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Foreword

This book is based on lectures I delivered on De Giorgi’s regularity theory. A preliminary
version of the material in Chapters 2 and 3 was first presented at Ecole normale supérieure
(Paris Sciences et Lettres) in spring 2025. I later expanded and delivered these lectures at the
University of California, Berkeley, in fall 2025.

I first hearded about De Giorgi’s regularity theory by discussing with A. F. Vasseur during
my visits at the University of Texas at Austin in the early 2000s. I very often referred to
his two concise lecture notes about De Giorgi’s methods [64, 14], the second co-authored with
L. Caffarelli. I am very grateful to Alexis and Luis.

In 2010, I began my research on kinetic equations together with Clément Mouhot while we
were both at ENS. Clément was already a significant figure in the field and he proposed the
study of some toy nonlinear models. After attempting to apply the Krylov-Safonov approach, we
eventually recognized that De Giorgi’s methods could be strategically leveraged to our benefit
for studying the regularity of kinetic Fokker-Planck equations. Our research led us to a paper
by W. Wang and L. Zhang, published a couple of years earlier, building upon ideas from
S. N. Kruzhkov. Over the ensuing years, Clément and I devoted ourselves to mastering various
techniques and tools derived from the theory of elliptic and parabolic equations in divergence
form. Clément also wrote recently lecture notes with G. Brigati [9] about quantitative De
Giorgi’s methods.

Since 2008, Luis Silvestre and I have been collaborating on various challenges posed by elliptic
and parabolic equations in non-divergence form. Around the year 2015, I have engaged in
extensive discussions with Luis, Frangois Golse, Clément Mouhot, and Alexis Vasseur regarding
Harnack’s inequality for kinetic Fokker-Planck equations. It is worth mentioning that Luis could
have been a co-author of the paper we produced during that time [28]. After posting this first
work, and following the publication of his seminal paper [59] about the Boltzmann equation,
we embarked on the conditional regularity program for the space-inhomogeneous Boltzmann
equation without cut-off.

I am deeply grateful to Clément and Luis for their years of steadfast and supportive collabo-
ration.

I am also grateful for the many reactions, insights, and questions raised during lectures, both
by students from ENS and UC Berkeley, and by colleagues from the two research programs
hosted at the Simons-Laufer Mathematical Research Institute (SL Math) during the fall of 2025.
Additionally, two colleagues from UC Berkeley attended the lectures and provided valuable
feedback. I would like to express my sincere gratitude to all of them for their attention and
patience.

This book was made possible by the Chancellor’s Professorship at the University of California,
Berkeley. My time in this exceptional department was truly enjoyable. I also greatly benefited
from the remarkable environment provided by SL Math (funded by NSF Grant No. DMS-
1928930) during my stay in California, particularly the outstanding staff who took such excellent
care of us.

Berkeley, December 20, 2025






From De Giorgi to Boltzmann

This book presents a comprehensive regularity theory for solutions of elliptic, parabolic, and
kinetic equations. The foundation of this theory was laid by E. De Giorgi’s groundbreaking res-
olution of Hilbert’s nineteenth problem in 1956. The innovative tools he developed to tackle this
problem proved to be remarkably versatile. In 1957, just one year later, J. Nash independently
developed analogous techniques for parabolic equations, concurrently with De Giorgi’s research.
By the year 2000, these techniques had been extended to address elliptic and parabolic equa-
tions featuring integral diffusion, such as the fractional Laplacian. More recently, the theory
has evolved to encompass kinetic equations, accommodating both local and integral diffusion
processes. This book aims to present these results in a unified and coherent manner, beginning
with the classical elliptic framework and progressing through to the most recent advancements
in kinetic equations.

Disclaimer. The first version of these lecture notes does not contain results about equa-
tions with integral diffusions. In particular linear kinetic equations related to the Boltzmann
equation are not addressed. Hopefully, they will be covered in a second version.

1 Hilbert’s 19" problem

The field of regularity theory for elliptic equations has seen remarkable advancements, notably
with the resolution of Hilbert’s 19th problem. This problem was one of 23 posed by David
Hilbert to the mathematical community during the International Congress of Mathematicians
held in Paris.

1.1 Statement

In the English translation of Hilbert’s problems published in 1902 in the bulletin of the American
Mathematical Society [33] (see also this wikipedia page), the problem is stated in the following
way,

Are the solutions of regular problems in the calculus of variations always necessarily
analytic?

It is motivated by the classical fact that minimisers of [|V,ul?dz are harmonic, and thus
analytic. On the one hand, D. Hilbert makes the notion of regular problem precise,

If one assumes that L is uniformly convex and analytic, are the minimizers of a
functional of the form E(u) = [, L(Vyu(x))dz always necessarily analytic?

On the other hand, he neither defines the domain of integration §2 nor specifies the set of func-
tions u: 2 — R over which the minimum is considered. We also mentions that he considers more
general functionals of the form [ L(z,u(z), Vyu(x)) dz but we stick to the previous framework
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From De Giorgi to Boltzmann

for simplicity. The uniform convexity assumption of the Lagrangian L can be understood in
the following sense,

There exist A\, A > 0 such that for all p € R?,  X|¢|? < D2L(p)¢ - € < A|¢|?. (Convexity)

In this statement, D2L(p) denotes the Hessian matrix of the function L at point p. It is d x d,
real and symmetric.

1.2 The Euler-Lagrange equation

Let v denote a minimiser of the functional E(v). If ¢ is smooth and compactly supported in 2
and £ > 0, then F(v + ep) > E(v). Using the definition of E, dividing by ¢ and letting it goes
to 0 yields,

/ VL(V,v)-Vepdzr =0
Q

where VL(p) denotes the gradient of L. Since L is analytic and if v is twice differentiable (in
the classical Fréchet sense), then we can integrate by parts and obtain that

—/ divy(VL(Vav))pdr = 0.

Q

Since ¢ is an arbitrary smooth and compactly supported function on €2, this implies that,
—div,(VL(V,v)) = 0. (Euler-Lagrange)

In the previous formula, div, denotes the divergence operator with respect to the x variable.
We draw the attention of the reader towards the fact that this equation is nonlinear. Studying
such equations is a priori very challenging.

1.3 Schauder’s theory

Schauder theory from the years 1930 applies to elliptic and parabolic equations with Hélder
continuous coefficients. For instance, it applies to elliptic equations under divergence form,

d
g 9%u
_ )
Z “ (x)(?arzax] + .

ij=1 i=

d
1 bi(x)g;i — S(z) forzeR? (1)

where coefficients a*/ and b* together with the function f are assumed to be Hélder continuous
and bounded in R¢. Under the following ellipticity condition on coefficients a,

There exists A, A > 0 s.t. for all z € R?, V€ € RTNE]2 < A(z)¢- € < A|¢]? (Ellipticity)

J. Schauder showed that it is possible to construct solutions that are twice differentiable in the
space variable xz. In this first setting, the regularity of the function and of its derivatives of
order 1 and 2 is measured with a modulus of continuity of Holder type.
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1 Hilbert’s 19*" problem

1.4 De Giorgi’s theorem

A first important idea of De Giorgi in [16] is to consider a spatial derivative u = % for some

i € {1,...,d} and to remark that it satisfies — div,(D?L(V,v)V,u) = 0 because the differential
operator % commutes with the divergence one. If we consider the matrix-valued function

Ax) = DQL(va(x)),

we remark that Assumption (Convexity) implies that the ellipticity condition (Ellipticity) is
satisfied. Let us recall it,

There exists A, A > 0 s.t. for all z € R?, V€ € RTNE]2 < A(z)¢-€ < A|¢]? (Ellipticity)

But in stark constrast with Schauder setting, the map z — A(z) is not known (yet) to be Holder
continuous. E. De Giorgi proposes to forget about the nonlinear equation (Euler-Lagrange) and
to focus on the study of the linear equation

—divy(A(x)Vzu) =0, z € Q. (2)

He proposes that we only retain from the nonlinear problem that the Euler-Lagrange equation is
elliptic, that is to say A satisfies (Ellipticity). In doing so, E. De Giorgi has to work with elliptic
equations with rough coefficients: this means that the function A has no regularity assumption
but (Ellipticity).

Theorem 1.1 (E. De Giorgi — [16]). Let Q be an open set of R®. Assume that x — A(x) satisfies
(Ellipticity) over Q. Then any (weak) solution of (2) is Holder continuous in the interior of .

This statement is not complete because we did not make the notion of (weak) solution precise.
Moreover, De Giorgi’s theorem has a stronger conclusion. In particular, the Holder exponent
only depends on dimension and ellipticity constants A, A. Such constants will be called universal.

1.5 Resolution of Hilbert’s 19" problem

Thanks to De Giorgi’s theorem, we now know that all derivatives %11'] of the minimiser u are

Hélder continuous. In particular, the map A(z) = D2L(V,v) is Hélder continuous in the
interior of the open set 2. It is then possible to get a Schauder theory in 2 and conclude that
v is twice differentiable with Holder continuous second order derivatives. Indeed, one can write
(Euler-Lagrange) under the following form,

d
y 0%
— v = i
g a (x)axi&zj () =01n Q.

1,7=1

Then Schauder theory can be localized to prove that v is indeed C? in € and second derivatives

of v are Hélder continuous. But this implies now that first order derivatives of a* () are Holder
Ov

continuous. In particular, first derivatives u = Dar of v satisfy,
d
y 0%u
— a¥(x =S in Q
5,j=1
with the Holder continuous source terms S = — Zd 90 0% _ Ty particular, functions u

4,j=1 Oz}, Ox;0x; "
are C? with Holder continuous second derivatives. This means that v is C3. We can iterate this
reasoning and finally reach the conclusion that v € C'*°.

Then proving that C'°° solutions are analytic was known at that time. We do not discuss this
point since it is remotely concerned with the regularity theory we are interested in.



From De Giorgi to Boltzmann

2 Parabolic equations with rough coefficients

2.1 Nash’s contribution

In [55], J. Nash proved De Giorgi’s theorem for parabolic equations one year later. It is somewhat
a generalization of De Giorgi’s theorem since solutions of elliptic equations can be seen as time-
independent solutions of parabolic equations with time-independent coefficients. J. Nash was
not aware of De Giorgi’s result before writing his paper. Let us give more details. He considered
parabolic equations in divergence form,

d
ou 0 o Ou
gu ij o 9%\ _ d
5 E oz, <a (x)ﬁx]) S, t>0,zeR

1,j=1

or equivalently,

ou

ot
We can say that J. Nash followed the same path as De Giorgi. In particular, he derived a
modulus of continuity for solutions that does not depend on the regularity of the coefficients
a". But, even if the two articles share some similarities, J. Nash’s reasoning is quite different
from De Giorgi’s one. In particular, he took inspiration from statistical mechanics (see below)
and considered the logarithm of positive solutions. This idea will be further explored by J. Moser
shortly afterwards [54]. Moreover, J. Nash worked with fundamental solutions, allowing him to
transform integral estimates into pointwise ones.

— divy(A(t,z)Vau) = S, t>0,2 € R (Parabolic)

2.2 Fluid dynamics

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva wrote in 1968 a book entitled
“Linear and quasi-linear equations of parabolic type” [46]. This book will be very influential
in the second half of the twentieth century. It presents in particuler the notion of parabolic
De Giorgi’s classes and expose the proof of De Giorgi & Nash’s theorem for their elements.

O. A. Ladyzenskaja is also reknown for a contribution to the study of the Navier-Stokes
system for incompressible fluids. This system has a parabolic structure since it is written,

(Navier-Stokes)

YW+ (U -V)U=AU+V,P, t>0,z€R’,
div, U = 0.

This being said, it is quite different from the linear and scalar parabolic equations studied by
J. Nash. First because it is a system (the function U is valued in R3). Second because of the
presence of the non-linear convection term. The understanding of the regularity of the solutions
of this system is still largely open and one of the Millenium prize problems is devoted to it.
A remarkable contribution about this important mathematical question was made in a series
of papers by Scheffer, starting with [58], and later improved by L. Caffarelli, R. Kohn and
L. Nirenberg [10]. Their results quantify how big (or small) is the set where the solution might
not be smooth.! An interesting remark for us is that A. F. Vasseur [63] gave an alternative
proof of Caffarelli-Kohn-Nirenberg’s theorem by following closely De Giorgi’s ideas.

Later on, L. Caffarelli and A. F. Vasseur applied to other models from fluid mechanics
De Giorgi’s regularity methods. Among these models, the surface quasi-geostrophic equation
attracted a lot of attention of the mathematical community. L. Caffarelli and A. F. Vasseur

Tt gives an upper bound on its (parabolic) Hausdorff dimension.
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3 Equations from kinetic theory of gases

managed to prove in [13] that solutions remain smooth for all times by applying ideas of De
Giorgi’s type. Let us mention that another team, made up of A. Kiselev, F. Nazarov and
A. Volberg [41], proved simultaneously the same result by a completely different method.

2.3 Parabolic equations with integral diffusion

The diffusion term in the surface quasi-geostrophic equation is the square root of the Laplacian.
It can be defined through Fourier analysis, but it can also be defined thanks to a singular
integral. More precisely, for s € (0,1), the fractional Laplacian (—A)* of a function u: R — R
is defined by
(-8)ule) = ca, [ (ulo) — ) — s
" Jrd | — y|dt2s
for some positive constant cq s depending dimension d and s € (0, 1).

The study of general parabolic equations with integral diffusion were a very active field
of research for years, in particular around 2010. We would like to mention two landmark
contributions in this direction: the article by M. Kassmann [40] and the one by L. Caffarelli,
Chan and A. F. Vasseur [11]. We will present results for the following class of equations,

0

a—{ = [ (f(t,w) — f(t,v))K(v,w)dw (Parabolic with integral diffusion)
Rd

for some positive kernels K whose structure will be discussed in due time. It will be assumed

that it is comparable to the kernel of the fractional Laplacian K(v,w) = cgslv — w|~¢72% in

a sense that will be made precise in the chapter devoted to parabolic (and kinetic) equations

with integral diffusion.

3 Equations from kinetic theory of gases

In this section, is quicky exposed a naive point of view on the importance of the Boltzmann
equation in mathematical physics. It is a way to introduce this central nonlinear model with
which the last chapters deal. It is also a way to share with the reader the enthusiasm for its
study.

3.1 Irreversibility

In the 19" century, scientists were interested in thermodynamics. This branch of physics [...]
developed out of a desire to increase the efficiency of early steam engines” (Wikipedia). Some
phenomena were known to be irreversible. Such a principle was first stated by Sadie Carnot and
further developed by Rudolf Clausius. It is now known as the second law of thermodynamics.

Irreversibility cannot be (easily) understood from classical mechanics since Newton’s law are
reversible in time. A classical example of this apparent paradox is given by a gas in a box with
two compartments. If the gas is initially confined in the left compartment and the wall between
the two compartments is removed, the gas will quickly occupy the entire box. It is not expected
that he could be confined again in the left part of the box for later times. However, this is
compatible with Newton’s laws.
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From De Giorgi to Boltzmann

3.2 Statistical mechanics

Under the influence of the both the emergence of statistics in social sciences and the development
of atomistic theories in physics, J. C. Maxwell derived in 1867 an equation for the probability
density function f(x,v) of a dilute gas. It accounts for the number of particles with velocities
v at position x. Such a function can evolve in time and J. C. Maxwell showed that it satisfies
an equation of the form,
%(t, z,0) +v-Vof(t,z,v) =Qp(f(t,z,-), f(t,x,-)(v), t>0,z,v€R®  (Boltzmann)
The left hand side of the previous equation encodes the fact that particles travel along straight-
lines at velocity v when they do not collide with other particles. The operator in the right
hand side accounts for collisions between particles. During a collision at time ¢ and position x,
the velocities of the two colliding particles are modified. This is the reason why the collision
operator acts only on the velocity variable. It is thus applied to f(t,z,-): v — f(t,z,v). The
notation Qp(f, f) also draw one’s attention towards the fact that the operator is quadratic.
For some interaction potentials between particles, this operator Qg has a diffusive effect. The
reader can be surprised that the tag of the equation is Boltzmann and not Maxwell. And that
the subscript for the collision operator is B.

In 1872, L. Boltzmann studied the long time behaviour of solutions of the equation derived
by J. C. Maxwell. He made the seminal observation that the quantity

- /(log f)fdzdv (Entropy)

increases with time. This fact is now known as Boltzmann’s H-theorem and the equation
originally derived by Maxwell nowadays bears the name of Boltzmann. The H-theorem can
be thought of a quantitative version of the second law of thermodynamics that we mentioned
above.

3.3 The Landau equation

Boltzmann’s collision operator (Jp depends on the choice of the potential from which the in-
terparticle force derives. These potentials should be less singular than the Coulombian one:
indeed, in the latter case, (Qp contains a singularity that is too strong for the operator to
be well defined. For this reason, Lev Landau proposed in [48] (see also [49]) another collision
operator Qr,(f, f) in order to take into account Coulomb interactions. It has the following form,

QL(fa f) = diVU(Afvvf) + divv(fbf)

for some matrix Ay and some vector field by depending on the solution f. Since Ay is semi-
definite, the operator Qr,(f, f) has a diffusive structure. It is reminiscent of the class of parabolic
equations in divergence form considered by J. Nash (see (1) above). This being said, the lower
order term by turns out to be very singular, and quadratic, just like for (Navier-Stokes).

4 The Kolmogorov equation & kinetic Fokker-Planck equations

There are many more kinetic equations beyond the Boltzmann and the Landau equations.
Moreover, from the perspective of the study of the regularizing effect of their collision operators,
an equation introduced by A. Kolmogorov in the early years 1930 played an important role.
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4 The Kolmogorov equation & kinetic Fokker-Planck equations

4.1 Kolmogorov’s seminal observation

In 1934, A. Kolmogorov computed explicitly in [42] solutions f(¢,z,v) of the following linear
equation,
of

ot
thanks to Fourier analysis. He showed that this equation has a smoothing effect: rough initial
data are immediately smoothed out for positive times. This important observation will inspire
L. Hérmander to develop his theory of hypoellipticity in his seminal paper [34] from 1967.

+v-Vof=Af (Kolmogorov)

4.2 Kinetic equations with local diffusion

In this monograph, we will present a regularity theory for kinetic equations of the form

W v Vaf = LS )
associated with a linear and “diffusive” operator L, acts only in the velocity variable. The
presentation will follow recent contributions on this topic that we quickly review in the next
two paragraphs.

