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This note is an attempt to clarify the remarkable concise paper by A. Dress, entitled A characteri-
sation of Solvable Groups [D 69], where he gives a description of the spectrum of the Burnside ring which
allows him to prove that this spectrum is connected if and only if the group is solvable.

The Burnside ring Burn(G) of a finite group G is the Grothendieck ring of finite G-sets. A set T with
a transitive action of G may be identified, after the choice of an element t ∈ T , with the quotient set
G/H, where H is the stabilizer of the point t. But the passage from the subgroup H to the quotient
T = G/H is, in a sense, contravariant ; because it is repeatedly used by Dress, it may get the reader, like
me, lost in a kind of counter-intuitive hesitation. So I chose, in this paper, to use the language of G-sets
alone (except for some specific proofs). Another obvious motive for doing so is a view toward a future
study of a “Burnside ring” for the finite étale coverings of a given scheme (hopefully more accessible than
the Burnside ring of the fundamental group of the scheme).

In what follows, G denotes a finite group, and all the G-sets are finite.
These restrictions will no more be specified.

1. Connected G-sets

A (finite) set T endowed with a transitive action of G will be called connected G-sets 1. By definition,
a connected G-set is non empty. We usually reserve the letters T,U, S for the connected G-sets. The
transitivity property is equivalent to the map

G × T −→ T × T, (g, t) 7−→ (gt, t)

being surjective.

For two G-sets X and Y , we will use the term morphism to indicate a map f : X −→ Y of G-sets,
that is a map such that f(gx) = gf(x) for all g ∈ G and all x ∈ X.

A morphism X −→ T where X is non empty and T connected, is surjective ; a surjective morphism
X −→ T whose domain X is connected has necessarily a connected target T .

The following fact will be repeatedly used :

Two morphisms of opposite direction, T → U and U → T , between connected sets are necessarily iso-
morphisms.

2. Pointing

The pointing of a connected set T is the choice of an element t ∈ T . Such a choice allows us to introduce
the stabilizer Gt = {g ∈ G, gt = t} of t, and the isomorphism of G-sets

(2.1) G/Gt −̃→ T.

This association between a connected set and a subgroup may sometimes help in offering intuition of
these things. But,if, instead of sets, we consider sheaves, or objects in a topos, the pointing process may
be impossible, at least globally ; moreover, the choice of an element, when possible, is mostly arbitrary,
and different choices lead to different isomorphisms ; for example, the stabilizer of an other element of
T , written as gt, is the conjugate subgroup : Ggt = gGtg

−1. For these reasons, we try, in this note, to
avoid the pointing process at least in defining/constructing objects ; but we are less reluctant to use it
when it seems that some proofs are easier for a quotient G/H ; it can then be looked upon as a kind of
localization.

1. Bourbaki uses the adjective homogeneous [A, I 5.5.]
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3. Degree

Let f : X −→ Y be a morphism. The degree of f , denoted by deg(f), is the map Y → N defined by
y 7−→ Card(f−1(y)).
A morphism is surjective if its degree map is nowhere zero.
If Y is connected, the degree map is constant since f−1(gy) = gf−1(y).

3.1. Lemma Let f : X −→ Y be a morphism. Then f is of constant degree d if and only if there exists
a surjective morphism Y ′ −→ Y such that X ×Y Y ′ be the disjoint union of d copies de Y ′.

This strong analogy with the étale coverings from the algebraic geometry explains why a morphism f
whose degree is constant, say deg f = d, will often be called a covering, or even a covering of degree d

The proof uses an induction on the degree d, starting from the obvious case where d = 1. Suppose now
that X be broke as the disjoint union X = Y tmtZ, i.e. that f owns m G-sections with disjoint images 2 ;
if Z is non empty, its degree over Y is d−m 6= 0, thus the restriction of f to Z is a surjective morphism
f ′ : Z → Y ; moreover, one has X ×f,Y,f ′ Z = Ztm t Z ×Y Z, and the morphism Z ×Y Z −→ Z admits
a section disjoint from the previous ones, the diagonal ; then fZ : X ×Y Z −→ Z admits at least d + 1
sections with disjoint images.�

