{U}$  of the primes  $\mathfrak{p}$  such that  $M_{\mathfrak{p}} \to N_{\mathfrak{p}}$  is bijective.
- (b) The map u is injective if and only if  $\wedge^n u$  is, and this is also equivalent to  $R \to R_\lambda$  being injective; in particular, the open set  $\mathcal{U}$  is then non empty (if  $R \neq 0$ ).

The notation  $R_{\lambda}$  is indeed unusual since  $\lambda$  is not an element in R; but if it were, then the usual fractions ring  $R_{\lambda}$  would have been written as  $R[T]/(\lambda T - 1)$ , which is exactly  $\operatorname{Sym}_R(L)/(\lambda - 1)$  when L is free with basis noted T. Since the R-module L is locally isomorphic to R, to check the lemma, we can suppose that M and N are free, but then the part (a) rests on the well known relations between a square matrix and its determinant; the equivalence in part (b) comes from [A], III, §8.2, Prop. 3, p.524.

**Proof of the implication**  $ii) \Rightarrow i$ ) of **Theorem 4.2**. Suppose now that the Kronecker morphism is injective; we will define a faithfully flat morphism  $A \to A'$  such that the A'-algebra  $A' \otimes_A B$  be monogenous. Simplify the notation as

$$u: S[X]/(F) \longrightarrow S \otimes_A B$$

Both sides are projective S-modules of the same rank n, so we can apply the above lemma whose we adopt the notations; now the symbol  $\wedge^n$  denotes the wedge power as S-module. We introduce the invertible S-module  $L = \operatorname{Hom}_S(\wedge^n(S[X]/(F)), \wedge^n(S \otimes_A B))$ , and its element  $\lambda = \wedge^n u$ ; the spectrum of  $S_{\lambda}$  defines the open set  $\mathcal{U} \subset \operatorname{Spec}(S)$  where u is an isomorphism. So the morphism

$$u_{\lambda}: S_{\lambda}[X]/(F) \longrightarrow S_{\lambda} \otimes_A B$$

is an isomorphism; in particular, the  $S_{\lambda}$ -algebra on the right is monogenous. It remains to check that the morphisme  $A \to S_{\lambda}$  is faithfully flat, i.e. that the morphism  $\mathcal{U} \to \operatorname{Spec}(A)$  is surjective; but it is an immediate consequence of the hypothesis that u remains injective after any base change  $A \to A'$ .  $\Box$ 

**4.2.3.** (Back to the Zahlbericht of HILBERT ) In the §§10 and 11 of this memoir, the base ring is  $A = \mathbf{Z}$  and the algebra B is the ring of integers of a number field K, hence it is a monogenous **Z**-algebra. The generic element  $\xi$  is called by Hilbert the *fundamental form*, and the generic characteristic polynomial is denoted by F; the relation F = 0 is said the fundamental equation of the ring.

The theorem 34 of the *Zahlbericht* says :

The congruence of degree n,  $F(X) \equiv 0 \mod p$  is the congruence of lowest degree which is satisfied modulo p by the fundamental form  $\xi$  (i.e by the generic element).

It is an other way for stating the injectivity property *ii*) of (**4.2.2**), when the base ring is **Z**.

**Remark 4.2.4.** An alternative proof of the implication  $ii \Rightarrow i$  of (4.2) uses the condition iii of the proposition 1.4. We will now give its main step because it seems to be of interest in itself.

Let K be an algebraically closed field, and R a finite local K-algebra. We suppose that there exist a non zero K-algebra S, a monic polynomial  $F(X) \in S[X]$  of degree  $n = \operatorname{rank}_K(R)$ , and an injective morphism of S-algebras  $u: S[X]/(F) \to S \otimes_K R$ . Then R is a monogenous K-algebra.

Proof: We write R = K + J where J is nilpotent. Let m be the lowest integer such that  $J^m = 0$ ; hence, in the filtration

$$R \supset J \supset J^2 \supset \ldots \supset J^{m-1} \supset J^m = 0$$

all those K-subspaces are distinct. Therefore, we have  $m \leq \dim_K(R) = n$ . Let x denote the class of X in S[X]/(F). We write  $u(x) = s + \eta \in S \otimes_K R = S + S \otimes_K J$ , with  $s \in S$  and  $\eta \in S \otimes_A J$ . Since  $u((x-s)^m) = \eta^m = 0$ , the injectivity of u implies that F(X) divides  $(X-s)^m$ . Therefore m = n because  $\deg(F) = n \geq m$ . Thus,  $J^{n-1} \neq 0$ . But J is a vector space of dimension n-1, and the filtration above

is strict; therefore the vector space  $J/J^2$  is of rank one, i.e the ideal J is generated by one element (Nakayama)and we conclude that R is monogenous.