In view of the discussion above, it is relevant to consider local diffusions of the form,

va = div, (Avvf)

for some diffusion matrix satisfying an ellipticity condition.

Ultraparabolic equations The study of such equations was first addressed by considering a
more general class of equations, called ultraparabolic equations. The Italian school contributed
in an essential way to the study of these equations, which was launched by the paper by
E. Lanconelli and S. Polidoro [47]. The latter author played a key role in the Italian community
working on these questions. Among other things, he proved with A. Pascucci that weak solutions
are locally bounded [57]. The first De Giorgi-type result was proved by W. Wang and L. Zhang
[67]. Obtaining such a result was a breakthrough. The proof relied on not-so-classical ideas due
to S. N. Kruzhkov about classical parabolic equations. A proof closer to De Giorgi’s paper was
later devised by F. Golse, C. Mouhot, A. F. Vasseur and the author of this monograph [28].

Conditional regularity for the inhomogeneous Landau equation There were many further
developments to the theory that we will review in a dedicated section of the chapter related to
the study of (3). We would like to mention that the conditional regularity program initiated
in [28] was continued in [15] and completed in [31]. This program consists in proving that,
if physically relevant density functions p(t,z), E(t,z) and H(t,x) are assumed to be bounded
and p is bounded from below, the the solution f of the space- inhomogeneous Landau equation
is smooth. These density functions are p(t,z) = [pa f(t,z,v) dv, E(t,z) = [pa f(t,2,v) Y|v]? dv
and H(t,x) = [pa(log f)f(t,z,v) dv.

4.3 Kinetic equations with integral diffusion

A similar conditional regularity program was completed by L. Silvestre and the author of this
monograph for the space-inhomogeneous Boltzmann equation. In order to obtain the final C'*°
estimate on solutions in [39], the authors first needed to derive a theorem & la De Giorgi, by
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From De Giorgi to Boltzmann

gaining a control on the modulus of continuity of solutions only from “ellipticity”. This was
achieved in [37] where a general class of kinetic equations with integral diffusion is introduced,

Lf = Rd(f(w) — () K (v, w) dw
The kernel is assumed to be “sufficiently” elliptic in a sense that we will make precise.
We will see that the class of kernels that one has to work with in order to deal with the Boltz-
mann equation are much more difficult to handle than the one corresponding to the fractional
Laplacian. But it is too early to dive into this.



1 De Giorgi's approach to regularity

In this first chapter, we describe the overall picture that emerges when one follows the path
initially taken by E. De Giorgi, revealing a broader perspective beyond elliptic, parabolic and
kinetic equations.

This book is self-contained. Moreover, it is written in such a way that each chapter can be
red independently. In particular, we will always go through proofs again, in full details, even
when they are very similar, if not copied/pasted from a previous chapter. This being said,
there is a progression from Chapter 2 to Chapter J, in the sense that new theoretical challenges
and technical difficulties are faced when passing from the elliptic to the parabolic, and from
the parabolic to the kinetic framework. In the parabolic chapter, properties related to the time
variable are to be taken into account. In the kinetic chapter, the main new phenomenon to
be understood is the transfer of reqularity from the velocity variable to the spatial one. If the
reader is not familiar with De Giorgi’s techniques and they want to get the big picture, for
instance to be able to adapt these techniques to their framework, it is probably useful to read the
first chapters, or the sections of first chapters that are related to the estimate of interest (local
mazimum principle, Holder estimate, Harnack’s inequality etc.).

1.1 Holder regularity and oscillations

De Giorgi’s regularity consists in local Holder estimate of solutions of partial differential equa-
tions, and more generally of functions satisfying appropriate families of local (energy) estimates.

Pointwise Holder regularity. The Holder regularity of a function u on a set 2 is characterized
in terms of the oscillations of the function around a point xp. Given a measurable set N (for
neighborhood), the oscillation of the function u over N is defined as,

OSCA/ U = €ss-Sup s u — ess-inf 7 u.
We will see that Holder regularity reduces to proving that around any point xy € €2, we have
oscy, u < Cr?

where N, is a neighborhood of radius r around zy. We will see that it is enough to consider a
sequence of shrinking cylinders:

Vk > 1, oscn,, U < Crp® with rp, — 0 as k — oo.

From micro to unit scale. A very important idea of De Giorgi’s method is to reduce the proof
of the algebraic decay of the oscillation of a solution to an improvement of oscillation at unit
scale. This improvement has to be independent of the solution, of any smoothness of coefficients,
of the source term, etc. It shall only depend on dimension d and constants characterizing the
ellipicity of the class of equations A, A, or constants appearing in the local energy estimates.




1 De Giorgi’s approach to regularity

We aim at proving that a function u:  — R is Holder
continuous. This means that it is Holder continuous
around each point xgy € 2.

Being Holder continuous at xg for a function u is equiv-
alent to say that its oscillation decays algebraically with
the radius r of the neighborhood Ni..

On this figure, neighborhoods around any point xg look
like cylinders with the point xy at the top. This will be
the case in the parabolic and kinetic frameworks.

Figure 1.1: Holder regularity at each point of €.

M N1

2

Figure 1.2: Zooming in: Two consecutive shrinking cylinders are scaled to N- 1 and V.

In order to prove the algebraic decay of the oscillation along a sequence, another key idea is a

consider two consecutive neighborhoods Nyy1 and N and scale them so that N} transforms

into V7. Let us assume for simplicity that then Ny, scales into N1. We aim at proving that
2

oscp, u < (1 — p)osca, u
2

for some p = u(d,\,A) € (0,1). We say that the constant u is universal. If we can prove such
an improvement of oscillation at unit scale, then, after scaling back, we get the algebraic decay
of the oscillation of u over N, with r; =27 and a such that 27 = (1 — p).

Shrinking neighborhoods: balls and cylinders. In order to make the previous reasoning ap-
plicable, we need neighborhoods around any point zg € €1, at any scale » > 0. These neigh-
borhoods shall encode two invariances of the class of equations under study: translation (from
the origin to x¢) and scale (by a factor r) invariances. Straight cylinders are invariant under
the parabolic scaling (t,z) + (r%t,rz) while kinetic cylinders are invariant under the scal-
ing (t,x,v) — (r’t,r3z,rv). Balls and parabolic cylinders are invariant under translations
x +— xo + 2 and (¢, ) — (to + t,zo + x), while kinetic cylinders are invariant under Galilean
translation: (¢,z,v) — (to + t, o + « + tvg,vo + v). This is the reason why they are slanted.
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——

Figure 1.3: Neighborhoods: balls (elliptic equations), straight cylinders (parabolic equations),
slanted cylinders (kinetic equations)

1.2 Local energy estimates and De Giorgi’'s classes

From local energy estimates to improvement of oscillation. The local Holder regularity (in
fact the universal improvement of oscillation at unit scale) derives from local energy estimates.
For this reason, De Giorgi’s methods apply to equations from which we can derive such local
estimates. Such estimates are naturally associated with equations in divergence form.

De Giorgi's classes. In De Giorgi’s original paper [16], it is proven that not only solutions
of elliptic equations are Holder continuous, but any function satisfying local energy estimates.
This feature was later used in the context of calculus of variations to prove regularity of quasi-
minimisers of some functionals [26, 27]. These local energy estimates have to be satisfied after
truncating the candidate u (from below and from above) by an arbitrary constant x: one has
to consider (v — k)4 and (u — Kk)_ with ax = max(0, +a).

Sub- and super-solutions. A sub-solution to the elliptic equation —div,(AV,u) = S is a
function satisfing — div;(AVzu) < S (in the sense of distributions). If a candidate u is a sub-
solution (resp. super-solution) of the equation, then it satisfies the local energy inequalities after
truncation from above (u—k)4 (resp. from below, (u—k)_). A general fact is that sub-solutions
are contained in “positive” De Giorgi’s classes (DGT,pDG™',kDG™) while super-solutions are
in “negative” De Giorgi’s classes (DG~,pDG™,kDG™).

1.3 Local maximum principle and gain of integrability

From measure to pointwise. We saw in the previous section that the relevant information to
establish Holder regularity is contained in two families of local energy estimates. This infor-
mation is thus encoded in some estimates in Lebesgue spaces on the (truncated) function and
some of its derivatives. Since the goal is to estimate the oscillation of the candidate w, one has
to derive pointwise information from local energy estimates: this is achieved through mazimum
principle.

Results in the book. Propositions 2.3.4 (elliptic), 3.3.5 (parabolic), 4.6.3 (kinetic FP).

Maximum principle from gain of integrability. The first step in establishing the improvement
of oscillation of an element of the positive De Giorgi’s class is to prove that it is locally bounded.
In order to do so, we consider the square of (u — ki)+ on a shrinking neighborhood N, with
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ki increasing from 1 to 2 and ry decreasing from 1 to 1/2.

Ay ::/T (u— rp)%

k

De Giorgi’s method consists in establishing the following nonlinear iterative estimate,

Vk > 1, Apig < CkHAf for two universal constants C' > 1 and 8 > 1.

We recall that a constant is universal if it only depends on dimension and ellipticity con-

stants. If the first term of the sequence Ag is small, then the iterative estimate implies

that A, — 0 as k& — oo. But A4, — le(u—2)3L as k — oo and Ay < leui. We
2

thus conclude that v < 2 in N1 as soon as the L?-norm of u, in A is small enough.
2

/uigéo = u<2 a.e.in./\f%. (1.1)
N

It can be surprising that we obtain a nonlinear estimate (Agy; < C’kHAg) for a linear
equation. This is made possible thanks to some local gain of integrability and the truncation
procedure: one way or the other, one has to prove that it is possible to control

By = (/N (u— ’fk)i>i

Tk
for some universal p > 2. We can then use Bienaymé-Chebyshev’s inequality and Holder’s
inequality to make A',f appear for some universal § > 1. More precisely, we prove that local
energy estimates yield,
Biy1 < CFLA,

Then we estimate the L2-norm of the truncated function (u—ripy1)s = (u— K1)+ Luznpin )
by the product of the LP-norm of (u — 1)+ with the L%norm of 17,5, ) With ]13 + % =1.

Apy1 = / (u = Fp11)?
Nk+1

q
< Bpy1 / lo>w
(Nk+1 {u>kr41}

k+1 2
<O A H{u > By D Ngqa|s

Here is the trick: write u — kxy1 = (u — Kg) — (kg — K1) and let 0 denote Kk — K1 > 0.
Then Bienaymé-Chebyshev’s inequality implies that

o2 g} N <67 [ (w2
N1

< C* Ay,

_ 142
(we used that Nyy1 C Nj). We thus get Agyq < CFH1A, "7 and we get the desired result with
B=1+ % > 1 (universal).
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1.4 Improvement of oscillation through expansion of positivity

Expansion of positivity. The expansion of positivity states that any non-negative function u
from the (negative) De Giorgi’s class satisfies,

1
Hu > 1} N Npos| > =[Npos] = {u>£ ae. in N}
p 9 p

for some universal constant ¢ > 0. We say that positivity is extended because if u is positive

Na

(non-temporal variables)

Figure 1.4: Ezpansion of positivity. A lower bound on the super-level set on N implies a
pointwise lower bound in Aj. On the left, illustration of the expansion of positivity
for elliptic equations. On the right, the parabolic and kinetic cases. For time-
dependent equations, positivity is expanded as time increases.

in half of the small neighborhood Npes then it is posivitive (almost) everywhere in the larger
neighborhood Nj. The price to pay is that the (universal) lower bound deteriorates.

This property implies the decrease of oscillation of u. Indeed, the local maximum principle
implies that the solution is locally bounded in a set N5 containing Ni;. Using the linearity of
the equation (encoded in the definition of De Giorgi’s classes), we reduce to the case where
0 <u <2 ae. in Ny. In particular oscy, u < 2. We distinguish two cases.

o If [{u > 1} N Npos| > 5 Npos| then infa, u > £. In particular, osca, u < 2 — £.

o If [{u > 1} N Npos| < 3|Npos| then we can apply the previous case to v = 2 — u and get
infp, v > £. In particular, oscpy;, v < 2 — £ in this case too.

We thus proved,

osca, U <2 = osch,u<2—/.

Making a long story short, by scaling the neighborhood by a factor 2 (from N7 to N- 1 ), we gain
a universal factor 1 — £/2 € (0,1) on the oscillation of the function.

Results in the book. Corollary 2.5.5 (elliptic), 3.4.3 (parabolic), 4.8.1 (kinetic FP).
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1.5 The intermediate value principle

We finally explain how the expansion of positivity is obtained thanks to an intermediate value
principle.

The local maximum principle, upside down. The conclusion of the expansion of positivity is
a pointwise lower bound on u. Such a pointwise lower bound can be obtained by applying the
local maximum principle to the function 1 —u. Indeed, we can apply (1.1) to v =1 —u and get
that v < 1/2 as soon as | N v? < 1| NV;] for some universal constant 1. We then estimate this

L?-norm by the measure of the sub-level set of u,
/ vi <Hv>0}nMN|={u<1}nMN]|
M

In practice, we are going to apply this reasoning to #¥u for some well chosen 6 and an integer
k. In conclusion, the local maximum principle (upside down) asserts that,

Hu <1}nM| <elM| = {uzéa.e. in/\/'é}. (1.2)

The intermediate value principle for elliptic equations. For elliptic equations, the intermedi-
ate value principle quantifies the fact that a function with a square integrable gradient cannot
jump for 0 to 1/2. More precisely, for u € H(By),

= Hu<0pnNBy| x [{u>1/2}NBy| < CHVxUHL?(Bl)HO <u<1/2} ﬂB1|%.

The important consequence of this estimate is that, if we have lower bounds d;,0s for the
measures of sub- and super-level sets {u < 0} and {u > 1/2}, then we have a lower bound ; »
on the intermediate value set {0 < u < 1/2}. This is the way the intermediate value principle
is stated in general, as we shall see below for kinetic Fokker-Planck equations.

t

Qext

(z,v)

Figure 1.5: Geometric setting of the intermediate value principle.

The intermediate value principle for kinetic Fokker-Planck equations. For evolution equa-
tions, in particular for kinetic Fokker-Planck equations, the geometric setting of the intermediate
value principle is made of two cylinders, one sitting in the past, let us call it Q_, and one sitting
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in the future, we call it Q4. It is necessary that they are separated by a time lap. Moreover,
they are both contained in a large cylinder Qext. The intermediate value principle asserts that,
given the geometric setting (that is radii of cylinders Q1+ and Qext and time lap), and for d;
and 0y given, there exists constants 6 € (0,1) and d; 2 such that

{f>1NnQ-|>d|Q-]
Hf<0}NQy| > 02]Q4]

} = ‘{0<f<1}erxt’ 251,2‘Qext|‘

In practice, all the constants 8,61, d2, 01,2 are universal.

How to apply it to prove the expansion of positivity. We consider f;, = 6% f. The assumption
of the expansion of positivity ensures that [{f > 1} NQ_| > %|Q,| This implies that for all
k> 1, we have [{fy > 1} NQ_| > 3|Q_|.

If we can find k > 1, such that [{fr <1} NQ_| < e1|@Q—|, then the local maximum principle
upside down — see (1.2) — implies that f > % in the “interior” of Q.

But if [{fx < 1} NQ_| > €1|Q—|, or equivalently if [{fr—1 < 0} N Q_| > £1|Q_|, since we
already know that |{fz—1 > 1} N Q_| > 1|Q_|, then the intermediate value principle ensures
that [{6 < fr—1 < 1} N Qext| > 61,2|Qext| for some universal 41 2. In terms of intermediate value
sets of f, this means that

|{0k < f < ek_l} N Qext| Z 51,2|Qext‘~

{02 < f<6}

Il
B

> D

e = =
Il

{F+1 < f < 0F}

Figure 1.6: Intermediate value sets: On the left, is represented the neighborhood (ball or cylin-
der) where the function w is studied. The green and blue rings correspond to inter-
mediate value sets {61 < f < 0¥},

But these intermediate value sets are distinct, and they occupy a universal proportion 91 2 of
the cylinder Qext (see Figure 1.6). This implies that there is only a finite number of them. In
particular for k large enough, we do have |{fx < 1} N Q_| < €1|Q—| and this produces a lower
bound on f; (and thus on f) in the interior of Q.

Proof of the intermediate value principle. In the elliptic case, the intermediate value principle
is a straightforward consequence of a Poincaré-Wirtinger’s inequality. In the parabolic case, the
same inequality is used after freezing the time variable. In the kinetic case, the proof requires to
establish a Poincaré-Wirtinger’s inequality for weak sub-solutions, involving the cylinders )_

and Q.

Corresponding results in the book. Lemma 2.2.7 (elliptic), proof of Lemma 3.4.6 (parabolic),
Proposition 4.7.7 (kinetic Fokker-Planck).
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1.6

Summary / conclusion

De Giorgi’s theorem is proved in two steps:

e Square integrable solutions are locally bounded (Local maximum principle).

e Locally bounded solutions are Hélder continuous (improvement of oscillation).

Improvement of oscillation derives from two principles:

1.7

Local maximum principle (upside down) Expansion Improvement
Intermediate value principle of positivity of oscillation
Parameters

There are a lot of parameters in this theory. We try to make notation as homogeneous as
possible. Let us present the main ones.

A and A denote the ellipticity constants.

3

xg, Xo, zo denotes the “center” of a “neighborhood”, that is to say of balls or cylinders.

r and R denote a small and a large radius for balls or cylinders (for instance in local
energy estimates).

k denotes the truncation parameter.

¢ denotes a small parameter in approximation arguments.
P, q,ps« etc. denotes Lebesgue exponents.

€0, €0,1,€0 etc. denotes the “smallness” of source terms.

e1 denotes the “small” proportion of a cylinder yielding a local pointwise (upper or lower)
bound.

N0, N1, N2 and w typically denote small radii in geometric settings.

[ denotes a universal constant larger than 1 in De Giorgi’s iteration method for the local
maximum principle.

wp denotes a parameter in the local maximum principle between a large cylinder Qg and
a small cylinder Q),.