4. Automorphisms

4.1 Let T be a connected G-set. Then the group W(T ) of the G-automorphisms of T acts freely on T ;
in other words, the map

W(T )× T −→ T × T
is injective ; in fact, given two automorphisms w and w′, if one element t ∈ T has the same image
w(t) = w′(t), then for all g ∈ G, one has w(gt) = gw(t) = gw′(t) = w′(gt), and thus w = w′, since the
action of G is transitive.

For a morphism f : X → Y , we denote by W(X/Y ), or W(f), the group of the G-automorphisms w
of X which are compatible with f , i.e fw = f .

The morphism f is said to be galoisian, or a Galois covering, if it is surjective and if there exists a
subgroup Γ ⊂W(f) such that the map

Γ×X −→ X ×Y X, (w, x) 7→ (w(x), x)

is bijective, or equivalently, if the map X/Γ −→ Y is bijective.

As usual, the group Γ is not uniquely determined by f if X is not connected ; for a morphism between
connected sets (hence f is surjective), things are easer :

4.2 Lemma A morphism f : T → U between connected sets is galoisian if and only if

Card(W(T/U)) = deg(f).

Since f is surjective, the degree of fT = f × 1T : T ×U T −→ T is equal to deg(f) ; from this we deduce
the equality

deg(f).Card(T ) = Card(T ×U T ).

Hence the claim.�

4.3. Lemma Let Γ be a subgroup of W(T ) ; then the quotient set T/Γ is a G-set, and the morphism

f : T −→ T/Γ

is a Galois covering and one has Γ = W(f).

Since T is acted on freely by Γ, the orbits have all the same cardinality, namely the order d of Γ ;
these orbits are the fibers of the morphism f : T −→ T/Γ = S ; thus f is a covering of degree d. The two
morphisms

Γ× T −→W(T/S) × T −→ T ×S T

2. If Y were connected, the images of distinct sections would necessarily be disjoint.
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are injective. Since T → S is of degree d, the cardinality of T ×S T is equal to d.Card(T ) = Card(Γ×T ) ;
therefore one has Γ = W(T/S), and f is a Galois covering.�

4.4. Lemma Let S be connected, and let f : X −→ S be a Galois covering with group W . Any connected
component T ⊂ X is galoisian over S with group the stabilizer of T in W .

In fact, consider two elements t, t′ ∈ T in the same fiber. By definition of a Galois covering, there exists
a unique w ∈W such that w(t) = t′. This automorphism w stabilizes T since every element in T may be
written as gt, with g ∈ G, and one has w(gt) = gw(t) = gt′ ∈ T .�

4.5. Remark. The result is no more true for a G-subset T of X which would not be connected.
Consider for example a finite set I endowed with a cyclic permutation σ ; and let X = S × I the disjoint
union of copies of S indexed by I ; let W be the group generated by the automorphism w given by
w(s, i) = (s, σ(i)) ; the projection X = S × I −→ S is clearly a Galois covering with group W , since I is
a torsor under the group < σ >. It is easy to find a specific set I containing a subset J whose stabilizer
in < σ > is reduced to the identity. Then the component S × J ⊂ S × I can’t be galoisian over S for a
subgroup of W .

5. The case of pointed G-sets

Let H ⊂ K be two subgroups of G, and let f : G/H −→ G/K be the corresponding morphism. Its degree
is the indice :

deg(f) = (K : H).

The group of the G-automorphisms of the G-set G/H is isomorphic with (NormG(H)/H)o ([A] I 5.5,
prop. 5) ; precisely, the (right) action of an n ∈ G which normalizes H on the class gH is given by

(gH) ? n = gnH = gHn.

Thus the relative automorphisms, i.e. the elements of W(f), are given by the n which, moreover, fix the
classes gK ; therefore

W(f) = (NormK(H)/H)o.