**Corollary 4.2.5.** Let  $A \to B$  be a finite locally free and locally monogenous morphism. If the ring B is reduced (resp. a domain, a connected ring) then the same is true for the ring  $S/N_{B;S}(\xi_B)S$ .

Proof. By composing the Kronecker morphism (4.2) with the morphism  $\mu$  from the proposition (3.3), we get a morphism of A-algebras

$$S/\mathcal{N}_{B;S}(\xi_B)S \longrightarrow S \otimes_A B$$

which is injective, even after any base change  $A \to A'$ ; moreover, the properties of the ring B taken into account in the statement are transferred to the ring  $S \otimes_A B$ , and also to its subring  $S/N_{B;S}(\xi_B)S$ .  $\Box$ 

This result has most probably been noticed already, at least for field extension, as the sentence : If  $K \to L$  is a monogenous field extension of degree n, the norm of the generic element is an irreducible polynomial in  $K[T_1, \dots, T_n]$ .

Remark 4.2.6. The simplest non monogenous field extension is

$$K = \mathbf{F}_2(X, Y) \subset L = \mathbf{F}_2(U, V),$$

given by  $X = U^2, Y = V^2$ . It is a radicial extension of degree 4. The norm of the generic element  $\xi_L = T_0 + T_1 U + T_2 V + T_3 UV$  is  $(T_0^2 + T_1^2 X + T_2^2 Y + T_3^2 X Y)^2$ ; it is a reducible polynomial!

**Remark 4.3.** (O. LOOS) The injectivity of the Kronecker morphism means that the characteristic polynomial  $F_{B/A}$  is also the minimum polynomial of the generic element, as already pointed out by HILBERT. The following remarks, which elaborate this idea, are essentially due to O. LOOS.

First suppose that A = K is a field; let L be the field of fractions of the polynomial ring  $S = \text{Sym}_K(B^{\mathsf{v}})$ ; denote by  $\xi_L \in L \otimes_A B$  the image of the generic element of  $S \otimes_A B$ . Let  $\mu[X] \in L[X]$  be the monic minimum polynomial of  $\xi_L$ ; since the characteristic polynomial  $F_{B/A}(X) \in S[X]$  is a multiple of  $\mu(X)$ , a classical result (Dedekind?) asserts that the coefficients of  $\mu(X)$  are in the integrally closed ring S. This polynomial  $\mu(X) \in S[X]$  will be called the generic minimum polynomial.

In the paper [L] on Jordan algebras, O. LOOS gives a statement (lemma (2.8)), which looks close to the above theorem, whose we keep the notations. Instead of the characteristic polynomial  $F_{B/A}$ , LOOS consider a monic polynomial  $G \in S[X]$  of degree n whose the generic element  $\xi$  is a root; let

$$v: S[X]/(G) \longrightarrow S \otimes_A B$$

be the associated morphism of S algebras. Loos does not assume the injectivity of v but only the injectivity of the maps  $v_K = v \otimes_A 1_K$  for all morphisms  $A \to K$  to a field; in other words, he supposes that, for all K,  $G_K$  is the generic minimum polynomial over K. He proves that such a polynomial G exists if and only if B is locally monogenous. Assuming that such a polynomial G exists, Loos consider the open set  $\mathcal{V} \subset \text{Spec}(S)$  of those primes  $\mathfrak{n}$  such that  $v_{\kappa(\mathfrak{n})}$  is bijective; he then uses [EGA III] 11.10.10, to deduce that  $\mathcal{V}$  is schematically dense in Spec(S), and so that B is locally monogenous, as in the end of the proof of (4.3).

Conversely, if B is locally monogenous, LOOS proves that one can take for G(X) the generic characteristic polynomial.

#### 5 Discriminant of the generic characteristic polynomial

5.1 The Theorem 35 of the Zahlbericht [H] states that

The content of the discriminant of F(X) is equal to the discriminant of B (or of K).