2 Elliptic equations

This chapter is devoted to the case of elliptic equations under divergence form. It corresponds to
De Giorgi’s original framework. We aim at deriving a local Holder estimate for weak solutions.
We will also establish that the Holder exponent, as well as the constant in the estimate, are
universal: they depend on very few parameters, namely dimension and ellipticity constants.
In the course of the reasoning, we will identify classes of functions that satisfy De Giorgi’s
theorem. Their are coined as De Giorgi’s classes.

2.1 Elliptic equations

This section is devoted to the presentation of the class of elliptic equations that we consider.
We first introduce notation for Euclidian balls and differential operators (partial derivative,
gradient, divergence).

Balls, gradient and divergence

e Given zp € R% and r > 0, denotes the open ball centered at xg of radius r. The closed
ball is denoted by . If zg = 0, we simply write B, and B,.

e Given a function u:  — R: 9;u denotes the partial derivative of u with respect to the
real variable z;, and V,u denotes the gradient of V,u = (du, - - - ,dqu) € RY,

e Given a vector field F': Q — Rd, div, F' denotes its divergence: div, F = 25:1 0; F;.

Ellipticity
We consider the following class of elliptic equations:
—divy(AVzu) = S, x €

where © denotes an open set of R, The function u:  — R is called the solution of the equation
while S: Q — R is called the source term. The function S is given and we aim at studying the
function u. The function A is also defined in € but it is matrix-valued. More precisely, it takes
values in the set Sg(R) of real symmetric d x d matrices. It satisfies the following ellipticity
condition,

Ellipticity. There exists A\, A > 0 such that for a.e. x € (Q,
VEeRY, A€ < A(z)€ - € < AJEE

It is convenient to simply write A € £(A, A) for the set of A’s satisfying the previous condition.
We remark that the ellipticity condition is equivalent to impose that for a.e. z € , the
eigenvalues of the real symmetric matrix A(z) lie in the interval [\, A].

When studying these equations, we will see that the lower bound on eigenvalues will allow us
to control the gradient of the solution in the set L? of square integrable functions. The upper
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bound will be used in order to get such a control, but localized on balls (See the Caccioppoli
estimate contained in Proposition 2.3.2).

De Giorgi’s theorem asserts that under this mere assumption on the coefficients (and suitable
source terms), one can control the modulus of continuity of solutions.

Scaling and translation

Let u be a solution of —div,(AV,u) = S in a ball Br(xg). Then the function v(y) = u(ry) is
a solution of —V, - (AV,v) = S in the ball B,g(rzo) with A(y) = A(ry) and S(y) = r2S(ry).
Remark in particular that if A is elliptic (A € £(\,A)) then so is A: we have A € E(\,A).
In other words, the class of elliptic equations that we work with is invariant under scaling:
ellipticity constants are conserved (and source terms are scaled).

The class of elliptic equations is also translation invariant. Indeed, the function w(y) = u(yo+
y) satisfies —V,, - (AV,v) = S in the ball B,g(rxo) with A(y) = A(yo+y) and S(y) = S(yo +¥).
In particular, A € E(\, A) if A € E(\A).

Holder continuity and oscillation

A function u is a-Holder continuous in a set F' C R? if for any z,y € F, |u(z)—u(y)| < Clz—y|*.
The set of a-Holder continuous functions on F' are denoted by C*(F'). The semi-norm [-]ca(p)
is defined by

u(z) — u(y)]
Uce(py = Sup
[ ]C (F) z,yeF |33 - y|a
7Y
This space is equipped with the norm |[ul|ca(ry = |lullc(r) + [ulce(r) Where |lu||c(r) denotes

supp [ul.
The Holder continuity of an essentially bounded function at a point zg can be established by
studying its oscillation around xg.

Definition 1 (Oscillation). Let © be an open set and u € L*(§2) be real valued and an open
set w C Q. The oscillation of u in w s defined by

0SC,, U = ess-sup,, u — ess-inf,, u.

Proposition 2.1.1 (Characterization of Hélder continuity). Let B be an open ball and u €
L>(B). Assume that for all zo € B and all v > 0,

0SCB, (zo)nB U < CT7.
Then u is a-Hélder continuous in B and [u]ca(py < C.

Proof. The proof proceeds in three steps.

Step 1. Assume that u: B — R is continuous and consider z,y € B. We now consider
r = |z — y| and remark that y € B,(z). In particular,

u(y) — ulz) < 03¢, (U = 05, @ u < Or% = Cla — y|°

We conclude that [u]cepy < C for u continous.

If now u is merely essentially bounded in B, we argue by approximation and consider a
mollifier p: R* = R with p > 0, p € C>®°(R%), compactly supported in B; and Jgap(x)de = 1.
We then define for any € > 0 and 2 € RY,

ut(z) = /BU(y)ps(fv —y)dy.

10
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Step 2. Let B = Bp(xg) for some 2z € R? and R > 0. We claim that for all 2y € B® =
Br_-(xzg) and all r > 0,

osc ut < COr®.
By (zo)NB*

Remark that for x € B¢, we have

e (z) = /B w(y)pe(e — y) dy = / u(e — e2)p(z) dz

R4

since x — ez € B. In particular,

osc u® = sup /ua:—szpz dz — inf /um—sz z)dz
B, (z9)NB* z€B,(z0)NBe JRE ( ) () zE€By(xz0)NBE JRd ( )p()

< / (OSCBT(Io—EZ)ﬁB u) p(Z) dz
Rd

and the claim follows.

Step 3. Let eg > 0 and ¢ € (0,g9). We conclude from Step 1 that for all z,y € B,
u®(z) —u*(y)| < Clz —y[*.
By dominated convergence, we have that u* — u a.e. in B®9, and we conclude that
u(z) — u(y)] < Clz —y[*.

Since €9 > 0 is arbitrarily small, we conclude that [u]cag)y < C. O

Energy and integration by parts

The elliptic equations of the form —div,(AV,u) = S are called to be in divergence form, or
conservative form. The reason is that a natural “energy” is associated to them,

E(u) := / AV u - Vu.
Q

The ellipticity assumption can be interpreted as a condition under which the energy behaves
like the L? norm of the gradient.

Local energy. Let us understand why this quantity is naturally associated with the elliptic
equations that we presented above. In order to do so, we consider local energies by considering
a ball B C Q,

Ep(u) ::/ AV u - Vau.
B

If a function u: B — R is such that this local energy is minimal when w is perturbed by a C¢°
function ¢ supported in B, then

/ AV, u - Ve =0. (weak)
B
Indeed, the real function

Balu+t0) = [ A(V,u+1Va0) - (Vau+ 19,)
B

has to achieve a minimum at ¢ = 0, in particular its derivative vanishes at ¢ = 0. This implies
(weak). Integrating by parts (if possible), we recover the elliptic equation in B.

11
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Towards a weak formulation. Recall that we do not want to make any smoothness assumption
on A, so that (among other things) we can scale solutions and stay in the class of solutions of
elliptic equations. We do not want to differentiate AV u, at any cost. Integrating by parts,
we can think of the elliptic equation under the form (weak). Such a form makes sense as soon
as Vzp and V u are square integrable function (because eigenvalues of A are bounded from
above).

2.2 The space H'()) and weak solutions

In this section, we recall the definition of the Sobolev space H'() that is needed in order
to define weak solutions. We will also state and prove a result about the composition of H*
functions with Lipschitz ones. This result is classical but a little bit less than the other ones.
We thus state it and prove it. It is useful for the reader that is not completely at ease with
the functional setting. We then recall some classical functional inequalities and give precise
references for proofs.

2.2.1 Two Hilbert spaces

The H' space is made of square integrable functions whose gradient is also square integrable.

Definition 2 (The space H'(2)). The space H'(Q) is the vector subspace of L*(Q) made of
functions u admitting first order derivatives (in the sense of distributions) lying in L*(S). The
(weak) gradient of an element u of H'(Q) lies in L*(Q)%.

We want to pass to the limit in test functions ¢. This is the reason why we introduce the
following subset of H'(Q). It is a convenient way to impose u = 0 at the boundary in a weak
sense.

Definition 3 (The space H}(2)). We denote by H}(Q) the closure of C2°() with respect to
the topology induced by the H' norm (associated with (-,-)).

We recall that smooth functions are dense in H'(§2). See for instance [, Corollary 9.8].

Proposition 2.2.1 (Density of smooth functions in H(Q)). Let Q be open with C' boundary
and w € HY(Y). Then there exists a sequence U, € CX(RY) such that u, = Unla — u in
H'(Q).

This proposition immediately implies the following technical lemma.

Lemma 2.2.2. Let Q be open with C' boundary and u € H'(Q) and ¢ € CX(Q). Then
ou € H (D).

Proof. Consider the sequence u,, from Proposition 2.2.1 and consider v, = u,p. We easy verify
that v, — up in H(Q). Since v, € C(£2), we conclude that up € H} (). O

2.2.2 Weak solutions

We recall that £(A, A) denotes the set of all elliptic “matrices”, see (weak) on page 11.

Definition 4 (Weak solutions). Let Q be an open set of R? and A € E(\,A) and S € L'(Q).
A function u: Q — R is a weak solution of — div,(AV,u) = S in Q if u € HY(Q) and if for all

p e C(Q),
/Avmu-VgM:/Scp.
Q Q

12
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By using the definition of HE(Q2), we see that we can extend the class of functions v used in
the weak formulation. Let us put into a lemma whose proof is left to the reader.

Lemma 2.2.3 (Extending the set of test functions). If u is a weak solution of — div;(AVzu) =
S in Q with S € L*(Q), then for all v € H}(Y), we have

/Avxu-vzv:/Sv.
Q Q

The following result is classical but we state and prove it for the reader’s convenience. It is
sometimes called Stampacchia’s theorem.

2.2.3 Composition in H'((2)

Proposition 2.2.4 (Composition). Let Q be open. We assume that either Q is bounded or
T(0) =0. Consider u € H*(Q) and T: R — R.

1. If T is C* and T' is bounded in R (that is to say globally Lipschitz continuous), then
T(u) € HY(Q) and V. (T(u)) = T'(u)Vzu in L*(9).

2. If T(r) = ry = max(r,0), then T(u) € H Q) and Vouy = 150 Veu = 1501 Vau.

Proof. We prove each item successively.

PROOF OF 1. We first consider 7' € C' with T’ bounded in R by a constant L > 0. Then we

know that

T (w)] < |T(0)] + Llu.
In particular T'(u) € L%(Q) (either because € is bounded or because 7'(0) = 0). Moreover,
T'(u)V,u is square integrable because |T'(u)V u| < LIV ul.

We prove next that 77(u)V,u is the weak gradient of T'(u). By Proposition 2.2.1, we know
that there exists u”|q € C°(RY) such that u™ — u in H'(Q). For clarity, we simply write u"
for u™|q. In particular u™ — u in L?(Q) and, up to a subsequence, we have that u™ — u almost
everywhere in (2.

Since

T (") = T(u)| < Lu" = ul,
we first get that T'(u") — T'(u) in L?(£2).

Second we claim that V,T(u") — T"(u)Vzu in L?(Q2). Indeed V,T(u") = T (u™)Vu" and
we can write,

VaT'(u") = T'(u)Vaul < |T'(w") = T'(u)||Veu| + T (u™)]|Vau" — Vaul
< |T'(u™) = T'(u)||Veu| + LIV u™ — Vul.

The second term converges to 0 in L?(2) and one can apply dominated convergence to prove
that the first one also goes to 0 in L?(Q) since

T (u") — T'(w)||Vzu| < 2L|Vul.

Thanks to the uniqueness of distribution limits, we conclude that V. (T'(u)) = T"(u)Vzu in
L2(9).

PROOF OF 2. We argue by approximation. More precisely, we consider two bump functions in
R: p supported in [0, 1] and p supported in [-1,0]. We then consider for € € (0,1) the function

13
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p (L) and 6°(—¢) = (6°)'(—¢) = 0. Similarly, we consider §°
) and 6°(0) = (6°)'(0) = 0. Easy computations show that

In particular,

(éa)/_>1[0,+oo) and (QE)/—>1(07+OO) (pointwise)
Ve, <))< (o) and  (r—e)y < (B)() <1t

and both 6 (u) and 6° (u) converge to uy in L?(Q) (by dominated convergence).
By 1, we know that 6°(u) and 6°(u) are in H*(£2) and

Va(0°(w) = (07) (w)Vzu  and Vo (07(u)) = (6°)'(u)Vau.

Since (6¢)’ and (6°)’ are both bounded by 1, we can apply dominated convergence and conclude
that

V(07 (1) = 1 4o0)(w)Veu  and  Vu(6°(u)) = L 400y (u)Veu  in L*(9).

Then uniqueness of distribution limits implies that both limits coincide with V u, . O

2.2.4 Functional inequalities

In this section, we state without proofs two functional inequalities. The first one corresponds
to Sobolev’s embedding [8, Corollary 9.14].

Proposition 2.2.5 (Sobolev’s inequality). There ezists a positive constant Csop, depending on
dimension d, such that for all r > 0 and u € H*(B,),

Ful2e 5,y < Csab (IVatl3a(5,) + 2Nl )

with ]% = % - é if d > 3 and any p* if d = 1,2. The constant Cseoy, also depends on p* if
d=1,2.

We state the next functional inequality on the unit ball [1, Theorem 3.2]. We will use it in
Chapter 4 with some ¢ € (1, 2].

Proposition 2.2.6 (Poincaré-Wirtinger’s inequality). Let ¢ € [1,2]. There exists a constant
Cpw, only depending on d and q, such that for all uw € L'(By) with Vyu € LY(By1). Then,

B1 B1

1
where fBl U= g fBl udx.
Remark 1. In the previous proposition, the functions v and their weak derivatives V,u are
only in L, on the unit ball: the appropriate setting for such a statement is the Sobolev space
Wt4(By), see for instance [8].

q
dz < pr/ |Vul?dz
B1

We use the Poincaré-Wirtinger’s inequality to get a result that relates the size of the sets
where an H! function is respectively above % and below 0. The regularity of the weak derivative
implies that the set of intermediate values (i.e. between 0 and %) cannot be too small.
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2.3 Elliptic De Giorgi’s classes & the local maximum principle

Lemma 2.2.7 (Intermediate value). There exists Cryr, > 0 only depending on dimension such
that for all w € HY(By),

1
]{u < 1/2} N Bl‘ . ]{u > 1} ﬂBﬂ < CIVLHVmu”L2(Bl)H1/2 <u< 1} 031’5.
Proof. Let v = T'(u) with T(r) = max(min(r, 1),1/2). We claim that v € H*(B;) and
Vav = 1(1 j2<y<1y Vau in L?(By).
In order to justify the claim, we remark that min(u, 1) = —max(—u,—1) =1 — (1 —u)4. Since
we know that 1 —u € H'(B;), we have that w = min(u, 1) € Hy(B;) by Proposition 2.2.4 and
Vew = 11,13 Vau. Now we can apply the proposition again and conclude that v is indeed in
H'(Bj) with a gradient supported in the intermediate value set.

We next apply the Poincaré-Wirtinger’s inequality (see Proposition 2.2.6) to the function v.
Letting v denote fg v, we write

/ |lv —v|dx < Cpw |Vl da
B1 Bl

= CPW/B IVoulliocu<iyoy do
1
1
< prHvquLz(Bl) H1/2 <u<1}NBy|2.
We now get a lower bound on the left hand side of the first inequality.

/ |v—v[dx2/ |1/2 — v| dx
B1 {’U=1/2}ﬂBl

= (0-1/2){v =0} N B|

1
:</ (v—1/2)dm>|{v:1/2}ﬁBl|
1B1| \/B,
1
> =1'NAB =1/2} N Byq|.
> sl = B0 Bl = 12305
We get the announced inequality with Cryr, = Cpw2|B]. O

Remark 2. Exponents of set measures are not optimal. We lost information when we used the
Poincaré-Wirtinger’s inequality, that is suboptimal too. Exponents can be improved in order
to get the functional inequality originally proved by E. De Giorgi in [16] and nowadays known
as De Giorgi’s isoperimetric inequality. The interested reader is also referred to [64].

2.3 Elliptic De Giorgi’s classes & the local maximum principle

s In this section, we derive a local maximum principle for a class of functions satisfying some
local energy estimates.

2.3.1 Elliptic De Giorgi's classes

Our next goal is to derive a family of inequalities satisfied by a truncated weak solution.

15



2 Elliptic equations

Definition 5 (Elliptic De Giorgi’s classes). Let B be an open ball of R and S € L*(B). A
function u: B — R belongs to the elliptic De Giorgi’s class DGT(B, S) if u € HY(B) and there
exists a constant Cq > 1 such that for all ball Br(zo) C B, all k € R and all r € (0, R),

Ci
/ Vol — r)a]? dz < DGz/ (0 — r)a]? dx+c§G/ S| (u—r)e do (2.1)
Br(w0) (R =1)? JBg(x0) Br(o)
where (u — k)4 = max(u — k,0) and (u — k)— = max(—(u — k), 0).

The class DG(B, S) is the intersection of DG (B, S) and DG~ (B, S).

Remark 3 (Universal constants). Before introducing De Giorgi’s classes, a constant was called
universal if it only depends on dimension d and ellipticity parameters A, A. Now we extend this
definition to include constants that only depend on dimension and on the constants C]“D—LG used
to define De Giorgi’s classes.

The classes are invariant under translation and scaling.

Lemma 2.3.1 (Invariance of De Giorgi’s classes). If B be an open ball of R¢ and u € DG*(B)
and By(xg) C B. Then the function v = Au(**2) lies in DG*(By, 8) with &(z) = A5(&20).

s s

We now check that the De Giorgi’s class DG contains all weak solutions of the elliptic equa-
tions that are considered in this chapter.

Proposition 2.3.2 (Weak solutions and DG classes). Let u be a weak solution of an elliptic
equation — div,(AVzu) = S in an open ball B with S € L?(B). Then u € DG(B, S).

Remark 4 (Caccioppoli’s estimate). Such an estimate is some times called a Caccioppoli’s esti-
mate (for the functions (u — k)1 ). It can be described as a reverse Poincaré’s inequality, with a
key difference: the L?-norm of the gradient is taken with respect to a ball B,(xg) that is strictly
contained in the ball B,(z¢) where the L?-norm of the function is computed.

Remark 5 (Local energy estimates). The inequalities from the proposition are some times re-
ferred to as local energy estimates.