We deduce the following remark :

5.1. Lemma The morphism f : G/H −→ G/K is galoisian if and only if H is normal in K ; the
Galois group is then W(f) = (K/H)o.

6. Existence of maximal p-galoisian coverings, and of maximal solvable coverings

I shall use the following definitions.

A covering is p-galoisian, also said a p-Galois covering, if it is a Galois covering whose Galois group is
a p-group.
A solvable covering is a Galois covering whose Galois group is solvable.

6.1. Lemma Let T,U, V be connected G-sets, and let U
f−→ T

g←− V be Galois coverings (resp. p-Galois
coverings, resp. solvable coverings). Let S ⊂ U ×T V be a connected component of the fibered product.
Then the composite morphism h : S −→ T is galoisian (resp. etc.)

S

��

h

��

// U

f

��
V

g
// T

To prove the lemma we choose a point s ∈ S, we denote by u, v, t its images, and we consider the
stabilizers Gs, Gu, Gv, Gt ; since S is a subset of U × V , one has Gs = Gu ∩Gv. According to (5.1), the
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hypothesis on f and g means that Gu and Gv are normal in Gt ; thus Gu ∩Gv is also normal in Gt, i.e.
h is galoisian. The group inclusion

Gt/Gu ∩Gv ⊂ Gt/Gu × Gt/Gv

implies the more restrictive statements. �

6.2. Proposition Let T be a connected G-set, and let p be a prime.

i) Let ϕ : T (p) −→ T be a p-Galois covering for which Card(T (p)) is maximal. Then ϕ is also maximal
in the “arrow“ sense : namely, for any galoisian p-covering ψ : U −→ T , there exists a (non unique)
morphism κ : T (p) −→ U such that ϕ = ψ ◦ κ. In particular, this covering is unique up to a non unique
isomorphism.

ii) Similarly, a maximal solvable covering σ : T slv −→ T is also maximal in the above sense, and thus it
is unique up to an isomorphism.

This is a direct consequence of the lemma above, since a subgroup of a solvable group is solvable.

6.3. Corollary Any morphism U −→ V between connected sets may be extended as a morphism
U (p) −→ V (p) of their maximal p-Galois coverings, and also as a morphism U slv −→ V slv.

If the morphism U −→ V is a p-Galois covering, then the composite U (p) −→ U −→ V is still a
p-Galois covering, and thus U (p) −→ V (p) is an isomorphism ; moreover this construction is idempotent :
(U (p))(p) = U (p).

The same is true for solvability : If the morphism U −→ V is a solvable covering, then the composite
U slv −→ U −→ V is still a solvable covering, and thus U slv −→ V slv is an isomorphism ; moreover this
construction is idempotent : (U slv)slv = U slv.

Let P be the Galois group of V (p) −→ V ; by the base change we get a p-Galois covering U×V V (p) −→ U
with the same group ; let T be a connected component of U ×V V (p) ; by (4.4), ϕ : T −→ U is a Galois
covering with group the stabilizer of T in P , that is a p-Galois covering.

T

  

ϕ

&&
$$

U ×V V (p)

��

// U

��
V (p) // V

From the proposition above the maximal p-galoisian covering U (p) −→ U factors through ϕ : T −→ U ,
and that gives the required morphism U (p) −→ V (p).
Now suppose that the morphism f : U −→ V be p-galoisian. To conclude that f (p) : U (p) −→ V (p) is
an isomorphism, we have to show there exists a morphism in the other direction, and for doing so it is
enough to show that the composite U (p) −→ U −→ V is a Galois covering. Choose a element t ∈ U (p) and
denote by u and v its images. Considering the normalizers, we get the sequence of inclusions of normal
subgroups

Gt C Gu C Gv

and we must check that Gt is normal in Gv. Since U (p) → U is a maximal p-Galois covering, Gt is the
minimal normal subgroup of Gu whose quotient is a p-group ; its unicity implies that Gt is stable by any
automorphism of Gu, and in particular, by any conjugation by an element of Gv.