Hilbert pointed out that this property is a consequence of the injectivity of the Kronecker morphism. The discriminant of F(X) is an element of the ring containing the coefficients of F, namely  $\text{Sym}_A(B^{\mathsf{v}})$ ; in the context of the Zahlbericht, this ring is isomorphic to the factorial ring  $\mathbf{Z}[T_1, \ldots, T_n]$ , therefore that makes sense to look at the gcd of the coefficients of the discriminant, i.e at its *content* (Hilbert writes : *the greatest numerical factor*).

Although it may mean extending the definition of the *content* in non factorial situation, we get the following general result.

**5.2 Proposition** Let  $A \to B$  be a finite locally free and locally monogenous morphism of rank n. Then the content of the discriminant of  $F_{B/A}(X)$  is equal to the discriminant of B.

**5.2.1** First recall the general definition of the **content** (see, for example [SGA 3], VI<sub>B</sub>, théorème 6.2.3, p. 374). Let  $A \to S$  be an A-algebra, and let  $u : M \to L$  be a S-linear map between S-modules. Denote by  $\Im$  the set of those ideals I in A such that u induces the zero map  $M/IM \to L/IL$ . If  $\Im$  contains a unique minimal ideal, this ideal is called the *content* of u and it is denoted by  $Ct_{S/A}(u)$ , or, simply Ct(u) when the context is clear.

**5.2.2. Lemma** Let  $A \longrightarrow S$  be a morphism such that, locally for the Zariski topology on Spec(A), the A-module S is free, possibly with an infinite basis, and let  $u : M \to L$  be a S-linear map between S-modules where L is an invertible S-module. Then u has a content.

Proof. Let  $L^{-1} = \operatorname{Hom}_S(L, S)$  be the inverse of L, and let  $u' : M \otimes_S L^{-1} \to S$  be the map associated with u; the set of ideals  $\mathfrak{F}$  is the same for u and for u'; so one can suppose that L = S, and we denote by  $J \subset S$  the ideal  $\operatorname{Im}(u')$ ; moreover an easy gluing consideration reduces to the case where S is free over A. Then, choose a basis  $(e_\lambda)$  of S as A-module; let  $e^{\mathsf{v}}_{\lambda} : S \to A$  be the "coordinate" linear form attached to  $e_\lambda$ . Consider the ideal in A

(5.2.2.1) 
$$I = \sum_{\lambda} e_{\lambda}^{\mathsf{v}}(J)$$

generated by the coordinates of the elements in the ideal J. It is clear that I is the sought-for content. It is also clear that this construction commutes with any base change  $A \to A'$  in the sense that the ideal  $Ct(u)A' \subset A'$  generated by the image in A' of the content of u, is the content of the map  $u \otimes_A 1_{A'}$  of  $A' \otimes_A S$  modules (For details, see *loc. cit.*, end of the proof, p.375).

**Lemma 5.2.3** Let  $A \to S$  be as in lemma **5.2.2** above. Let  $N \xrightarrow{v} M \xrightarrow{u} L$  be S-linear maps between three invertible S-modules. We suppose that v is injective and that it remains injective under any base changes  $A \to A'$ . Then Ct(uv) = Ct(u).

Proof. Since the map v is « universally injective as A-linear map », the very definition of its content shows that Ct(v) = A. By restricting to affine open sets of Spec(A), we may suppose that S is free, and using a basis, we dispose, as in the proof of lemma (5.2.2), of a family of A-linear maps  $w_{\lambda} : M \to N$ such that  $\sum_{\lambda} w_{\lambda}(M) = Ct(v)N = N$ ; then, we can introduce the affine open subsets  $U_{\lambda} \subset Spec(A)$ where  $w_{\lambda}$  is surjective, and thus bijective, since M and N are invertible; on these open sets, one has Ct(uv) = Ct(u); but, due to the expression (5.2.2.1) of the content, these open sets cover Spec(A) since Ct(v) = A.

**5.2.4** Let us recall what the **discriminant** is. Let  $S \to E$  be a finite morphism, locally free of rank n; we let  $E^{\mathsf{v}} = \operatorname{Hom}_{S}(E, S)$ ; the S-linear map  $\operatorname{Tr}_{E/S} : E \to S$  induces a S-linear map

$$\alpha: E \to E^{\vee}, \quad x \mapsto (y \mapsto \operatorname{Tr}_{E/S}(xy));$$

its extension to the *n*-th exterior power  $\wedge^n \alpha : \wedge^n E \to \wedge^n (E^{\vee}) = (\wedge^n E)^{\vee}$  leads to an S-linear map

$$d_{E/S}: (\wedge^n E)^{\otimes 2} \longrightarrow S;$$

its image is called the discriminant of E/S ([EGA IV<sub>4</sub>],18.2.7, (ii)).