Before turning to the proof of this proposition, we state and prove an elementary technical
lemma.

Lemma 2.3.3 (Truncation function). For any positive numbers r, R with r < R and zo € R?,
there exists a C™ function p: R — [0, 1] with compact support in Br(zo), equal to 1 in B, ()
and such that

Vz € RY, Vap(@)] < 5=

Proof. Consider a C*° function 6: R — [0, +00) supported in [—1, 1], such that #(0) = 1 and
|6/(r)] < 2 for all » € R. Then consider p(x) = 6 (MT_T> Such a function is smooth since Vp

and higer derivatives is supported in Br \ B, where |z| is smooth. O
We can now prove the local energy estimates.

Proof of Proposition 2.3.2. We want to use v = (u — k)4 p? as a test function in Definition 4
of a weak solution for u. We know that u — x € H'(B) and by Proposition 2.2.4, we know
that (u — x); € H'(B). Then we can localize thanks to p by using Lemma 2.2.2 and get that
(u—k)+p* € Hy(B).
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2.3 Elliptic De Giorgi’s classes & the local maximum principle

We now use Lemma 2.2.3 and the fact that V., ((u— &)1 p?) = p*Va(u—k)s +2(u— k)1 pVap
in order to write,

/B[Avxu-vm(u—ﬁ)—i-}pz_/BS(u—H)_i_pQ_z/B[Avxu.vmp](u_ﬁ.%rp'

We now use the fact that Vi(u — k)1 = 1,54 Veu and A can be written (VA)? with VA
symmetric and definite in order to write the previous equality as follows,

/B [Avx(u — k)4 - Vg(u— ’f)+] P
_ /BS(u k)t o 2/3 {\/va(u — k) \/vap} (= K)o p
<[ PR CECISS [ 4520 =01 otu =0, 2
+2 /B(szp - Vap)(u— )%
This implies,
1

3 [ [AVatu =0 Vet < [ ISl 2 [ (A Ve w2

We now use ellipticity of A and the fact that p = 1 in the smaller ball B,(x() in order to finally
get,

A / ) 8A )
o[ WawennPs [ St s [ ek
2 JB,(x0) Br(zo) (R =7)% JBp(a0) *
We thus proved the local energy estimate with C%G = max(2/\, 16A/\). O

2.3.2 Local maximum principle

We saw above that our first task is to control the L*-norm of weak solutions satisfying an
elliptic equation in Bj in the interior ball By ;. As a matter of fact, we can prove it in any
interior ball. It will be convenient for us to get it in Bz 4. And we will derive a pointwise upper
bound rather than a two-sided bound. Here is a precise statement. We recall that a constant
is universal if it only depends on the constants appearing in the definition of the De Giorgi’s
class.

Proposition 2.3.4 (Local maximum principle). There exists a universal constant Cryp > 0
such that for any u € DG1(By, S),

[t || oo (By,0) < Crmp (llusllL2(sy) + 1512 (1)) -

In order to prove this lemma, we will need the following technical result about sequences of
real numbers.

Lemma 2.3.5. Let (A)r be a sequence of positive real numbers such that there exists § > 1
and C > 1 such that
Vk >0, Agy <CFLAD

__B _
If Ag < C B-1% then A, — 0 as k — +oo.

17



2 Elliptic equations

Proof. The proof is elementary, we just iterate the estimate on Ay in order to get
k
Vk>1, Ap<CPAD

with p, = Zfzo(k — 4)B%. This estimate can be proved by induction. Indeed, p; = 1 and
Ay < CAS. Now if A, < CP+ A for some k > 1, then

AkJrl < Ck+1A£ < Ck+1CpkBAgk+1

and we do have
k

prB+ (k+1)=> (k—=)B* + (k+1) = per1-
i=0
It is now possible to compute explicitely pg by remarking that

oP . BhHL _ ot
Pk = a(l,ﬁ) with P Za 161 = W
We compute and estimate the partial derivative of P Wlth respect to a with 0 < a < 8.
OP k+1 _ ak-i—l Oék k+1
A ) iy
dox (B—a) f-—a™ (B-aq)
In particular,
Bk—f—l
VE>1, pp< s
(8—1)

This implies that Ay satisfies
_s NP s \*
VE>1, A< <C<31>2> A = <C<B1>2A0> . O
We are ready to prove the local maximum principle.

Proof of Proposition 2.3./. We first prove that there exists some universal constant dy € (0,1)
such that, if [|S]|zec(p,) < 1 and if [[uy[|r2(p,) < do, then u < 2 a.e. in By y.

Iterative truncation. De Giorgi’s original idea for getting an upper bound on the weak solution
under study is to truncate it by an increasing sequence k; and integrate it on shrinking balls
BF = B,, . Precisely, we consider

A = / (u — k)3 da.
Bk

with N
3 27

vk >0 =227k =4
=V, kg v Tk + 1

In order to obtain an upper bound on u in By, we have to find two universal constants 8 > 1
and C > 0 such that, for all £k > 1, we have Agy1 < CkAg. Indeed, in this case, Lemma 2.3.5

__B_
implies that A; — 0 as soon as Ag < C" A-1. Since
A= [ (=12 do < flurlage, < 8,
By

__B8
we see that we can choose dyp = (1/2)C" 2(B-1. Such a constant is universal since so are C' and
B. Since the limit of Ay as k — +oo is ||(u — 2)+H%2(33/4)’ the fact that Ay — 0 yields u < 2

almost everywhere in By .
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2.3 Elliptic De Giorgi’s classes & the local maximum principle

Local energy estimates. We use the definition of elliptic De Giorgi’s classes to write the
corresponding inequality for v with 9 = 0, R = r; and r = rp41. In particular, R — r =
Tk — Thy1 = 27773, and recalling that 5] oo (B,) < 0o, We obtain,

/ |Ve(t — Kpyp1)y [P dz < C§G4k+3 / (u — kpy1)d do + C%G/ (u — Kpg1)4 de.
Bk+1 Bk Bk

e (GAIN OF INTEGRABILITY) We then use Sobolev’s inequality in B*+1 see Proposition 2.2.5,
and get

Gﬁmw—nmn+ﬁmwwgs(qiﬁﬁ+wwaZ)Lgu—wﬂﬁdx

+ 0, / (u— Kgy1)+ dez.
Bk

We also used both that B¥*! ¢ B* and rp,; > 3/4. We now use Cauchy-Schwarz
inequality and kg41 > Kk,

1 1
I|(u— ﬁk+1)+||%p* (Br+1) < Cpai <4k‘+3Ak + AL Hu > K1} N Bk2> (2.2)

with a universal constant Cpg1 = Csob(C%G + 1)+ 1. It is convenient to add 1 in order
to ensure that Cpg1 > 1.

¢ (NONLINEARIZATION PROCEDURE) We now use that {u > sp 1} = {(u — kg)y > 2771}
and Bienaymé-Chebyshev’s inequality in order to estimate the norm of the indicator func-
tion,

{u > rps1} N B = [{(u—rp)+ > 27"} N BY
<44 (= ) B
< 4 (2.3)
We then can combine (2.2) and (2.3) and get,
(= Fpg1) 4170 (p+1y < Cbai <4k+3Ak + QkHAk)
< 22T Cpgy Ay (2.4)
e (NONLINEAR ITERATION) We now estimate Ag1 from above by using Holder’s inequality

with ¢ € (1,2) such that £ = pi* + %’

2
Ak+1 < H(u - K”H—l)-ﬁ-H%p* (Bk+1) H]'{UZ“kJrI}“LLZ(Bk+1)
2
q

< [l(u— "fk+1)+||%p* (Bk+1) {u=>kKep} N B*

2(k+1) 142
< 22k+747q CDGlAk q

This implies in particular that Agy; < C’k‘HAg with the universal exponent f = 1 + % >1
and the universal constant C' > 1 only depending on ¢ and Cpgi. In particular, Lemma 2.3.5

implies that Ay converges to 0 as soon as Ay < C' =17 Since Ag < §3 (see the beginning of
the proof) we pick dy € (0,1) such that

__ B
53 — %c B-1)2

Such an ¢y is indeed universal.
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2 Elliptic equations

The general case. We now remark that if we do not assume anymore that [|S| e (p,) < 1 and
w2,y < do, either u <0 a.e. in By or [[uy||r2(p,) > 0. In the latter case, we consider

- u
u =

561||U+||L2(Bl) + 1S oo (my)

This function @ is a weak solution of — div,(AV,a) = S with

S

8o ugllz2myy + 1SN e (ay)

S =

Since ||t | z2(p,) < do, we conclude that [|iit||pe(p,) < 2, that is to say
1

[t || oo (B5,0) < 200 M ug | p2(my) + 215N o (By)- O

2.3.3 More about the local maximum principle

This subsection can be skipped unless the reader is interested in the derivation of Harnack’s
inequality. In order to establish it, we first need to adapt the previous proof to get a local
maximum principle between two balls of arbitray radii » and R. We recall that a constant is
universal if it only depends on the constants appearing in the definition of the De Giorgi’s class.

Proposition 2.3.6 (Local maximum principle). There exist two universal constants Crimp > 0
and wo > 0 such that for any u € DGT(Bg, S) and r € (0, R),

~ 1 1 «o
[t |l o8,y < Cmp <<1 tat (R—r)2> s llL2(Br) + ”SHLOO(BR)) :

Remark 6. The constant wg = ﬁ for g = 1—|—%:%—|—§ if d > 3.

Proof. We reduce the proof to the case where there exists some constant dp € (0,1) (depending
on d, A\, A,r, R) such that, if ||S| pe(p,) < 1 and if [[uy || 2(p,) < do, then u <2 a.e. in B,. We
define Ay, as before but with the shrinking radii defined as

re =1+ (R—r)27k
In particular, 7y — 741 = (R —r)27%"1 and r, > r. In particular, (2.2) is replaced with,
1 1
I|(u — /ka)JrH%p*(BkH) < Cpai <4k+1((R — )P ) A + A2 {u > K b 0 Bk|2> . (2.5)
Next, (2.3) is unchanged but (2.4) is replaced

”(u - ﬁk-i-l)—i-Hip* (Bk+1) < Cpai (4k+1((R - 7”)_2 + ?"_Q)Ak + 2k+1Ak>

< 2%H6(=2 L (R — )72 4+ 1)Cpai4s. (2.6)

This implies that Agiq < C’kHAf with C = C(1 +r~2 + (R — r)~2) with C universal. Then
__=8 . .

we can conclude if §y = %C 20-02 = C(14+ 772+ (R—7r)"2)7“ with C universal. O

We first state a straightforward consequence of the local maximum principle.
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2.3 Elliptic De Giorgi’s classes & the local maximum principle

Corollary 2.3.7 (Upside down maximum principle). There exist two universal constants &y,e1 €
(0,1) such that for any non-negative u € DG~ (B1, S) with ||S| 1~ (p,) < &0, we have

{u>1NBi > (1 -2)lBi| = {u>1/2in Byp}.

Proof. We apply the local maximum principle from Proposition 2.3.6 to v = 1 —u with r = 1/2
and R =1 and zp = 0. Remarking that v <1 a.e. in By (because u is non-negative), we can
write,

[0l zoo (B, 5) < Crnap (144 + 4 vt 2z, + 1] (5y))
< Cuap (9o > 010 B2 + 1S <5, )

9w04
in B1/2. OJ

- - 2
We now pick &y = CLiWP and g1 = (CLMP) and conclude that v < % in Bl/Q. This means u > %

We can next show that the L?-norm in the right hand side of the local maximum principle
can be replaced with any L®-“norm” for any ¢ € (0, 2).

Corollary 2.3.8 (Local maximum principle - again). Given a universal constant ¢ € (0,2),
there exists a constant Crmpe > 0, only depending on d,\,A and €, such that for any u €

DG*(By, S),
Jutllzoe(B, ) < Crmpe (utllze(sy) + 1SNl (sy))

1
where [[u |l ze(sy) = 1ug | f1 p,)-

Proof. This corollary is a consequence of the interpolation of L? between L and L>®. If € < 1,
we interpolate L%¢ between L' and L>. We start by applying Proposition 2.3.6 for r, R € (0,1),

1 1 wo
lusllzmis < e (14 5+ rrgs) s liscsn +18ieca)

1 1 “0 2 1—¢/2
< CLmp <<1 + 2 + (R_T)Q> ||u+||i/€(BR)Hu+||Lof(/BR) + 1Sl Lo (BR)

< Dl ) CUREN N
=9 U+][L>(Br) € 2 (R—r)?
. 2
with K. = 2% Cenpllws |l ze By + Cump S| oo (,) and we = 2%. We now consider rg = % and
Tni1 =T +0(n+1)"2 with § = % (ZZOZl k*2)71 = % In particular, % <r,<1foralln>0.

Letting N;, denote |[u+|[z(p,, ), we thus have,

1 1
Ny < SNy + Ko(1+44 3+ 1)hwE < 5Nt + K. (3/8%)% (n + 1),

By induction, we thus get for all n > 1,

1 2 = s
No < o Nn + Ke(3/6%) 5T |-
k=1
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2 Elliptic equations

Letting n — 0o, we conclude that

[t |l oo (B, ) = No
) 0 k4w5
< K.(3/67)% ZF
)
= Cmpe (|utllne(y) + CompllS| Lo (By))

2
£

; 2 240 00 ks% 2—¢ 3 .
with Crvp e = (3/07) = b1 R 2= Ciyp T CLmp ) and 6 = = Since wg and Cinmp

are universal, the constant Cpyp . only depends on d, A\, A and ¢. O

2.4 Improvement of oscillation & De Giorgi’s theorem

In this section, we now state and prove De Giorgi’s theorem.

Theorem 2.4.1 (De Giorgi). Let A € E(N\,A) with Q@ = By and \,A > 0. There exist two
universal constants a € (0,1] and Cpg > 0 such that any weak solution v € DG(By, S) with
S € L>™°(By) is a-Hélder continuous and

[ulloas, sy < Cpe (lullzs,) + 1Sl (sy)) -

Remark 7 (Universal constants). We recall that a constant is universal if it only depends on
the constant appearing in the definition of the De Giorgi’s classes DG¥.

We already proved that solutions, and more generally functions in the De Giorgi’s class DG™
are locally bounded: this is a consequence of the local maximum principle. It is sometimes
called the De Giorgi’s first lemma. We now will establish that the oscillation improves while
zooming in: this will be achieved by establishing the infimum lift.

2.4.1 Infimum lift

We now know from the local maximum principle (Proposition 2.3.4) that elements of DG™
(and in particular weak solutions of the class of elliptic equations treated in this chapter) are
essentially bounded from above in the interior of the domain. With such an information in
hand, we can now study how the oscillation of functions in DG in a ball B,(zg) behaves with
the radius r. We aim at proving that it decays as r® for some universal exponent a € (0, 1].
We indeed saw earlier (Proposition 2.1.1) that it is equivalent to being a-Holder continuous.

To get such a decay, we aim at proving that the oscillation of a weak solution, and more
generally of elements of the De Giorgi’s class, improves by a universal factor when zooming in
by another universal factor. In order to establish such a result, we first prove that we can lift
the essential infimum of an non-negative element of DG~ above some universal constant 6 in
By 5 if the measure of its 1-super-level set in Bj is universally bounded from below.

Proposition 2.4.2 (Lifting the infimum). Let ¢ € (0,1) be a universal constant. There exist
two other universal constants 0 € (0,1) and g9 € (0,1) such that, if w € DG™(B2,S) and
1] zoe(By) < €0 and u > 0 a.e. in By, then

{u>1NBi| > (1 - 0B = {uzea.e. mB%}.
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2.4 Improvement of oscillation & De Giorgi’s theorem

Remark 8 (About the parameter ¢). In order to prove De Giorgi’s theorem, we only need to
consider + = 1/2. But when proving Harnack’s inequality, it will be convenient to consider a
larger ¢: indeed we will consider ¢ = 1 — 479,

Proof. We consider the sequence of scaled functions u, = 2Fu € DG~ (Bs, Si) with source
terms Sy = 2FS (see Lemma 2.3.1). We consider &g, &1 € (0,1) from the upside down maximum
principle (Corollary 2.3.7).
We use the definition of DG~ (Bg, S) in order to write,
IVatr = D) 1320z,) < Cia (k= 1= 13a(my) + 154325,
< Cpg (1Bl + 4431 Ba))
< 20| Byl
as long as 2¥ey < 1 (we will see that this condition is reached when we will choose £g). We

notice that we also used that (u; —1)_ < 1.
Because we have for all k£ > 0,
{ue > 130 Bl > [{u> 1} N By > (1 - )| B,
we can apply the intermediate value lemma (Lemma 2.2.7) and deduce that
1— 2 B 2
%\{uk <1/2} ﬂB1\2 < H1/2 <ug < 1} N By

In particular, for k£ > 0 such that
{ur < 1/2} N Bi| > e1]Bi],
we have ( 213,
alB| < {1/2 <ux <1} NBi| with o:=-——"-——¢f.
2CHq|Ba| !

We now pick the largest integer N > 1 such that Na < 1 and consider

g0 = 2N,

FE = {]{7 € {1,...,N+1} : |{uk < 1/2}ﬂBl| > €1|Bl|}.
We just proved that for all k € F,
alBi| <{1/2 <up < 13N By = {27 <u< 2%} n Byl

In particular,
(#E)a|Bi| <) {277 <u< 27 0By < |By)?
ker

We conclude that #E < N. In particular, there exists kg € {1,..., N+1}\ E. For this integer,
we have, [{ug,+1 < 1} N By| < e1|B1| or equivalently,

{uke+1 > 1} N B1| > (1 —€1)|By].

Now the upside down maximum principle from Corollary 2.3.7 implies that ug,+1 > 1/2 a.e.
in Bl/g if 2kotley < 7). We thus choose g9 = 2~ N-15,. We get u > 27k0=2 qe. in Bl/g. We
reached the desired conclusion with § = 27 k0—2, ]
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2 Elliptic equations

2.4.2 Improvement of oscillation

An immediate consequence of this proposition is the fact that the oscillation of elements of the
De Giorgi’s class improves with a universal factor (1 — ) when zooming from Bj to Bi.
2

Proposition 2.4.3 (Improvement of oscillation). Let A € E(A\, A) with @ = By and A\, A > 0.
Let eg € (0,1) be given by Proposition 2.4.2 for v = 1/2. There exist a universal constant
p€ (472,1) and such that, if u € DG(By, S) with S € L*®(By) such that ||S|| e (p,) < €0, and
u € L*>(Bzy), then
osc,u <2 = oscg, u<2u.
2

Remark 9 (Why do we care about a lower bound on u?). The fact that we pick u > 472 is
irrelevant for this proof. It is just a convenient condition for the proof of De Giorgi’s theorem.