The proof in the solvable case is formally the same.�

6.4. Corollary Let T be a connected G-set, and let p be a prime. Suppose that there does not exist non
trivial p-Galois covering T ′ → T . Let P ⊂ W(T ) be a p-Sylow subgroup of the automorphisms group of
T . Then the morphism (T/P )(p) −→ T is an isomorphism.

Since the morphism T −→ T/P is a p-Galois covering (4.3), the maximal one (T/P )(p) −→ T/P
factors trough T :

(T/P )(p)
ϕ−→ T

ψ−→ T/P,
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and ϕ is a p-Galois covering since the composite ψ ◦ ϕ is. The assumption on T implies that ϕ is an
isomorphism.

7. Prime ideals in the Burnside ring.

The class of a (finite) G-set X in the Burnside ring Burn(G) will be noted cl(X).
Let T be a connected G-set ; then the set HomG(T,X) is finite, and its cardinality is denoted by mT (X),
in homage to Burnside who called this number the mark of T in X ([B], p.236) 3.

mT (X) = Card(HomG(T,X)).

The marks extend to ring homomorphisms

mT : Burn(G) −→ Z.

We choose a set T of connected G-sets containing exactly one element of each isomorphism classe. The
marks together define a homomorphism

m : Burn(G) −→ M(T ,Z) x 7−→ (T 7→ mT (x))

whose target denotes the ring of all maps from the set T to Z.

7.1. Lemma The set (cl(T ))T∈T is a basis of Burn(G) and the morphism m is injective. In conse-
quence,the ring Burn(G) is reduced.

Since any finite G-set is the disjoint union of its orbits, the family (cl(T ))T∈T generates the additive
group Burn(G). An element x ∈ Burn(G) may thus be written as x =

∑
aT cl(T ) with coefficients aT in

Z. Suppose that some of these coefficients are non zero (it is the case if x 6= 0). Let S ∈ T be a connected
set with minimal cardinality among those for which aT 6= 0 ; since any morphism S → T is surjective,
implying that Card(S) ≥ Card(T ), we have mS(T ) = 0 for the other T , that is if aT 6= 0 and T 6= S ;
therefore, one has mS(x) = aSmS(S) 6= 0. That implies the two assertions. �

7.2. With standard algebra arguments one deduces from this lemma a first characterization of minimal
and maximal prime ideals of Burn(G), via their traces on the subring Z ⊂ Burn(G) ; namely

7.2.1. A prime ideal p is minimal if and only if Z ∩ p = 0.
7.2.2. A prime ideal m is maximal if and only if Z ∩m = pZ, for a prime number p.

Consider a commutative algebra K → B of finite dimension over a field K ; then each prime ideal p of B
is maximal, and thus also minimal, since for x non zero in B/p, the K-linear map B/p→ B/p, y 7→ xy
is injective, hence bijective.
This remark shows that the above conditions are sufficient. Let now p be a minimal prime ideal in
B = Burn(G). Since B is reduced, the local ring Bp is a field, and the image of an element a ∈ Z ∩ p in
Bp is zero. But, B being free over Z, the composite map Z → B → Bp is flat ; thus, it sends a regular
(i.e non zero) element of Z onto a regular element in Bp ; hence Z ∩ p = 0.
Now let m be a maximal ideal in B, we have to check that Z/m ∩ Z is a field. A non zero element a
in that ring has a non zero, hence invertible, image in the field B/m ; its inverse, b = a−1 is the root
of a monic polynomial p(X), of degree say n, with coefficients in Z/m ∩ Z. We thus have the relation
0 = anp(b) = 1 + ac, with c ∈ Z/m ∩ Z ; it shows that a is invertible Z/m ∩ Z.�

The next theorem summarizes the description of Spec(Burn(G)), due to A. Dress.

The number of automorphisms of a connected set T is denoted by w(T ) = mT (T ) = Card(W(T )).