If  $F(X) \in S[X]$  is a monic polynomial, the discriminant of the S-algebra E = S[X]/(F) is the ideal generated by the usual discriminant of the polynomial F.

5.2.5 Proof of (5.2) In the situation under consideration, the Kronecker morphism

$$u: E := S[X]/(F) \longrightarrow S \otimes_A B$$

is compatible with the traces (2.2), namely :

$$\operatorname{Tr}_{E/S} = \operatorname{Tr}_{S\otimes_A B/S} \circ u.$$

Since  $\operatorname{Tr}_{S\otimes_A B/S} = \operatorname{Tr}_{B/A} \otimes \operatorname{id}_S$ , we get

$$d_{E/S} = (d_{B/A} \otimes \mathrm{id}_S) \circ (\wedge^n u)^{\otimes 2}.$$

The Kronecker morphism u is A-universally injective (4.3). Therefore  $\wedge^n u$  is also A-universally injective ([A] III 8.2 Prop.3), and  $Ct_{S/A}((\wedge^n u)^{\otimes 2}) = A$ ; from lemma (5.2.3) we deduce that

$$\operatorname{Ct}_{S/A}(d_{E/S}) = \operatorname{Ct}_{S/A}(d_{B/A} \otimes \operatorname{id}_S) = \operatorname{Im}(d_{B/A}).$$

**5.2.6 Remark** From the proposition **5.2**, we see that if  $A \to B$  is étale, i.e. if  $d_{B/A}$  is an isomorphism, then  $\operatorname{Ct}_{S/A}(d_{E/S}) = A$ ; but that does not mean that S[X]/(F) is étale over S; for example, for  $B = A^n$ , the characteristic polynomial is, as seen in (**4.2.1**),  $F(X) = \prod (X - T_i)$ ; it is not separable over  $A[T_1, \dots, T_n]$  if  $n \geq 2$ .

# Références

[A] N. BOURBAKI, Algebra, vol. I : ch.1-3; vol. II : ch.4-7, Springer-Verlag (1989 and 1990).

- [AC] N. BOURBAKI, Commutative Algebra, Ch. 1-7, Springer-Verlag (1989)
- [EGA I] A. GROTHENDIECK, J. DIEUDONNÉ Éléments de Géométrie algébrique, III : Étude cohomologique des faisceaux cohérents, Publ. Math. IHÉS no 11 (1961) et 17 (1963).
- [EGA III] A. GROTHENDIECK, J. DIEUDONNÉ Éléments de Géométrie algébrique, III : Étude cohomologique des faisceaux cohérents, Publ. Math. IHÉS no 11 (1961) et 17 (1963).
- [EGA IV<sub>4</sub>] A. GROTHENDIECK, J. DIEUDONNÉ Éléments de Géométrie algébrique Publ. Math. IHÉS no. 32, (1967).
- [F] D. FERRAND, Un foncteur norme, Bull. Soc. Math. France, 126 (1998) p.1-49
- [H] D. HILBERT, Zahlbericht, Jahresber. der D.M.V., 4 (1897), pp.175-546
  Translated into French by A. Lévy and Th. Got under the title "Théorie des corps de nombres algébriques", Paris (Hermann),1913; reprinted by J. Gabay (1991)
  Translated into English by I. T. Adamson, with an Introduction by F. Lemmermeyer and N. Schappacher, Berlin, etc. (Springer) 1998
- [L] O. LOOS, Generically algebraic Jordan algebras over commutative rings, Journ. of Algebra, 297,(2006) 474-529.
- [SGA 3] M. DEMAZURE, A. GROTHENDIECK, Schémas en groupes, Documents mathématiques nº 7, Soc. Math. France, (2011).
- [W] H. WEYL, Algebraic Theory of Numbers, Ann. of Math. Studies, no 1, Princeton (1940)

SORBONNE UNIVERSITÉ IMJ-PRG, Case 247 4 place Jussieu, 75252 Paris Cedex 05, France daniel.ferrand@imj-prg.fr