Proof. We let M and m denote the essential supremum and essential infimum of v on By. In
particular, oscp, v = M — m.

We reduce to the case where —1 < u < 1 by considering & = u — ;rm The function u takes
values in [—1,1] and lies in DG(Bsy, S) with ”S’HLOO(BQ) < go.

We now distinguish two cases.

o If {4 < 0} N By| > §|By|, then Proposition 2.4.2 implies that @ < 1— 6 a.e. in B1. But
2
since 4 > —1, we conclude that oscp, u < 2 — 0.
2

o If |{@ < 0} N B1| < %|Bi|, then [{—@ > 0} N By| < %|Bi| and the function v = —7 is
smaller than 1 a.e. in By and lies in DG(By, —S) with || — 5’||Loo(32) < go and satisfies
[{v <0} N Bi| > |{v <0} N By| > 3|Bi|. We conclude that v < 1 a.e. in B%, that is to
say 4 > —(1 —6) a.e. in B%. Since @ < 1 a.e. in By, we conclude that OSCB% 1<2—0in

this case too.
We thus proved that in both cases, oscp, © < 2 — 6. We reached the desired conclusion with
2

pw=max(4"%, (1 -6)/2). O

2.4.3 Proof of De Giorgi’s theorem

We are now ready to prove De Giorgi’s theorem.

Proof of Theorem 2./.1. The proof proceeds in several steps.

Reduction. The local maximum principle (Proposition 2.3.4) ensures that u is essentially
bounded in Bs,
4

||UHL°°(B%) < Cump (lull 2y + 1] my)) -

The essential upper bound on w is obtained from Proposition 2.3.4 applied to v and while the
essential lower bound comes from its application to —u.
We are thus left with proving that

[u]ca (B

[N

)< G (Iullwqo + 1515, )
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2.4 Improvement of oscillation & De Giorgi’s theorem

If ||ull oo (B4) = 0, we are done. If not, by considering
1

= - ,
lull L (Bs) + €0 [1SllL=(B)

1
we get that ||t f~(p,) <1 and ||§HLOQ(31) < gp and we want to prove that
4
[U]ca(,) < Cpa (2.7)
2

for some universal constants a € (0,1) and Cpg > 0. It is enough to study the oscillation
of 4 around points zg € Bj;. We thus consider such a point zp € Bi. We know that
2

]| oo (B, 4(20)) < 1-

Infinite iteration. We now want to scale @ from B /4(1‘0) to By in order to apply the result
about the improvement of oscillation, recall Proposition 2.4.3. We thus consider for x € Bo,

I

(x) = u(xo + %x)

We have 4 € DG(By, S) with A(z) = A(zo + tz) and S(z) = (%)2 S(xo + 1z). In particular,

@l oo (By) < 1 and [|S]|12(p,) < €0. Then Proposition 2.4.3 implies that

oscp, U < 2u
2

for u € (471, 1) universal.

Now we consider %1 = p~'@(x/4). In particular, oscp, iy < 2 and it satisfies an elliptic
equation with the source term Sy = (421)~'S(z/4). Since 4°p > 1 and || S| poc(p,) < €0, e also
have ||S1]|ze(B,) < €0. We thus can apply Proposition 2.4.3 and conclude that oscB% a1 < 2p.

We iterate this procedure by consider @y, 1 () = p~tug(x/4) = p~*~1a(4=%~12). These rescaled
functions wy, satisfy oscp, 4 < 2 and they satisfy an elliptic equation with a source term Sy
such that ||Sk||re(B,) < 0. We thus conclude that for all k > 1, oscp, t, < 2, which translates
into
0SCp,, U < 2"

with r, = (1/2)47*. We now consider o € (0,1) such that p* = (47%)%, that is to say
a=1In(1/p)/In4 > 0. We conclude that

oscp, U < 2(2rg)" = glrage

Conclusion. We are almost done. We need to check that we control the oscillation of @ over
balls of arbitrary radius > 0. In order to do so, we first deal with r € (0,1/4] by considering
k > 1 such that rp < r <rg_1. In this case, we write

0sCp, U _ 0sCp,, U 1y,
X

ro
< < 21-‘1—0&7]640( < 21—&-3(1‘
ro Th_1% ro ro

We thus proved that for any xp € B1 and any r € (0, i], we have
2
OSCR, (1) U < (21+3°‘) re.
For a radius r > 1/4, we simply write
o _ 21+2a,r,a

OSCR, (20)NB, /2 a4 < 0SCB, /, u<2<2(4%r

(wo

We now conclude from Proposition 2.1.1 that (2.7) holds true with Cpg = 232, ]
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2 Elliptic equations

2.5 (Weak) Harnack’s inequality

In this section, we will see that non-negative weak solutions of elliptic equations in divergence
form are such that their supremum over a unit ball (after scaling) is controlled from above
by their infimum over the same ball, up to some universal constant. Such an inequality was
first considered by C. Harnack in 1887 in the study of convergence of sequences of harmonic
functions. In view of the discussions of the previous sections, it is natural to expect that the
result holds as well for non-negative elements of the De Giorgi’s class DG.

Theorem 2.5.1 (Harnack’s inequality). There exist a universal constant Cy such that for any
u € DG(By, S) with S € L*(B1) and u > 0, we have

sup u < Cy <iﬂf u -+ ||S||L°°(B1)> :
31/2 Bl/2

Since w is non-negative, its supremum coincides with its L®°-norm. By the local maximum
principle, we know that we can control it by its L?-norm. But the L?-norm can be interpolated
between an Lf-“norm” for some small ¢ and the L>-norm."

For this reason, the proof of Harnack’s inequality reduces to the control of the mass of f¢ in
By /3. Such a result is known as a weak Harnack’s inequality. It is not weaker than Harnack’s

inequality, it is in fact more general since it applies to any element of the De Giorgi’s class DG™.
Remark 10. We recall that this latter class contains all super-solutions of the elliptic equations

with work with.

Theorem 2.5.2 (Weak Harnack’s inequality). There exist two universal constants Cypn; > 0
and € > 0 such that for any w € DG~ (Bsg, S) with S € L*°(Bs) and u > 0, we have

J

Remark 11 (Universal constants). We recall again for the reader’s convenience that a constant
is universal if it only depends on the constant appearing in the definition of the De Giorgi’s
classes DG™T.

€

u®(z)de | < Cyni (glfqu HS”LOO(BQ)> '

1
1 1
b 2

The proof of this theorem relies on the covering argument that is presented in the next
subsection.

2.5.1 Ink spots

Lemma 2.5.3 (Ink spots). Let E C F C Bi be measurable sets of Re.  Assume there is a
2
constant v > 0 such that

o Bl < (1-0)[B,],
e any open ball B C B satisfying |E N B| > (1 — )| B| is contained in F.
2

Then |E| < (1 — c)|F| for some constant ¢ only depending on the dimension d.

Tf ¢ € (0,1), the space L% is interpolated between L' and L°°, see below.
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2.5 (Weak) Harnack’s inequality

Proof. For a ball B = B,(z) and k > 0, we write kB for By, ().
By Lebesgue’s differentiation theorem [7, Theorem I1.4.5] applied to the integrable function

1 ifxekF,
1g(z) =
5(2) {0 if not,

we know that for a.e. x € E, there exists an open ball B* such that |[ENB*| > (1—1¢)|B*|. Let
us now choose a maximal open ball B* C B% containing = and satisfying |ENB*| > (1—1)|B¥|.

It is of the form B® = Bx(Z). By assumption, we know that Bz(Z) # B1 and Br(Z) C F.
2 ~
We now claim that [E N B* |=01- L)~|Bx’. Otherwise, there would be a ball B and a § >0
such that B* C B* C (1+ §)B* with B* C B1 and |E N B*| > (1 — )| B*|, contradicting the
— 2
maximality of B*.
The set E is covered by the closed balls B*. By Vitali’s lemma [25, Theorem 1.24], there

exists a cou_ntable subcollection of nonoverlapping closed balls B/ = Brj (x), j > 1, such that
E C U,5B7. Since B/ C F and |BINE| > (1—1)|B7|, this implies that | B/ N (F\ E)| > ¢|B’|.

IF\E|>> |BPN(F\E)|>> B/ =5""Y 15B7| > 5 %|E|.
j=1 j=1 j=1

We conclude that |F| > (14 5~%)|E|, from which we get |E| < (1 — )| F| with ¢ = 57¢ since
cr < 1. O

2.5.2 Proof of the (weak) Harnack’s inequality

If we consider a non-negative u € DG~ and we apply Proposition 2.4.2 to the function 1 —u < 1,
we readily get the following result.

Corollary 2.5.4 (Generating a lower bound). Let ¢ € (0,1) be universal. There exist two
universal constants € (0,1) and e € (0,1) such that, if u € DG™(Bz, S) with ||S|| e (p,) < €0
and u >0 a.e. in Bs, then

Hu>1}NBy > (1-0)|B| = {uZQa.e. mB%}.

The fact that v > 6 a.e. in B: implies that 6~'u > 1 in a proportion (1 — ) of a larger ball.

2
We thus can iterate this estimate by rescaling the function u at each iteration, up to getting a
lower bound on u in Bj.

Corollary 2.5.5 (Expansion of positivity). There exist universal constants v € (0,1), M > 1
and go,s € (0,1) such that, if u € DG (By, S) with ||S||p~(p,) < €0,s and u > 0 a.e. in By, then

Hu>M}NBi|>(1—)|Bi] = {u>1ae inBi}

or equivalently,
ilrglfug 1 = Hu>M}inBi| <(1—1)|Bl
1

Proof. Let © = 1 —4~% and @ and &g be given by Corollary 2.5.4. Let M = 6=2 > 1 and

€0,s = €0/4 € (0,1). We can apply Corollary 2.5.4 to 57 since the corresponding source term %
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2 Elliptic equations

is essentially bounded in By (and thus in Bs) by e9. We get that u > M = 0! a.e. in Bi.
2
We precisely chose ¢ such that (1 — ¢)|Bz| = |B1]. In particular, the function u satisfies,
2

{u> 0"} Bs| > (1—0)|By.
The function uq(z) := Qu(2z) satisfies,
—divy(A1Vuy) = S in By
with S1(x) = 40S5(2x). In particular, ||S1[|ze(p,) < feo0 < go since 0 € (0,1). We can apply

Corollary 2.5.4 again, but to u; this time, because we have,

o = 1B = [ 1 @u(a) dr = [ 10 ()2 dy
1 2
=27 u >0 N By > (1 —1)274By| = (1 —1)|By.
The conclusion of the corollary is that u; > 6 a.e. in B%, that is to say u > 1 in Bj. O

Proof of Theorem 2.5.2 (Weak Harnack’s inequality). The proof proceeds in several steps. We
first reduce the proof to a universal estimate on the super-level sets {u > t} of the function w.
We then prove the result for a universal value t = M. We finally get the result for all t = M*
by a covering argument (ink spots).

Reduction. In order to prove the result, we are now used to reduce to prove that, if

iéafu <1 and |[|S|ge~(my) < €0, (2.8)
1

with ¢ given by Corollary 2.5.4. then [ By s u®(x) dz < Cipt for some universal constants € and
CYint-
In order to estimate this integral, it is sufficient to prove that there exists universal constants
Cls and v > 0 such that
Vi>1, Hu>t}n B%] < Cpt™. (2.9)

Indeed, starting from the layer cake formula [51, Theorem 1.13], we write,

J

ug(:z:)dafza/ = {u >t}ﬁB%|dt
0

1
2

1 00
§£/ t51|B1\dt+5/ t ' {u >t} N By|dt
0 2 1 2

oo
<|Bi|+ EC]S/ =t de choose ¢ = v//2
2
1
< ’B%| + Cs.

We can further reduce the proof to the case t = MF¥ for some universal constant M > 1 and
integers k > 1,
VE>1, [{u>MFn Bi| < Cia(l — o)F (2.10)

with Clsqg > 1 and § € (0,1) universal too. Indeed, if (2.10) holds, then for ¢t > M, we pick k
such that M* <t < M**! and v > 0 such that (1 — §) = M~ and we write
Clsa Clsa

_sykL o k+1) "7 <
1—(5(1 %) *1—(5(M ) —1-94

Chsd |,y

{u>t}NB1| < |{u>M}NB:| < t
2 2

28



2.6 Bibliographical notes

Ink spots. In order to establish (2.10), we show that we can apply the ink spot lemma 2.5.3
with B = {u > M*¥1} N B: and F = {u > M*} N B1 and ¢ € (0,1) given by Corollary 2.5.5.
Let us verify the assumptiofl of the lemma. ’

These sets are measurable and E C FF C B 1.

By applying Corollary 2.5.5 to v(x) = u (%) that lies in DG™ (B3, S,) whose source term S,
is essentially bounded in Bs by £¢ s, we get that

{uz MyNByY < (1-1)|B,.

This implies that E satisfies the first assumption of Lemma 2.5.3 since {u > M**1} c {u > M}.
We next check that ¥ and F also satisfy the second assumption of Lemma 2.5.3. In order to
do so, we consider an open ball B,(xg) C B% such that |E N By(xo)| > (1 —¢)|Br(xo)|. This

means
[{u = M1} 0 Bo(ao)| = (1 0| By(o)] (2.11)

We aim at proving that this implies v > M¥ a.e. in B,(zg). For x € By, we consider @(z) =
%. It satisfies — div,(AV,a) = S in By with S(x) = M~*r2S(zg + rz). Since M > 1,
r < 1and ||S|p=(B,) < €0,s, we conclude that [|S||ze(p,) < €0,s. Then (2.11) translates into

{a =M} Bi| > (1—4)|B.

Applying Corollary 2.5.5, we conclude that @ > 1 a.e. in By, that is to say, v > M¥ a.e. in
B, (x0), as desired.

Conclusion. Applying Lemma 2.5.3, we conclude that
{u> MY N B < (1—c){u>M}N B,
2 2
This inequality implies (2.10) with 6 = ¢ and Cigq = |By|. O

Proof of Theorem 2.5.1 (Harnack’s inequality). We simply combine the weak Harnack’s inequal-
ity (Theorem 2.5.2) with the improved local maximum principle (Corollary 2.3.8). O

2.6 Bibliographical notes

This chapter follows closely De Giorgi’s original proof [16]. In particular, the class of func-
tions satisfying local energy estimates are called B(FE,~y) and they correspond to the elliptic De
Giorgi’s class DG* (see Definition 5). Lower order terms are later considered by O. Ladyzen-
skaya and N. Ural’tseva in their book [46].

The first difference between De Giorgi’s original proof and the one presented in subsequent
works (including the proof contained in this book) lies in the extra condition made on the
functions E. De Giorgi works with. He assumes that the functions w(z) are absolutely continuous
on “almost all segments contained in in £ and parallel to the coordinate axes”. Since H'!
functions in a ball of R? are such that (for instance) x1 + 9,,u is square integrable for almost
every (z2,...,24) (by Fubini’s theorem), they are absolutely continuous on line segments.

Another difference lies in the way that the intermediate value principle is obtained. Let
us make this vague statement more explicit. One way or the other, the proof boils down to
controlling from below the measure of the set of intermediate values of an H! function by the
natural super-level and lower-level sets. In [16, Lemma II], a functional inequality is derived for
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2 Elliptic equations

elements of B(E,~). This inequality is very close to what is nowadays known as De Giorgi’s
isoperimetric inequality, see for instance [64, Lemma 10]. It is more precise than a Poincaré-
Wirtinger’s inequality. A modern way to explain this difference is to compare a Poincaré
inequality with the Sobolev embedding (in W11 or W12).

A Poincaré-Wirtinger’s inequality (Proposition 2.2.6 in this chapter) is cooked up or used
in most of (if not all) works in this trend of research: it appears in Nash’s original paper [55,
top of p. 936] under the form now known as “Nash’s inequality”. Amusingly enough, J. Nash
mentioned that E. M. Stein gave him the proof. It also appears in J. Moser’s article [53,
Lemma 1] about elliptic equations as a true Poincaré-Wirtinger inequality: a mean is retrieved
to the function before considering its L?-norm. He also used a weighted Poincaré inequality in his
work about parabolic equations [54, Lemma 3]. We would like also to mention Kruzhkov’s work
[44, Theorem 1.1] (announced in [43]) and G. Lieberman’s classical book [52, Proposition 6.14],
both on parabolic equations.

J. Moser [54] and later N. L. Trudinger [62, Theorem 1.2] established a weak Harnack’s
inequality for parabolic equations. The proof by J. Moser uses a iterative procedure that
departs from De Giorgi’s original one. It is now referred to as Moser’s iteration. Let us briefly
describe it. On the one hand, it was known that if u is a solution of a parabolic equation, then
©(u) is a subsolution if ¢ is convex. On the other hand, the local maximum principle allows the
control of the LP-norm of the solution by its L?-norm for some p > 2. This is what we called
the gain of integrability of subsolutions. J. Moser observed that this gain of integrability can
be applied iteratively, by considering the convex function ¢(r) = rP/2. This leads to the local
maximum principle. He also observed that the convex change of variables ¢(r) = 1/r allows
one to control the infimum of a positive solution from below by its L?-norm. Using again such
change of variables, proving Harnack’s inequality boils down to be able to relate the L-“norm”
of f with the L®-“norm” of 1/f for an arbitrarily small € > 0. For the insecure reader, we
make precise that the correct statement is to relate L'-norms of f¢ 1/f°. In order to relate
them, he considers the logarithm of the solution (like J. Nash did in his original contribution)
and observes that the equation that it satisfies contains a quadratic term. This quadratic term
allows him to control the propagation of the level sets of the logarithm.