3. In fact Burnside identifies T with a quotient G/H, and speaks of the mark of H in the representation X.
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7.3. Theorem Let G be a finite group, and, as above, choose a set T of connected G-sets containing
exactly one element from each isomorphism class.

i) The assignment cl(T ) 7→ pT = Ker(Burn(G)
mT−→ Z) defines a bijection between the set T and the set

of minimal prime ideals of Burn(G).

ii) For T ∈ T and for a prime p, the kernel mT,p of the homomorphism

Burn(G)
mT mod.p−−−−−−→ Fp

is a maximal ideal. Moreover, the assignment (cl(T ), p) 7→ mT,p defines a bijection between the set of
couples (cl(T ), p) with T ∈ T and p a prime number not dividing w(T ), and the set of maximal ideals of
Burn(G).

iii) Let S and T in T , and let p be a prime. Then the inclusion pS ⊂ mT,p is equivalent to the congruence
mS ≡ mT mod.p.
If, moreover, the prime p does not divide w(T ), then the following conditions are equivalent

a) mS ≡ mT mod.p.
b) There is a sequence of p-Galois coverings S → S1 → · · · → Sn = T .
c) The maximal p-Galois coverings (6.2) of S and T have isomorphic domains : S(p) −̃→ T (p).
d) There exists a p-Galois covering T (p) −→ S.

We begin with a key lemma.

7.4. Lemma Let k be an integral domain, and let f : Burn(G) −→ k be a ring homomorphism. Let T
be a connected set which is maximal (i.e. whose cardinality is maximal) among those such that f(T ) 6= 0.
Then f factors through mT :

Burn(G)

f

''
mT

// Z
κ
// k ,

where κ is the unique ring homomorphism Z→ k.Two such connected sets are isomorphic.
Moreover, if κ is injective, then all the connected sets S such that f = ϕS are isomorphic.

Let X be a G-set. We first compute f(T ×X). It is the sum of the f(U) for the connected components
U of T ×X. By projection, such a component comes equipped with two maps

T
τ←− U

u−→ X

If τ is not an isomorphism, then the choice of T implies that f(U) = 0. If τ is an isomorphism, we
associate with U the map uτ−1 : T −→ X ; conversely, to any map v : T −→ X is associated its graph,
which is a component of T × X isomorphic with T . These two constructions are clearly inverse each
others, showing that the number of connected components of T × X, which are isomorphic with T , is
equal to Card(HomG(T,X)) = mT (X). We have thus shown that

f(T ×X) = mT (X).f(T ).

But, f being a ring homomorphism, one has f(T ×X) = f(T ).f(X). Since f(T ) is non zero in the domain
k, we conclude that

f = κ ◦mT .

Now, if T ′ is another connected set with f(T ′) 6= 0, then a fortiori the integermT (T ′) = Card(HomG(T, T ′))
is not zero, i.e. there is a morphism T → T ′ ; by reversing the roles of T and T ′, we see that T and T ′

are isomorphic.

Suppose now that κ is injective, and thus f may be seen as a map to Z, i.e. f = mT . Let S be a
connected set such that mS = mT ; the integer mS(S) = Card(W (S)) is not zero, showing that there is
a morphism T → S ; similarly, there is a morphism S → T ; thus S and T are isomorphic.�

7.5. Proof of the parts i) and ii) of the theorem.

Let p be a prime ideal in Burn(G), and let f : Burn(G) −→ Burn(G)/p be the quotient morphism.
Consider a maximal connected set T such that cl(T ) /∈ p ; the above lemma implies that f factors
through mT , i.e. that f = κ ◦mT ; note that κ is surjective since f is. We thus have, for a G-set X,

(7.5.1) cl(X) ≡ mT (X) mod.p.
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For any T , the composite Z
can.−→ Burn(G)

mT−→ Z is bijective. From that and (7.2.1), we deduce that the
minimality of p i.e. Z ∩ p = 0, is equivalent to the morphism κ : Z −→ Burn(G)/p being injective (hence
an isomorphism). The part i) follows easily.

