On the inverse limit of localizations February 2004

Introduction Let A be a commutative ring. Its spectrum will here be considered as a mere ordered set, the order relation being the *opposite* of the inclusion of prime ideals. For any A-module M, the inclusion $\mathfrak{q} \subset \mathfrak{p}$ gives rise to a localization map $M_{\mathfrak{p}} \to M_{\mathfrak{q}}$, and we are interested in the inverse limit of this system. We will prove

Suppose there exists a finite set of prime ideals, $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ such that the canonical map

$$M \longrightarrow M_{\mathfrak{p}_1} \times \ldots \times M_{\mathfrak{p}_n}$$

is injective. Then the map

 $M \longrightarrow \operatorname{inv.lim}_{\mathfrak{p} \in \operatorname{Spec}(A)} M_{\mathfrak{p}}$

is an isomorphism.

This result was announced without proof in

D. FERRAND, Sur les modules qui sont limite projective de leurs localisés C. R. Acad. Sc. Paris, t.262, p.609-611 (14 mars 1966).

During a stay at the Royal Institute of Technology (K.T.H.) in Stockholm, I had a long discussion with Fredrick NORDSTRÖM, who obtains similar results by other methods (see his Master's Thesis *Recovering a module from its local structure*, Dept. Math., KTH, Stockholm, 2003.)

That decided me on writing out proofs. In fact my 1966' proofs rested on methods quite similar to Nordström's (namely, given $(x(\mathfrak{p})) \in \text{inv.lim}M_{\mathfrak{p}}$, each $x(\mathfrak{p}) \in M_{\mathfrak{p}}$ can be extended as a section of the sheaf \tilde{M} over an open set U, containing \mathfrak{p} , and U can be taken small enough for this section to be sent to $x(\mathfrak{q}) \in M_{\mathfrak{q}}$ for all $\mathfrak{q} \in U$. Then glue these sections). Later on, it appeared to me that the use of faithfully flat descent brought simplifications, and finally I propose here a completely elementary proof.

Definitions and notations are those from

N. BOURBAKI, Commutative Algebra, Chapters 1-7, Springer, 1989 (cited AC)

Example The classical case of a torsionless module M over an integral domain A deserves to be mentioned. Let K be the fraction field of A. The torsionless hypothesis means that the map $M \longrightarrow K \otimes_A M = M_{(0)}$ is injective; it implies that all the the maps $M_{\mathfrak{p}} \longrightarrow K \otimes_A M$ are also injective. Thus we may identify the modules M and $M_{\mathfrak{p}}$ with their image in $K \otimes_A M$; then the inverse limit may be seen as the mere intersection $\bigcap M_{\mathfrak{p}}$. In that case, the equality

$$M = \bigcap M_{\mathfrak{p}}$$

is well known (see AC II 3.3 Cor. 4, or the discussion in GODEMENT, *Théorie des faisceaux*, p.124).

In the case where the ring A is noetherian, the hypothesis on the module, in the statement of the introduction, is fulfilled when M is of finite type because we can then take for the p_i the prime ideals associated with M (AC IV 1.4 Cor.).

For an A-module M, and a subset $Z \subset \text{Spec}(A)$ endowed with the induced ordering, we let

$$M(Z) := \operatorname{inv.lim}_{\mathfrak{p}\in Z} M_{\mathfrak{p}}.$$

It may be sometimes usefull to look at M(Z) as a submodule of the product $\prod_{\mathfrak{p}\in Z} M_{\mathfrak{p}}$. If $Z' \subset Z$, there is clearly a "projection map" $M(Z) \to M(Z')$.

Lemma 1 If A is a local ring, or a finite product of local rings, then for any A-module M, the canonical map

$$M \longrightarrow M(\operatorname{Spec}(A))$$

is an isomorphism. \Box

Lemma 2 For any module M, the canonical map $M \longrightarrow M(\operatorname{Spec}(A))$ is injective.

An element $x \in M$ is in the kernel of this map if for every prime ideal \mathfrak{p} the image of x in $M_{\mathfrak{p}}$ is zero, that is if there exists $s \in A - \mathfrak{p}$ such that sx = 0. Therefore the ideal Ann(x) is not contained in any prime ideal. Therefore Ann(x) = A, and thus x = 0. (For another proof, see AC II 3.3 Cor.2) \Box

Proposition 1 Let $f : A \to B$ be a morphism of commutative rings. Let N be a B-module and let denote $f_*(N)$ the underlying A-module. Then the canonical map

$$\varphi: f_*(N)(\operatorname{Spec}(A)) \longrightarrow N(\operatorname{Spec}(B))$$

is injective. In particular, if $N \to N(\operatorname{Spec}(B))$ is an isomorphism, then $f_*(N) \to f_*(N)(\operatorname{Spec}(A))$ is also an isomorphism.