G. Lieberman [52] notes that while N. Trudinger was not the first to prove the weak Harnack’s
inequality, but he was the first to recognize its significance, despite it being a straightforward
consequence of previously known results. G. Lieberman also mentions that DiBenedetto and
Trudinger [18] demonstrated that non-negative functions in the elliptic De Giorgi’s class, which
correspond to super-solutions of elliptic equations, satisfy a weak Harnack’s inequality. Fi-
nally, G. L. Wang [65] (see also [66]) proved a weak Harnack’s inequality for functions in the
corresponding parabolic De Giorgi’s classes.

Proofs of weak Harnack’s inequalities use a covering argument. N. L. Trudinger’s proof [62,
Theorem 1.2] already relies on a measure lemma from N. V. Krylov and M. V. Safonov [45].
When proving it for parabolic equations, E. DiBenedetto and N. L. Trudinger [18] uses the same
procedure. G. L. Wang also mentions that he could use such a lemma in [65]. N. V. Krylov and
M. V. Safonov emphasize that their lemma is related to some works by E. Landis [50]. Landis
calls such results from measure theory “(aptly in his opinion)” [45] crawling of ink spots.
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3 Parabolic equations

In this chapter, the regularity of solutions of parabolic equations under divergence form is
studied. It corresponds to Nash’s original framework. As we will see, the techniques that were
introducted in the previous chapter for elliptic equations naturally extends to parabolic ones.

3.1 Ellipticity, cylinders and Holder continuity

Let I be a bounded interval of R of the form (a,b] with a,b € R. Let Q be an open set of R,
Let A\, A be two positive constants with A\ < A. We consider

EOA) = {A € L x Q,S4(R)) : ae. in I xQ, VEERLAEZ < Ac-¢ <AlEP). (3.1)
To each A € £(A\, A), we associate the following equation,
o f = divy,(AV.f) + S (3.2)

posed in I x Q with S € L1(I x Q).
When A is the identity matrix, equation (3.2) is simply the heat equation,

Of = Auf + S. (3.3)

3.1.1 Invariances and cylinders

Parabolic scaling. Let R > 0. For X = (t,z) € R x R? x R?, we define the scaling operator
Sr by

Sr(X) = (R*, Rx).
If f is a solution of the parabolic equation (3.2) for some A € E£(A,A), then the function
fr(X) = f(Sr(X)) satisfies (3.2) with A is replaced with Ar(X) = A(Sr(X)). Notice that
Ap e E(NA).

Translation invariance. Given Xy = (tp,2z0) € R x R? and a solution u of (3.2) with A €
E(A, A), the function v(X) = u(Xo+X) = u(to+t, xo+z) is a solution of (3.2) with A replaced
with Ag(X) = A(Xo + X). Notice that Ay € E(A\, A).

Parabolic cylinders. For R > 0 and Xy = (tp, z0) € R x R%, the parabolic cylinder Qr(Xo) is
defined by

Qr(Xo) = (to — R*, o] x Bg(xo).
This family of cylinders encodes the parabolic scaling and the translation invariance of the class
of parabolic equations of the form (3.2). Indeed, we can write Qr(Xo) = Xo + Sr(Q1) with
Q1 = (—1,0] x By (unit cylinder).
Remark 12. We also draw the attention of the reader towards the fact that these cylinders are
neither open nor closed and that the point Xy lies at the top of it. One could justify this choice
by arguing for instance that the information used to study parabolic equations should come
from the past.
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3 Parabolic equations

3.1.2 Parabolic Holder regularity

In this section, we give a sufficient condition for a function (¢, x) to be Hélder continuous. It
is expressed in terms of the oscillation of u in parabolic cylinders.

Definition 6 (Parabolic Holder spaces and semi-norms). Let o € (0,1] and @ a parabolic
cylinder. A function u: Q — R is in the space Cp, (Q) if there exists a constant Co > 0 such
that, for all X = (t,2),Y = (s,y) € Q,
1/2 o
[u(X) = u(V)] < Co (1t = 8|2+ |z~ y]) .
The smallest Cy such that the previous inequality holds true is denoted by [U]Cgar(Q)' The space
Coar(Q) is equipped with the norm ||ullca (o) = supg |u| + [u]ce (0)-

par par par

Remark 13 (Classical Holder regularity). A function u € CF,,(Q) is a/2-Hdlder continuous in ¢
while it is a-Hé6lder continuous in x. This is a general “fact” about the regularity of solutions

of parabolic equations: the solution is twice more regular in z than in .

Remark 14 (Parabolic distance). For X = (t,z),Y = (s,y) € R x R%, the quantity |t — s|'/2 +
|z — y| defines a distance, sometimes referred to as the parabolic distance.

We first recall that for a function u: A — R essentially bounded on a Borel set A, its oscillation
on A is defined as
0SCA U = ess-sup 4 u — ess-inf 4 u

where ess-sup 4 u acend ess-inf 4 u are the essential supremum and infimum of v on A.

Proposition 3.1.1 (Parabolic Holder regularity via oscillations). Consider a parabolic cylinder
Q and a function uw € L>®(Q). Assume that there exist o € (0,1] and Cy > 0 such that for all
X € Q and all v > 0, we have oscq, (x)ngu < Cor®. Then u is Holder continuous in Q. More
precisely, for all

Proof. The proof proceeds in three steps.

Continuous functions. We first prove that if u is continuous in ) and satisfies the assumption
for some constant C, then it satisfies the conclusion with the same constant Cy. In order to
do so, we consider X = (t,z) and Y = (s,y) and we define r = |t — s|'/2 + |z — y|. We observe
next that Y lies in the closure of Q,(X). Indeed, |t —s| < r? and |z —y| < r. We use next that
u is continous in @ in order to write,

u(X) —u(Y) < ess-supu — ess-inf u < Cor®.
Q- (X)NQ  @r(X)NQ

We can now exchange the role of X and Y and conclude that

a

[u(X) = u(Y)| < Co (|t = s/'/2 + |z — y1)

Regularization. We now consider a merely essentially bounded function uw. Given € € (0,1),
we consider a smooth non-negative function #: R — R supported in [—1,0] and such that
Jg0(t)dt = 1. The location of the support of # is important to ensure that the mean in
time is computed from past times. We also consider a smooth non-negative function p: R¢ — R
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3.2 Weak solutions and De Giorgi & Nash’s theorem

supported in By and such that Jga p(x) dz = 1. We then rescale these functions with a parameter
£ € (0,1) and consider p.(z) = e p(e~'z) and 0.(t) = e 20(¢~?t) and

u(t, ) = //Q u(s, y)pe(w — )0 (t — s) ds dy.

Now consider Xy and R > 0 such that Q@ = Qr(Xp). We now consider Xy = (t1,21) €
Qr--(Xo). We remark that for Z = (r,2) € Q., we have X; —eZ € Qr(Xp). In particular, we
can write for X; € Q,

0sc ut = sup //ug7 7 —0-(+ — s)dsd
XGQT(XI)QQR?E(XO) Qr(Xl)mQRfs(XO) Q ( y)pa( y) 6( ) y
— inf u(s, x —y)0:(t —s)dsd
XeQr(Xl)mQR_E(XO)//Q (s,y)pe(z — y)0:(t — 5) dsdy
< // sup u(t —er,x —ez)p(2)0(r)dsdy
Q Qr(X1—eZ)NQRr(Xo)

_ //Q inf u(t —er,x —ez)p(2)0(r)dsdy

XeQr(X1)NQRr(Xo)

= vy u(t —er,x —ez)p(2)0(r)dsd
_//QQT-(X1—5Z)0QR(XO) ( )p(2)0(r) Y

<Cpr®.

Conclusion. Now we conclude as in the elliptic case (Proposition 2.1.1). Let g9 > 0 and
e € (0,e9). We conclude from Step 1 that for all X,Y € Qr_-,(Xo),

[ (X) = (V)| < Co (It = sl* + |z —y]) .
By dominated convergence, we see that u® — u a.e. in Qr_c,(Xo). We conclude that for all
Xa Y S QR*EO(XO)?
1 «
[u(X) = u(¥)| < Co (It = sl + [z —yl) -

Since €9 > 0 is arbitrarily small, we conclude that [u]ca(g) < Co. O

3.2 Weak solutions and De Giorgi & Nash’s theorem

3.2.1 The space H () and L*(I, H'(%)).
Definition 7. The space H (Q) is the topological dual space of H} ().

It is a Banach space when equiped with the norm

[l = sup  [{f, )]

veH(©)
”U”Hl(g)fl

Ezample 1. Weak derivatives (in the sense of distributions) of square integrable functions are
important examples of elements of H~1(2). More generally, given functions hg, hi,...,hq €
L%(9), we define the linear application F' on HE(Q) as

d
Yo € HY(Q), (F,v>:/h0vdx—2/hi0w.
Q i /0

33



3 Parabolic equations

Then F € H-1(Q).
Remark 15. The converse is true, see [24, p. 299].

3.2.2 Weak solutions

Our notion of weak solutions is guided by the following formal computation. Consider a smooth
test function (z) supported B and multiply the equation by ug?. After integrating in B and
writing A = (v/A)? with v/A real symmetric and semi-definite, one gets,

1d
—— [ WPoPda+ / (AV,u - Vau)p? = 2/ (VAV,u)p - uV AV, + / Susp. (3.4)
2 dt B B B B

In particular, using Cauchy-Schwarz inequality twice (for each term of the right hand side) and
the ellipticity of A, we get

1d 1 1
—— [ WPptdx 4+ )\/ |Vul2p? < 2A/ u?| V| da + / S%dx + / u?p? d.

This formal computation suggests that only assuming that w and V,u are square integrable,
one can deduce that u € L>®(I, L?(Q)) and (thanks to the equation) that d,u € L?(I, H=1(Q)).
A classical result from functional analysis, known as Aubin-Lions’s lemma, then implies time
continuity with values in L?(9), see for instance [7, Theorem I1.5.16].

Definition 8 (Weak solutions). Let I be an interval of the form (a,b] and Q2 be an open set of
R? and S € L*(Q). A function u: I x Q — R is a weak solution of a parabolic equation of the
form Oy — divy(AVzu) =S in I x Q if,

ue C(I,LAQ)), VeuecL*(IxQ), owue L*(I,H YQ)),

and for all p € L*(I, H} (),

/((%u, 90>H*1(Q),H3(Q) dt = — ﬂ Aqu : V;C(,O dtdx + ﬂ S(p dtdz.
I IxQ IxQ

Remark 16 (Weaker solutions). We can use a weaker notion of solutions by only assuming that
u € L2(I x ), that the weak gradient V,u € L?(I x Q) and that the equation is satisfied in the
weak sense by only testing with smooth and compactly supported functions (i.e. in the sense
of distributions). It requires some extra work to prove that such weaker solutions are in fact
weak solutions in the sense of Definition 8.

Remark 17 (Weak sub- and super-solutions). We can also consider functions that are only sub-
solutions or super-solutions of a parabolic equation. This would be subsets of those weaker
solutions that are discussed in the previous remark.

3.2.3 Local energy estimates

Now that we made precise the notion of solutions that are going to work with, we derive the
local estimates that will be enough for us to establish their continuity.

Proposition 3.2.1 (Local energy estimates for weak solutions). Let u be a weak solution of
Ou—div,(AVau) = S in I x B with I = (a,b] and B an open ball. Consider B,(x9) C Br(xo) C
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3.2 Weak solutions and De Giorgi & Nash’s theorem

B and a truncation function p as in Lemma 2.3.5. If S € L*°(I x B) and A € E(\,A), then for
all t1,to € I, 7, R >0 and Xo € I X B such that r < R and Qr(Xo) C I x B, and all k € R,

/Br(zo)(u—/@)i(tg,x)dx%—)\ / V(= 1) 2 dtdx</ (u— k)% (11, 2) dz

B7 LB())

(z0)
1 to to
6A / (u— k) dtdw+/ / S(u — k)4 dt de.
t1 J Br(zo) t1 J Br(zo)

In order to prove this proposition, we need the following technical lemma that allows us to
use (u— k)4 as a test function in the definition of weak solutions, for any compactly supported
and smooth function ¢.

Lemma 3.2.2. Let u € L*(I x Q) be such that V,u € L*(I x Q) and dyu € L*(I, H-1(Q)).
Then for all ¢ € C2°(I x Q) and k € R, we have (u — k)¢ € L*(I, H}(Q)) and

1
[0 =yt == [ w-niap
I IxQ

where (Opu, (u — K)1.@) -1 g1 denotes (Dyu(t,-), (u — k)1 (L, )e(t, ) g-1(0), 11 (0)-

Proof. We consider an even non-negative function p € C2°(RxR?) supported in (—1,1) x By and
Jaxga p(t,z)dtdz = 1 and define for all & € (0,1) the function p.(t,z) = e 2 9p(e 7%, e 1a).
For any v € (0,1), we also consider a function P,(r) = (r — k)4 *6,. Then consider the smooth

and compactly supported function ¢, = | P,(us)p | * pe with ue = u * pe.

[ o= ] ftwivons] - [
_ //IXB(BtuE)Py(uE)g; =3 //IXB (8:Qu(u2)) ¢

with Q. (r) = %(r — k)% % 6,. After integrating by parts again, we thus get

1
/ <8tuv1/}a,u>H*1,Hé dt = 2/ Qu(ue)Opp. (3.5)
IxB IxB

In order to conclude, we now pass to the limit as € — 0 and v — 0. We use the three following
facts:

u. — u in L*(I, H(Q)),
P,(us) — P,(u) in L*(I, HY(Q)),
Qu(ue) = Qu(u) in L' (I x Q).

The fact that u. — u in L?(I x Q) is a general fact for mollifiers [7, Proposition 11.2.25]. Then
Ve = (Vzu) * pe in the sense of distributions, from which we get V,u. — Vyu in L2(1 x Q).
This leads to the first fact. The second fact uses that P, is 1-Lipschitz. Indeed,

P (ue) = P ()] < fue — ul
and this implies the convergence in L?(I x §2). Then V,P,(u:) = P.(u.)Vu.. In particular,

Ve Py (ue) = Ve Py (u)| < |P)(ue) = P (u)|[Vau| + [P (ue) || Vaue — Vaul
< |P)(ue) = Py(u)||Vaul + |Veue — Vaul.
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3 Parabolic equations

We can apply dominated convergence to prove the L?-convergence of the first term and we
already proved the L?-convergence of the second one. We thus established the second fact.
Finally,

/IXQ Qv (ue) = Qulu)| < ;/IXQ/R‘(UE —vs— k)T — (u—vs—k)3|0(s)ds
= ;/IXQ/R (Ku& —vs—K)y — (u—vs — K)4[|(ue —vs — K)4 + (u—vs — m)+|>9(3) ds

<5 [ el [ (16— vs = ne ot v = ] Joto)ds

1
< glhue = ulaso(Fuclagraoy + lullzaccey + 20l + 20 [ 118(s) )

Since ue — u in L2(I x Q), |tell2(rxq) is bounded independently of ¢ € (0,&9). This completes
the justification of the third fact.
Thanks to those three facts, we can pass to the limit in e — 0 in (3.5) and get

1
| @ r@enmdt=; [ Qwoe
IxB IxB

Arguing as above, we see that P,(u)p — P(u)p in L*(I, H'(Q)) and Q,(u) — (u — k)% in
LY (I x Q) and we conclude. O

Proof of Proposition 3.2.1. We proceed in several steps. We first use (u—k)+ as a test function
in the definition of weak solutions (Step 1) before considering a specific test function ¢ (Step 2).

Step 1. Let p € C>°(I x B). Using Lemma 3.2.2, we know that (u — k)¢ € L*(I, H}(B))
and we have

5 [ = riae = [@u) =)o@y e
— //IXB AV u - Va(u— K)o
— //IXB (Aku : thp) (u— k)4 + /IxB S(u—r)yep

il IR ZUEVISE AUSSNE
IxB

//sz <Av (u— k) VI¢)(U—K++/IXBSU—/<;)+¢

Like in the elliptic case, we used the fact that V(u — k) = 1g,> Vou and 1,5,y = 1%u>ﬁ}.
After remarking that it is positive, we move the first term of the last equality in the right hand
side to the left hand side,

1 (u— 1)2 By + AV (u — ky) - Va(u — k)49
2 //IXB //IXB
//IXB <AV (u—r)y Vmso>(u—n ++/IxBS U= K)4p.
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3.2 Weak solutions and De Giorgi & Nash’s theorem

Step 2. Let p be the truncation function from Lemma 2.3.3 that is supported in Br(xg) and
equal 1 in B, (zp). Given t1,ty € I with ¢t; < to, we consider a 1D mollifier #: R — R (smooth
and of unit mass) that is supported in [—1,0], and the smooth function ©.: (0, +00) — R such
that ©.(0) = 0 and for all t € R, we have OL(t) = 0.(t —t1) — 0-(t — t2). We choose € > 0 small
enough so that t; —e € I.

We now use Step 1 with ¢(¢, ) = O.(t)p?(x). Since drp(t,x) = (—0:(t —t2) +0-(t —t1))p?(x),
we can rearrange terms and get,

1 uUu—K 2 X 2 xr — uUu—K 22
5 )| werteorEo -+ | VAV rRe.
1
=5 )| wrteos@ei-n+ || sw-n.te. (3.6)
— 2//IXB (\/ngc(u —K)4 - \/vap>p(u — K)4+06:.
We next let € go to 0. Since u € C(I,L*(B)), we claim that ¢ — [p(u — k)3 p?(z)dx is

continuous. Indeed, letting M = |[p[|z(p) and m(:) be the modulus of continuity on I, we
write

[ (w®) = 02w do— [ (uls) = 0 () do
B B
< MQ/ (ult) — k)2 — (uls) — #)2] da

< M?/ (u(t) = R)s — (uls) — ®)4] [(ult) = R)s — (u(s) — K)4] do

We now use that r +— (r,) is 1-Lipschitz,
< M2/ [u(t) — u(s)| (Ju)| + |u(s)] + 2|x]) dz
B
1/2 1/2
2 2 2 2 2

<M (/B(u(t)—u(s)) dx) (Q/B(]u(t)\ + u(s)[2 + 45 )dx)
1/2

< (s = ) (4sup ) Eaqey + 8°1E1)

The time continuity then implies that for ¢ = 1, 2,

//IxB(u_K)i(t’x)p (2)0=(t = t:) _>/ 2t x)p? () da as ¢ — 0.