Consider now the case where κ is not injective. Since the morphism κ : Z −→ Burn(G)/p is surjective
one has Burn(G)/p = Fp for a prime number p. The choice of T and the congruence (7.5.1) imply that

mT (T ) 6≡ 0 mod.p

In other words, the prime p does not divide the cardinality w(T ) of the group W(T ). Together with
(7.2.2), it is thus proven that each maximal ideal is of the form mT,p with p - w(T ). It remains to check
the injectivity of the asignment : if mT ≡ mT ′ mod.p, then in particular, one has

mT (T ′) ≡ mT ′(T
′) 6≡ 0 mod.p;

this implies the existence of a morphism T → T ′, and by symmetry, also a morphism T ′ → T ; hence T
and T ′ are isomorphic.�

The following result is classical.

7.6. Lemma Let E be a finite set acted on by a finite p-group P . Then, denoting by EP the subset of
invariants, one has

Card(E) ≡ Card(EP ) mod .p.

In particular, if f : T −→ T/P is a p-Galois covering of G-sets, then mT ≡ mT/P mod .p.

The congruence between the marks comes from the bijection

HomG(T/P,X) −→ HomG(T,X)P , u 7−→ u ◦ f.

�

7.7. Proof of the part iii) of the theorem.

pS ⊂ mT,p ⇐⇒ mS ≡ mT mod.p

The inclusion pS ⊂ mT,p induces the canonical homomorphism Burn(G)/pS −→ Burn(G)/mT,p which
makes the following diagram commutative

Burn(G)
mS // Z

∼ //

��

Burn(G)/pS

��
Burn(G)

mT

// Z // Fp
∼ // Burn(G)/mT,p

We thus have the congruence mS ≡ mT mod.p. The converse is clear.

a)⇒ b).

Since mT (T ) = w(T ) is not a multiple of p, the congruence mS ≡ mT mod.p implies that mS(T ) 6≡
0 mod.p, and, in particular, that there exists a morphism S → T . If it is an isomorphism, there is nothing
more to prove. If not, then mT (S) = 0 ; but, by the property a), one has mT (S) ≡ mS(S)mod.p ;thus p
divides the order of W(S), and there is a non trivial p-Sylow subgroup P of W(S) ; it acts on the right
on HomG(S, T ). The lemma (7.6) above and the hypothesis p - w(T ) imply the congruences

Card(HomG(S, T )P )
(7.6)
≡ Card(HomG(S, T ))

(a)
≡ Card(HomG(T, T )) 6≡ 0 mod p

Therefore, there exists a morphism f : S −→ T such that fw = f for all w ∈ P ; letting S1 = S/P , the
morphism f may now be factorized as

S
f1−→ S1 −→ T,

where f1 is a p-Galois covering, which is not trivial since P 6= 1. As mS ≡ mS1
mod.p, the conclusion

follows by induction on the degree of f .

b)⇒ c)
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This implication is proved in (6.3).

c)⇒ d)

By construction, the morphism S(p) −→ S is a p-Galois covering.

d)⇒ a)

The lemma (7.6) applied to the p-Galois coverings T (p) −→ T and T (p) −→ S gives the congruences

mT (p) ≡ mT ≡ mS mod.p

�

8. Connected components of Spec(Burn(G)).

In this paragraph, the adjective connected will have two meanings, the second one being relative to
Spec(Burn(G)) endowed with the Zariski topology, and its subsets. That may not cause any confusion.