Proof. No confusion can arise in denoting simply by N the A-module $f_*(N)$. The canonical map φ is defined as follows: for a prime ideal $\mathfrak{q} \in \operatorname{Spec}(B)$, $f^{-1}(\mathfrak{q})$ is a prime ideal of A, and there is a canonical A-linear map $N_{f^{-1}(\mathfrak{q})} \to N_{\mathfrak{q}}$; by composing it with the projection

$$N(\operatorname{Spec}(A)) = \operatorname{inv.lim}_{\mathfrak{p} \in \operatorname{Spec}(A)} N_{\mathfrak{p}} \longrightarrow N_{f^{-1}(\mathfrak{q})}$$

we get an A-linear map $N(\operatorname{Spec}(A)) \longrightarrow N_{\mathfrak{q}}$ which, for inclusions $\mathfrak{q}' \subset \mathfrak{q}$, clearly gives rise to the expected commutative triangles. By definition of the inverse limit we thus get the map

$$\varphi: N(\operatorname{Spec}(A)) \longrightarrow N(\operatorname{Spec}(B)).$$

In order to prove the injectivity of φ , let us consider $\xi \in N(\operatorname{Spec}(A))$ such that $\varphi(\xi) = 0$. One has to check that, for every prime ideal $\mathfrak{p} \in \operatorname{Spec}(A)$, the projection of ξ in $N_{\mathfrak{p}}$ is zero. But $N_{\mathfrak{p}} \to N(\operatorname{Spec}(A_{\mathfrak{p}}))$ is an isomorphism since $A_{\mathfrak{p}}$ is local. Using now the set $\operatorname{Spec}(B_{\mathfrak{p}}) = \{\mathfrak{q} \in \operatorname{Spec}(B), f^{-1}(\mathfrak{q}) \subset \mathfrak{p}\}$, we get the commutative square

But the lower arrow is injective by Lemma 2 applied to the $B_{\mathfrak{p}}$ -module $N_{\mathfrak{p}}$; whence the result.

Lemma 3 Let $M \subset N$ be an inclusion of A-modules. If the canonical map $N \to N(\text{Spec}(A))$ is an isomorphism, then the map $M \to M(\text{Spec}(A))$ is also an isomorphism.

By assumption, for $(x(\mathfrak{p})) \in M(\operatorname{Spec}(A))$, there exists a unique $y \in N$ whose image in $N_{\mathfrak{p}}$ is equal to $x(\mathfrak{p})$, and we have to show that $y \in M$. Let I denote the ideal of those elements $a \in A$ such that $ay \in M$. The conclusion is equivalent to I = A. But for each prime ideal \mathfrak{p} , $I_{\mathfrak{p}}$ is the

ideal of the $a' \in A_p$ such that $a'y \in M_p$, thus, by assumption, $I_p = A_p$ (see AC II 3.3 Cor.1 p.88).

Proposition 2 Let $f : A \to B$ be a morphism of commutative rings, and let M be an A-module. Suppose that the following conditions hold : a) The canonical map $M \to B \otimes_A M$ is injective. b) The map $B \otimes_A M \to (B \otimes_A M)(\operatorname{Spec}(B))$ is an isomorphism. Then $M \to M(\operatorname{Spec}(A))$ is an isomorphism.

By condition a) and Lemma 3, it is enough to check that the map $B \otimes_A M \to (B \otimes_A M)(\operatorname{Spec}(A))$ is an isomorphism, but that comes from condition b) and proposition $1.\Box$

Corollary If A is a semi-local ring, then for any module M, the map $M \to M(\operatorname{Spec}(A))$

is an isomorphism.

Proof. Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ be the maximal ideals of A, and let $B = \prod_1^n A_{\mathfrak{p}_i}$. The morphism $A \to B$ is faithfully flat (AC I 3.5), therefore condition a) is fulfilled. Condition b) trivially holds since B is a finite product of local rings.

Proposition 3 Let M be an A-module. Suppose there exist a finite set of prime ideals, $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ such that the canonical map

 $M \longrightarrow M_{\mathfrak{p}_1} \times \ldots \times M_{\mathfrak{p}_n}$

is injective. Then the map

 $M \longrightarrow \operatorname{inv.lim}_{\mathfrak{p} \in \operatorname{Spec}(A)} M_{\mathfrak{p}}$

is an isomorphism.

Proof. Let $B = \prod_{i=1}^{n} A_{\mathfrak{p}_{i}}$; condition a) of the previous proposition holds by assumption, and condition b) is again trivially true.