As far as terms containing O, are concerned, they are much simpler since we can apply dom-
inated convergence theorem and replace ©. with 1, ;). Passing to the limit ¢ — 0 in (3.6)
leads to,

s [t [ [ Vavi- ks

—5 [ =R o))+ / [ stu=rep

-2 [ [ (VAValu= 02 VAT ot
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3 Parabolic equations

We now treat the error term on the last line like we did in the elliptic case, see also the formal
computation preceding the definition of weak solutions,

;/B(u_,{)i(tz, z)p?(z)dx + = / /|\Fv (u—r4)?p

<3 [ (=i e @) de+ / JECERES / | WVAVapP k.

We finally use ellipticity constants of A and properties of p to get,

[w-mtap@an [ [ 190 np?
</B(u—H)i(tl,x)pQ(x)dx—l—Q/tf/BS(u—fi)+p2+ 164 /Q/R(xo w— k)2

We can now let p converge to 1p (4, in order to get the result by dominated convergence. [

3.2.4 De Giorgi & Nash’s theorem

The goal of this chapter is to establish the parabolic counterpart of De Giorgi’s theorem for
elliptic equations by following De Giorgi’s seminal path. In the following statement, a universal
constant refers to a constant that only depends on dimension d and ellipticity constants A, A
from (3.1).

Theorem 3.2.3 (De Giorgi & Nash). Let A € E(\,A) with Q@ = By and \,A > 0. There
exist two universal constants o € (0,1] and Cpg > 0 such that for any weak solution u of
Ou = div,y(AVyu) + S in I x B with S € L*°(I x B), we have

|l ca $ue(@1) < Cpa (lull 2.y + 1Sl Le@y)) -

Remark 18 (Local maximum principle and expansion of positivity). Like in the elliptic case, the
proof of the Holder regularity of solutions consists in establishing first a local maximum principle
for elements of pDG™ and, second, in proving that the oscillation of solutions improves by a
universal factor when zooming in with a universal factor thanks to an expansion of positivity
property for elements of pDG™.

Remark 19 (Parabolic De Giorgi’s classes). We state the theorem for weak solutions but we
will prove it for functions that are in the parabolic De Giorgi’s class. More precisely, the local
maximum principle holds for functions in the parabolic De Giorgi’s class pDG™ while the the
infimum lifting property holds for functions in the parabolic De Giorgi’s class pDG™.

3.3 The parabolic De Giorgi’s class pDGT™ & the maximum principle

We now define the parabolic De Giorgi’s class that will ensure that the local maximum principle
holds true.

Definition 9 (The parabolic De Giorgi’s class pDG™). Let Q be an open set of R x R? of the
form I x B where I = (a,b] and B is an open ball. A function w: I x B lies in the parabolic
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3.3 The parabolic De Giorgi’s class pDG™ & the maximum principle

De Giorgi’s class pDG1(I x B,S) if u € L*(I,L*(B)) and V,u € L*(I x B) and for all
Xo = (to,z9) € I X B and all r, R > 0 such that r < R and Qr(Xo) C I x B, and all k € R,

sup / (u—r)2 dx+/ |Va(u — k)4 > dtda
te(to—r2,to) ¥ Br(xo) Qr(Xo)

1 1
<C <+>/ u—r)2 dtdz+C / S|(u—kr)ydtde (3.7
Gt | (=2 T2 QR(XO)( )% et o S| (u — k)4 (3.7)

for some universal constant CpDG+ > 1.

Remark 20 (Universal constants). Like in the previous chapter, a constant is universal if it only
depends on dimension and the constants C,pg+, Cypg- appearing in the definition of the De
Giorgi’s classes pDG¥ (see below for pDG™).

We will use repeatedly the following elementary observation that we record in a lemma.

Lemma 3.3.1 (Invariance by scaling and translation of the De Giorgi’s class). Ifu € pDG™ (I x
B,S) and Q,(Xo) C I x B, then the function v = /\u(%,@) lies in pDGT(Q1, &) with
&(t,z) = (L4, 2=20),

r

3.3.1 Weak solutions are in pDG*

Proposition 3.3.2 (Weak solutions are in the parabolic DG class). Let u be a weak solution
of Oyu = div,(AV,u) + S in I x B with S € L*(I x B). Then u € pDG™ (I x B, S).

Remark 21. The parabolic De Giorgi’s class pDG™T also contains all sub-solutions mentioned in
Remark 17.

Proof. The local energy estimates satisfied by the weak solution u given by Proposition 3.2.1
can be expressed with

Bt = | ) e e
- [ Vsl

S() = /Bm) <|S|(u — k) o+ (RlEATP(u - ,@)3) dz.

We obtain that for all ¢1,te € (tp — R?, to] with t; < t9, we have

B+ [ D@ydt < Bt) + /t2 (¢) dt.

t1 t1

Control of the dissipation. Taking t; € [t — R?,tg —r?] and t5 = t¢ and discarding some part
of the time interval in the left hand side, we get

to to

)\/ D(t)dt < E(t) +/ S(t) dt.
to—r2 to—R?2

We can now take the mean with respect to t; € (tg — R?,to — r?] and get

to 1 to to
)\/ D(#)dt < M/ B(t) dt+/ S(t) dt.
|2 t

0—7r2 o—R2 to—R?
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3 Parabolic equations

From the definition of £, D and ¥, we get

A AN (R O = [CRE )

Control of the energy. Now taking to € (tg — r2,tg] and t; € (tg — R?,to — 2], we discard the
dissipation and take a mean in ¢; and get,

1 16A
sup / (u(te) — k)2 da < / (]S](u —K)t+ + < + ) (u— n)2> .
to€(to—r2,to] J Br (o) * Qr(wo) R2—72 (R-—1)? +

Combining the two estimates yield the announced result with C%G = (4A + 1)(1 + §) by
remarking that R? —r? > (R —r)%. O

3.3.2 Gain of Integrability

Proposition 3.3.3 (Gain of integrability in pDG™). Let u € pDGT(I x B,S). Then for all
cylinder Qr(Xo) C I x B andr € (0,R) and k € R,

1 1
”(u_"i)—&-H%pc(Qr(xo)) < Ce <(R—T)2 + 7”2> H(U—/€)+H%2(QR(X0))+CC /QR(Xo) |5|(u— k)4 dt dz

for some universal exponent p. = 2 + % > 2 ford > 3 and any p. > 2 ford =1,2. In the latter
case, the constant C. also depends on py.
The proposition derives from Sobolev’s inequality and the following elementary lemma.

Lemma 3.3.4 (Interpolation in Lebesgue spaces). Let p;,q; € [1,00] for i = 0,1, we consider
D, q such that

1 6 1-4 1 6 1-80
-=—+ and —-=—+
P Do p1 q q0 q1
for some 6 € (0,1). Then
lellzor,zomy) < 1610 1.0 1150 o

This lemma is a consequence of Holder’s inequality.

Proof of Proposition 3.3.5. Let I° = (tg — r2,to] and B = B,.(z0).

Integrability. The fact that u € pDG™ (I x B), S together with Sobolev’s inequality implies that
u € L®(1° L?(B%) N L2(1°, LP+(B®)). Then the previous lemma implies that u € LP<(Q,(Xp))
with

16 1-94 9+1—9
Pe OO 2 2 Dx

where we recall that p, comes from Sobolev’s inequality and satisfies pi* = % — é for d > 3 and
P« > 2 arbitrary for d = 1, 2.

For d > 3, this implies p. = 0 and 1 1-0

Px

L 9( )

g . The second condition is equivalent to,
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3.3 The parabolic De Giorgi’s class pDG™ & the maximum principle

In view of the definition of p, this is equivalent to é = 9(% + é) Hence 6 = WQQ and p, =

2 _o_ 4
1—% =2+ 3.
In the case where d = 1,2, we can pick any p, > 2. Writing p% = % — e, we get 0 = I_Qf% and

pc:2+%-

Estimate. We now write the estimate that we obtain after using the interpolation lemma.
Recall that I = (tg — r2,ty] and BY = B,.(x). Use the elementary inequality a’b'=¢ <
fa + (1 — 0)b for all a,b > 0 and Sobolev’s inequality from Proposition 2.2.5 in order to write,

[ (u— H)+H%PC(QT(X0))
<l = 1) 7% 10,2200y 10t = 8) 150 1 (0
<[|(u— H)+H%OO(IO,L2(BO)) +[[(u — H)+H%2(IO,LP* (B))
<[[(w = &) 4 Foo (10 2230y + Coobl| Var(tt = #) 1122, (x00) + Coobr Ml = 5)+ 1720, (x0))
<Ce (e + 72) 0= 04 gy + Co [ sl )
with the universal constant C. = max(1, Csob)C]S—LG. a

3.3.3 Local maximum principle

Proposition 3.3.5 (Local maximum principle). Let Q@ C R x R? be a parabolic cylinder and
S € L*>®(Q). There exists a universal constant Cpyp > 1 such that for all w € pDGT(Q, S) and
Qr(Xo) CQ andr < R,

1

1 «o
sl Loo (@r(x0)) < CLmp ((1 tat (R_T)g) lus 2 (Qp(x0)) + HS’LOO(QR(XO))>

with wy = 7(d+4)8(d+2).

Proof. We proceed in several steps.
Reduction. We are are by now used to start by reducing to the case where the right hand

side is universal. We can also assume Xy = 0. More precisely, we reduce to the case where
|u+ll2(@r) < o and [|S||pe(gr) < 1 by considering

8o sl L2 (@r(xoy) + 151 Lo (@r(x0)

W(X) =

i

and we aim at proving that u < 2 a.e. in Q. The reduction is possible because we have @ €
pDGT(Q, S) with S replaced with S(X) = S(Xo + X)/(561HU+||L2(QR(XO)) + 1S o (Qr(x0)))-

Iterative truncation. We now assume that [|uy||z2(g,) < do and [|S||p=(gy) < 1 and we aim
at finding a constant dy > 0, only depending on d, A\, A,r, R, such that u < 2 a.e. in Q,. In
order to do so, we consider shrinking cylinders Q* = Q,, with r;, =7 + (R —r)27% and

Ay, :/ (u— k)3 dtda
Qk
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3 Parabolic equations

with ki = 2 — 27F, We still have
_ 2 2 2
Ao = / (v =13 dtdz < |lutlli2g,) < 95
R

and we prove that there exist C' > 1 and > 1 such that for all £ > 0, Ap1q < C’kHAg with

C depending on d, A\, A, r, R. Then the iteration lemma 2.3.5 from the previous chapter implies
__B _

that Ay — 0 as soon as §3 = %C’ (#-1? . We thus are left with finding two constants C' > 1 and

B > 1 such that the iterative inequality Ax1q1 < Ck“Ag holds true. The constant 3 is universal
while C also depends on r and R, and more precisely, on (r=2 + (R —r)72).

Local energy estimates. We use the local energy estimates defining the parabolic De Giorgi’s
class pDGT(By, S) with R = r, and r = rp 41 and 5 = kg and X = (t9,x9) = 0. In particular,
we recall that r, — rp11 = (R —7)27%"1. Recalling that S is bounded by 1, and write Q¥+ =
IF*1 » BF*1 for an interval and a ball, we can write,

sup / (u— K1) d:):+/ IVe(u — Kpy1)y > dt da
Bk+1

terk+t Qk+1
< Cppe (141 (R =) 4072 |
Qk
e (GAIN OF INTEGRABILITY) We use Sobolev’s inequality in B**! for all time t € I*+1 in
order to get,

(u — k)3 dtdz + Copa+ / (u— k)4 dtde.
Qk

[ (u — "ik-‘rl)-i—”%OO(I’C-Fl,L?(B’C‘H)) + CS_O%DH(“ - “k+1)+”%2(1’“+1ﬂ* (BFF1))

< (Cng+4k+1(R —r) 24 (Copa+ + 1)r—2) | (u — mk+1)+||iz(Qk)
+CpDG+ / (U - I‘ik»+1)+ dt dax.
Qk

Then use Proposition 3.3.3 to estimate the left hand side and use Cauchy-Schwarz’s in-
equality to estimate the second term in the right hand side and get,

1
[l (u — Hk+1)+||2ch(Qk+1) < Cpai <4k((R — )2+ DA + A {u > K} N Qkyé)

for some universal constant Cpgy > 1.

e (NONLINEARIZATION PROCEDURE) Applying Bienaymé-Chebyshev’s inequality, we obtain
like in the elliptic case — see Eq. (2.3) — that |[{u > kry1} N QF| < 4814, so that the
previous estimate can be continued as,

(= Bps1) 1T ey < 2 Opai((R — 1) 72 072 + 1) 4y

e (NONLINEAR ITERATION) Like in the elliptic case and after replacing balls with cylinders,
we write,
2
A1 < [(u— Hk+1)+||%pc(Qk+1) {u> ke b N QY|

2(k+1) 42

1
<24 Opai((R—7r) 2+ 2+ 1A, ¢

2(d+2)

with ¢ € (1,2) such that % = + Since p. = =5, we have ¢ = d + 2 and

_ 2 _ 2
B=1+2=1+ 7.

Q=

L
Pe
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3.3 The parabolic De Giorgi’s class pDG™ & the maximum principle

We conclude that we have Ap1; < CkHA/,f for C=C(1+(R—7)"2+7r72)and C > 1 and
B > 1, as desired.
Since

B ___ B __ B
6 = %C_ B-D? = %C’ E-2(14+ (R—r) 2412 -2,

the factor wgy corresponds to ﬁ = d+d ]

We next apply the local maximum principle to get some information about lower bounds.
Corollary 3.3.6 (Upside down local maximum principle). There exist two universal constants

c0,€1 € (0,1/2) such that for all p € (1,2], all —u € pDGT(Q), S) with ||S|p~(q,) < €0 and
u>0 ae inQ, wehave

N =

Hu>1}NnQ, > (1 —e1)|Q,] = {uz a.e. ian}.

Remark 22. Tt is convenient to pick €1 < 1/2 when we will use it in the expansion of positivity.

Proof. We apply the local maximum principle to v = 1 — u € pDG™ (@), S) where the source
term S is unchanged. It leads to,

o4l 2o (1) < Crmp (9°°[Jos [l 22(g,) + €0) -
We thus pick €y > 0 such that Crypeg < % and we estimate the L?-norm of vy as follows,
sl 2@,y < Ho > 01N Q2 since v < 1 ae. in Q,
= {u<1}nQ,l2
L 1
<ef|Qpl2.
Gathering the estimates and using that p < 2, we get,

1 ;1
vl zoe(@r) < Cmp9ef |Qa]2 + T

1
We thus pick €1 > 0 such that Cryp9“e; ]Q2|% = i and we get v < % a.e. in Q1. This is
equivalent to u > % a.e. in )1, as desired. O

Arguing like in the elliptic case, we obtain the following refined local maximum principle.

Corollary 3.3.7 (Local maximum principle - again). Given a (universal) constant py € (0,2),
there exists a (universal) constant Ciyp,e > 0, only depending on d, N\, A and py, such that for
any u € pDGT(Q1, 9),

[t | zoo (@ j0) < Cump e ([usllzro(@ry + 1S Lo (@u))

1
where [[ut|zeo@) = W75 )
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3 Parabolic equations

3.4 The parabolic De Giorgi’s class pDG™ & expansion of positivity

In this section, we introduce the parabolic De Giorgi’s class pDG™ that contains in particular
all super-solutions of the parabolic equations at stake in this chapter. We then establish that
the non-negative elements of this class enjoy the following property: if they are above 1 in a
set of universal positive measure in the past, they are bounded from below pointwise in the
future. We will follow classical references from the literature by referring to this property as
the expansion of positivity.

We first define the parabolic De Giorgi’s class that we will work with.

Definition 10 (The parabolic De Giorgi’s class pDG™). Let I = (a,b] with a,b € R and B
be an open ball of R and S € L*(I x B). A function u: I x B — R lies in the parabolic De
Giorgi’s class pDG™ (I x B, S) if —u € pDGY(I x B, S) and if, for all Xo = (to,70) € I x B
and all r, R > 0 such that r < R and Qr(Xo) C I x B, all k € R, and all t1,ts € (to — R?, to]
with t1 < to, we have,

/BT(IO)(U—R) (tg)da;</ (u_ﬁ) (t1) de

By (o)

_ t2
pDG / / (u — k)% dtdz + Copa- / / |S|(u — Kk)_dtdz (3.8)
t1 BR (EO t1 BR(xo)

for some universal constant C,pg- > 1.
Again, we emphasize that functions in De Giorgi’s class can be translated and scaled.

Lemma 3.4.1 (Invariance by scaling and translation of the De Giorgi’s class). Ifu € pDG™ (I x
B, S) and Q.(Xo) C I x B, then the function v = Mu(*=2, 2=20) lies in pDG™(Q1,S) with
S(t,r) =2 % S(Lge, =),

r

This simple proof is also left to the reader.
We remark that the local energy estimates that we derived in Proposition 3.2.1 implies that
weak solutions are in the parabolic De Giorgi’s class pDG".

Proposition 3.4.2 (Weak solutions are in pDG™). Let u: I x B — R be a weak solution of
Ou = div,(AVzu) + S in I x B with S € L*(I x B). Then u € pDG~ (I x B, S).

Remark 23 (Super-solutions are in the parabolic De Giorgi’s class). The parabolic De Giorgi’s
class pDG™ contains in particular all super-solutions of parabolic equations mentioned in Re-
mark 17.

We now establish the key property of non-negative functions from De Giorgi’s class pDG™:
they are bounded from below by a universal constant in )1 as soon as they lie above 1 in an
arbitrary small but universal proportion of a cylinder Q)5 lying in the past, see Figure 3.1.

Proposition 3.4.3 (Expansion of positivity). Let n € (0,1) and Qext = Qm and Qpos =
Qy(=1,0,0). There exist constants £y, &g € (0,1), depending on d,\, A and 7, such that for all
u € pDG™ (Qext, S) with S € L®(Qext) and ||SHLOO(QeXt) <& andu>0 a.e. in Qeoxt,

1 .
[{u =1} N Qpos| = §|Qp08| = {u>{y ae inQu}.
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3.4 The parabolic De Giorgi’s class pDG~ & expansion of positivity

(z,v)

Figure 3.1: Geometric setting of the expansion of positivity.