As usual, for a prime ideal p of Burn(G), we denote by V (p) the set of the primes which contain p ; it
is a closed connected set. In any topological space, if E and F are two connected sets such that E∩F 6= ∅,
then E ∪ F is connected. Thus a connected component C of Spec(Burn(G)) is a union of V (p) with p a
minimal prime ; in fact, it is a finite union since the ring Burn(G) has only a finite number of minimal
prime ideals. Conversely, the sets E which may be written in the following manner are connected :

(?) E = V (p1) ∪ V (p2) ∪ · · · ∪ V (pn)

where the pi are minimal prime ideals, such that V (pi) ∩ V (pi+1) 6= ∅, for i = 1, 2, · · · , n − 1. In this
description we must allow some pi being equal : in fact, if p is a minimal prime such that V (p) ∩ E 6= ∅,
but V (p) ∩ V (pj) = ∅ for j 6= i, then a sequence attached to the connected set V (p) ∪ E is

(p1, · · · , pi, p, pi, · · · , pn).

Now let E be a maximal set of the type described by (?). Let us show that E is a connected component
of the spectrum. Since E is closed, it is enough to prove that E is open ; but the remark above shows that
the complement of E is the union of the V (p) which are disjoint from E. Since, again, the ring Burn(G)
has only a finite number of minimal prime ideals, this union is a closed subset.

8.1. Theorem a) The minimal prime ideals pS and pT are in the same Zariski connected component
of Spec(Burn(G)) if and only if there exits a connected G-set U and two solvable coverings

S
σ←− U

τ−→ T,

or, equivalently, if the sources Sslv and T slv of the maximal solvable coverings of S and T are isomorphic
(cf. (6.3)).

b) For any non empty G-set U let C(U) ⊂ Spec(Burn(G)) be the union of the V (pT ) for the various
solvable coverings U → T . Then C(U) is connected (for the Zariski topology), and C(U) is a connected
component if and only if U has no non trivial abelian coverings, that is if the morphism U slv −→ U is an
isomorphism.

c) In particular, Spec(Burn(G)) is connected if and only if the group G is solvable.

a) For proving that the condition is sufficient, it is enough to show that pU and pT are in the same
connected component. By choosing a Jordan-Hölder sequence of its (solvable) Galois group W(U/T ), the
solvable covering τ : U −→ T may be written as the composite of a sequence

U
τ1−→ U1

τ2−→ U2 → · · · → Un = T,

where each Ui−1
τi−→ Ui is a cyclic Galois covering of order pi for some prime (depending of i). Let

pi = Ker(Burn(G)
mUi−→ Z)
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be the minimal prime associated with Ui. The lemma (7.6) implies the following congruence between the
marks

mUi−1 ≡ mUi mod.pi

From the theorem (7.3 ; iii)) we deduce that the set V (pi−1) ∩ V (pi) contains the maximal ideal mUi,pi .
Hence pU and pT are in the same connected component of Spec(Burn(G)).
Conversely, suppose that the minimal primes pS and pT are in the same connected component, and that
a sequence like (?) above has been chosen with p1 = pS , and pn = pT ; let Si be a G-set corresponding
with pi. By assumption, a maximal ideal contains both pi and pi+1 ; by (7.3 iii)), its is of the form mUi,p,
for a suitable prime p, and there are two p-Galois coverings Si ←− Ui −→ Si+1 ; but a p-group being
solvable, we see from (6.3) that the maximal solvable coverings Sslv

i and Sslv
i+1 are isomorphic. Hence the

conclusion.

b) The first part shows that a minimal prime pS is in the connected component containing pU if and only
if Sslv and U slv are isomorphic, that is if pS ∈ C(U slv). The conclusion follows.

c) Consider the G-set reduced to one point ; it is canonically pointed with stabilizer equal to G, and thus
it is isomorphic to G/G ; denoting by D∞(G) the intersection of the derived series, the maximal solvable
covering of the point is G/D∞(G) −→ •. Let p• be the prime ideal associated to the point ; if it is in
the same component as the prime pG = Ker(Card), then, from a) we deduce that the G-sets G/D∞(G)
and G are isomorphic, that is D∞(G) = 1, i.e. G is solvable. Conversely, if G is solvable, then for each
subgroup H, the morphism G −→ G/H is a Galois covering with group the solvable group H, showing
that the spectrum is connected. �
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