The proof of the previous proposition is split into several lemmas. We start with proving that
the assumption on the measure level-set {u > 1} in time and space can be made pointwise in
time for some time ¢, “in the past”. Because we will need to estimate the gradient later on by
the local energy inequalities, we make that that t, is not too close from the initial time —1 —n?.

Let us consider a radius slightly larger than 1 in which we aim at getting a lower bound
on u “in a very large proportion of the corresponding ball”. It is convenient to consider some
parameter

1 <ry<y1+n?

for instance 7, = (1 + /1 +1?/2).

We first remark that the assumption of Proposition 3.4.3 implies that
{u =130 (=1 =02 —1] x Byy| = l(—=1 = 1, 1] x B, | (3.9)

. d
with ¢, = 2777%. Indeed, 5|Qpos| = tyn?|Br, |-

We will first apply the next lemma with o = ¢,, but we will then apply it iteratively with a
larger a.

Remark 24 (Beyond technicalities). The statements of the next three lemmas are a bit technical
and we can try to see a bit where we are heading to.

The first lemma says that if [{u > 1} N B, | fills a proportion ¢, of a time interval I, we pick a
time t, in a sub-interval I, C I. We do not want t, to bee too close to beginning of the interval
I to make sure that, when applied iteratively, the resulting sequence of times increase. But we
also want to make sure that ¢, is not to close of the end of the interval I, in order to handle
what happens when the iteration ends.

(1=tn)
p— T <

Lemma 3.4.4 (From measure to pointwise in time). Let I = (t;,t;+77) and 7,1 =
71 and I, = (t] + %Tn,],t[ + %TWJ] cl.
Suppose that a measurable function u: I x By, — R satisfies [{u > 1} NI x By, | > 1y|I x By, |.

Then there exists a time t. € I, with such that [{u(t.,-) > 1} N B, | > %|B,,|.

Remark 25. When the time interval is I = (—1—n?, —1], we have t, € (—1—n?+4,, —1—n*+26,)
with §, = gg—:izin? We record that 4, < n%/2.
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3 Parabolic equations

Proof. The assumption is equivalent to [{u < 1} N1 x B, | < (1 —¢y)|I x B;, |, that we can
write,

/|{u ) <1} A By, |dt < (1 1)71] B .

We now a pick a time interval I, whose length is 2/3 of 1( - 7)2 T < TI,

t1+738:77;7'1 Ly
/ {u(t,) <1} By, |di < (1= D)[B,|

2(1—tn)
I+3(27;’,)TI

We conclude that there exists ¢. € I, such that [{u(ts,-) <1} N B, | < (1 —¢,/2)|B;, |- O

The next step is to propagate during a time 7, the pointwise-in-time bound we got from the
previous lemma. The price to pay for propagation is that we deteriorate the lower bound from
1 to m,, and the fraction of the ball occupied by the level set changes from ¢, to ¢,/2.

Remark 26 (Beyond technicalities, again). Following closely the dependence of 7, and m,, with
respect to all parameters is important to us because we want to make sure that neither the
time interval 7, nor the lower bound m, become too small as we iterate the use of these three
lemmas.

Lemma 3.4.5 (Short time propagation). Let n € (0,1). There exist 7, € (0,1) (only depending
on d,\,A,n) and m, € (0,1) (only depending on v,) such that for all u € pPDG™ (Qext, S) with
1S o0 (Quxr) < 1, 3f

L
3t, € (=1 —n%,0], {u(ts,") >1}N B, | > §"|Bm|,

then ,
Vte I, Hu(t,") > my} N B, | > Z”|BT,7|

where I, = (ts, ts + 1) N (=1 — 772a0]'

Proof. On the one hand, we know from the definition of pDG™ (Qext, S) — see (3.8) with k =1,
20 =0, p € (0,1) — that for all t € (t.,t, + 7] N (=1 — 7%, 0], we have,

J

— 2 X u — 2 i pDG u — X
(u—1)%(t)d g/ (= D2(t) dar+ 2255, /I/B 1)2 dtd

Bory

Copa- // |S|(u—1)_ dtdz

< - D)8y, |+

PTY

(77_77‘B7'n‘ + DGan‘BTn"
On the other hand, we have for all m € (0,1),

J

(u—l)Q_(t)de/{ P (w—1)2(t)dx

> (1 —m)*[{u < m} N By, |
> (1= m)l{u < m} 1 By, | = (1= m)*(L = #)|B, .
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3.4 The parabolic De Giorgi’s class pDG~ & expansion of positivity

Combining the resulting inequalities leads for all p,m € (0,1) to,
_ L Copa-
) <m) B, < {1=m) 2 (0= )4 22,4 gy ) + (1= 9} 1By,
We first pick p = p, € (0,1) such that (1 — p%)|B,, | < %|B,, |,

N L Copa- L
{u(t,) <m}n B, | <Q—m)?((1-2)+ "7+ Copa-Tn | |Br,| + —£|Bp,|.
2’ T 1= py) 16

We then pick m = m,, € (0,1) such that (1 —m)~3(1 - 4)|B,, | < (1 — %u,)|By, |

{u(t,-) < my} By | < (1=~

o[ Cipa- L
Ebn)|BT77| + (1 —mn) 2 <p27_77 + CpDG—Tn> |B7»n‘+ T%|Brn|

(1= pn)

We finally impose to 7, to satisfy,

_ C DG— L
(1) (224 o ) 1y < 21|
n

This leads to

7
16"
as desired. ]

[2 L [2
{ult,”) <my} 0 By, | < (1= —=ty)|Br, [ + g"!Brnl + %\Bm\ =(1- Z”)\BTU\

We now want to get a lower bound on a very large proportion of the unit ball in order to be
able to apply the upside down local maximum principle (Corollary 3.3.6). While we improve
as much as we want the proportion of the truncated cylinder I, x B, where we have a lower
bound, we pay it by further deteriorating the lower bound.

Lemma 3.4.6 (Spreading). Let n € (0,1) and 7,;, m, € (0,1) be given by Lemma 5.4.5 (short
time propagation).

Suppose that u € pDG™ (Qext, S) and that there exists t, € (—1 —n* + &,,0] such that

L
vtel,, Hult.)>=1}0B,|> B,

with Ir, := (b, tx + 7] 0 (=1 — 1%, 0].
For all « € (0,1), there exists m € (0,1) (only depending on d, \, A and n, o and on any lower
bound on |I,|) such that if ||S|| Lo (q,) < M, then

{u>m}N I, x By|>all, x By,|.

Proof. Let N € N with N > 2, to be chosen.

Sequence of truncated functions. For all k € {0,..., N}, we consider

Kk — Kk+1 i u(t, ) < Kgga,
K = mf; and  u = (kr — max(u(t,-), Kks1))+ = { ki — U if ki1 < wul(t, ) < kg,
0 if u(t,) > Kg.

By assumption and the fact that r; < 1, we know that for all t € I, = (t«, ts+ 7] N (=1 —12,0]
and all £ > 1,

L
{ult,) =k} N By, | = 1B, | (3.10)
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3 Parabolic equations

Estimate for the truncated gradient. We use next the fact that —u € pDG™(Qext, S) with
151 Loo (Qexe) < m,];f < ki and an intermediate cylinder Q4 such that

L, X By, C (=1 ="+ 8y,0] X By, C Qmia € Qext = (=1 =0*,01 x B =3

to estimate ||Vg(u — “k)—”LQ(Iﬁ,xBrn) as follows,

1 1
— 2 - _ 2 .
IVl = m0)-Nz2(r,, x,,) < Copar <<5n ! (rn—1)2>/ext(” R’“)+/M‘S(u H’“)‘)
< Cyrii (3.11)

for some constant Cj, depending on d, A\, A and 7.
Intermediate values. We note that uy, = Tj(u) where T}, is a Lipschitz function. In particular,

we can apply Poincaré-Wirtinger’s inequality from Proposition 2.2.6 to u; and argue like in the
proof of the elliptic intermediate value lemma 2.2.7. Recalling that uy, = |B,, |™! [5 uy dz, we
T'n

Jh

have

Br,

n

= CPW B |vfﬂ(u - K‘k)—’l{ﬁk_»,_1<u<nk} d$
n

Integrating with respect to t € Ir, = (t«, s + 7] N (—1,0], we get

/ |uk —’L_Lk|dtd$ < Cpw ‘vx(u_’ik)*|1{nk+1<u<nk} dtdz
IWXBT"

I T X Brn

[N

< Cpw | Valu — k)=l r2(1,, xB,,) [{Fr1 < u < w} N I, x By,

NI

1
< CpwCy ki, ’{Ek-‘rl Su<kppnl;, X Brn‘

where we used (3.11) to get the last line.
We now get a lower bound on the left hand side of the first inequality. Keeping in mind that
u, > 0 (and consequently @y > 0),

/ |uk *ﬂk|dx > / (ﬂk) dr
B {uk:O}ﬂBrn

= (w){ur = 0} N By, |

1
Tn Brn

Rk — Kk+1
N ’Brn’

L
> (1= mu)rp—f {ult, ) < kka} 0 By |

n

{u(t,) < wrer} O Bry |- {ult,-) > K} 0 By, |

where we used (3.10) to get the last line. Integrating with respect to ¢ € I, , we get

_ L
/ |ug — ug| dt dz > (1—77”L,])/€;€Z77|{u</<ak+1}ﬁl7-77 X By, |.
ITnXB’“n
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3.4 The parabolic De Giorgi’s class pDG~ & expansion of positivity

We thus deduce that we have

N

L 1
(1-— mn)/ikzn|{u(t, ) < Frg1} NI, X By | < CpwC3 kg [{kk1 S u <k} NI, x By,

and we write this under the following form,

(ST

Hu < kpy1} N 17, X By, | < Cexp H”flﬁ-l <u<kptNiy, x B,

for some constant Ceyp, depending on 7,7 and d, A\, A (dimension and ellipticity constants).

Iteration. By considering Ay = [{u < k1) N I7, X By, |, we can write the previous inequality,
2 2
A1 < Copl Ak — Ayl

We remark that Ay > Ay and A; < 7)|B,, |. We then can sum the previous inequalities over
ke{l,...,N —1} and get,

(N-1A{ < > Af < CF

exp

A1 S 02 7—77|B7"n|'

exp

In particular, we can pick N (only depending on d, A\, A and 7, o and any lower bound on |I7, |)
such that
{u<m)}yN I, x B, |=Ay < (1-a)|l,, x By,|.

Cc2 . _
expTn = Then we pick m = m& O

The precise condition is N > 1+ T T2 n

The proof of expansion of positivity proceeds basically in two steps. We first extend easily
the initial information we have from the small ball B, to the “large” ball B, . We then use the
three previous lemmas:

(i) to get a time for which we have a lower bound on the measure on a super-level set of f;
(ii) to propagate this lower bound for some short time 7;

(iii) to spread the information and restore the proportion of the truncated cylinder I x B, on
which f is bounded from below.

Proof of Proposition 3.4.5 (expansion of positivity). Let £1 be given by the upside down maxi-
mum principle from Corollary 3.3.6.

INITIALIZATION OF THE ITERATION. We observed earlier that the assumption of the proposition
implies that (3.9) holds true. This corresponds to the assumption of Lemma 3.4.4. The lemma
implies that there exists ¢, € (—1 — 7?4 &,, —1] (see Remark 25) such that
L
[{u(ts,) > 1} 0 By, | > 2B, |
Now Lemma 3.4.5 implies that

L
vie I, u(t,)>m,}NDB,|> Zn‘BT"’

with I, = (t«,t« +7,) N (=1 — n%,0]. The parameter 7., only depends on d, A, A, 7.
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3 Parabolic equations

We next apply Lemma 3.4.6 with a = ¢,;, we get m,, such that
Hu>m, y NI, x By | > |l x By, |.

The parameter m,, only depends on d, A, A,n and a lower bound of the length interval |I7, |.

TIME ITERATION. In the case where t. + 7,, < 0, we can apply again Lemmas 3.4.4, 3.4.5 and
3.4.6: we construct of sequence of times ¢ such that tx1 € (¢ + %T, tr + %7) where

_ 20 _Ln)T
B (2 —¢p) !

only depends on d, A\, A, n (we recall that 7, comes from Lemma 3.4.5). We can proceed till the
rank K > 1 for which (tx,tx + 7) leaks out (—1 —7?,0]. This translates into,

—1—pn?
lszl, tKE( 77/270)7
tg +7 >0,

tk € (tk—1 + 37, tg—1 + 27),
if K > 2, tk—1+7<0,
ti +7 > 0.

Such a maximal rank K exists because ty+1 > t; + %7‘ for all £ > 2. At the last rank K > 2,
we have tx € (-7, —%7’) with 7 only depending on d, A, A,n. At this final rank, either K =1
or K > 2, the time interval I, is given by (¢x,0), whose length is bounded from below by a
constant only depending on d, A\, A, 7.

COLLECTING THE INFORMATION. By applying iteratively Lemma 3.4.5, we proved that there
exists a lower bound ¢; > 0 only depending on d, A\, A,n and time intervals I, = (tg,tx + 7%)
such that ,

Vke{l,..., K}, Vtel, H{u>O}nIyxB,|> gyBTny. (3.12)

Moreover, I N Ix11 # 0 and Ng>11x N (=1 — n?,0] = (t.,0] D (=1 — n?/2,0] (see Remark 25).
We conclude that,

L
¥t e (—1=n°/2,0],  [{u(t) = 6}0 By, | > By,

We now see that it is convenient to pick r, = y/1 4+ 7?/2. Applying one last time Lemma 3.4.6
leads to,

{u =26} N Q| > (1 -21)|@r, |-

The previous reasoning works by choosing £y = 2¢y for the upper bound for source terms.
Now the upside down maximum principle from Corollary 3.3.6 yields the result. 0

3.5 Improvement of oscillation
We defined two De Giorgi’s classes for parabolic equations: pDG™ and pDG™. The intersection

of these two classes contains all weak solutions of the parabolic equations we deal with in this
chapter.
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3.5 Improvement of oscillation

Definition 11 (The parabolic De Giorgi’s class pDG). Let I = (a,b] with a,b € R and B be an
open ball of R and S € L>(I x B). A function u: I x B — R lies in the parabolic De Giorgi’s
class pDG(I x B, S) if it lies both in pDG'(I x B,S) and in pDG~ (I x B, S).

We can now establish that the oscillation of elements of this parabolic class improves when
zooming in.

Proposition 3.5.1 (Improvement of oscillation). Let &y be given by Proposition 3.4.3 about
expansion of positivity. There exists a universal constant u € (471, 1) such that for all u €
pDG(Q2,5) with S € L>®(Q2) with HS”LO@(QQ) < é&p and u € L*(Q2),

osc,u <2 = oscg, u < 2u.

Proof. Without loss of generality, we can assume that 0 < v < 2 a.e. in ()2 by considering
% = u — inf Qou. We still have an essentially bounded source term S and the upper essential
bound is not modified. We consider Qpos = Q1(—1,0,0) and distinguish two cases.

e We assume first that [{u > 1} N Qpos| > 3|@pos|- Then expansion of positivity from
Proposition 3.4.3 implies that u > {g a.e. in 1. In particular, oscg, u < 2 — {y.

e In the other case, |[{u > 1} N Qpos| < 3|@pos|, so that the function v = 2 — u satisfies
[{v < 1}NQpos| < 5|@pos|. Equivalently, we have [{v > 1}NQpos| > 1|Qpos|- In particular,
[{v > 1} N Qpos| > £|Q@pos|- The source term [S] in the definition of pDGE(Qpos, S) is not
changed and we can apply Proposition 3.4.3 as in the first case and deduce that v > ¢y
a.e. in ()1. This translates into u < 2 — ¢y a.e. in @1, yielding in this case too that
osco, u < 2 — L.

In both cases, we proved that oscg, u < 2 — fy, reaching the desired conclusion with p =
max (471, (1 —£4)/2). O

Proof of (De Giorgi € Nash’s) theorem 3.2.3. The theorem is a consequence of the local max-
imum principle (Proposition 3.3.5) and of the improvement of oscillation (Proposition 3.5.1).
The local maximum principle applied to v and —u with X¢g = 0 and r = % and R = 1 implies
that

Sup lul < Crare (llull 2@y + 1SNz @u)) - (3.13)
3

As far as the Holder semi-norm is concerned, we shall prove that there exists a € (0, 1] and
Cp > 1 (both universal) such that for all Xg € Q1, and all » > 0,
2

OSCQT(XO)QQ% u < Cy (HUHLOO(Q%) + HSHLO@(Q1)> re

This implies that [u]ce (@) < Co <||u||Loo(Q3) + HS”LOO(Q1)> (see Proposition 3.1.1).
2 1
We then consider such a point Xg € Q1. We infer from (3.13) that v € L>®(Q1(Xp)). In
2 4
order to apply the improvement of oscillation (Proposition 3.5.1), we consider
u(Xo + §)

"~ Tullzeey + % IST=@n

u(X)
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3 Parabolic equations

N o = 0—28(Xo+871X
Then ||t (q,) < 1 and the source term S(X) = £,8 ZW

(see Lemmas 3.3.1 and 3.4.1). We thus get from Proposition 3.5.1 that oscg, @ < 2u. We now
scale recursively the function % and consider,

satisfies HS’HL«;(QQ) < &

VX € Qo w(X) = pFa((1/2)"X)

whose source term Si(X) = (1/(41))*S((1/2)%X). We remark that ”gk”Loo(Ql) < HSHLOO(Ql) <
&g since p > 1/4. We conclude that oscq, t < 2 for all k£ > 1. This translates into,

1
oscq,, @< 2uF =2""%  with 1 = 25; and  (1/2)%=p.
Now for r € (0,2], there exists k > 0 such that rp1q < r < rg. This implies that
oscq, U < oscq,, U < 2l = 210, < 20

In terms of the function wu, this implies that for all r € (0, 2],
oscq o1 < 52 (uleiay) + 5" IS1an ) (r/8)"

Since for s > i, we have
«
)

OSCQS(X())F‘IQ% u S QHUHLoo(Q%)(ZlS)

we conclude that
lcgiap <24 (Iullzmiog) + & Sl=ian ) - =

3.6 (Weak) Harnack’s inequality

In this section, we show that elements of the parabolic De Giorgi’s class kDG™ satisfies a weak
Harnack’s inequality. We state it at unit scale.

Theorem 3.6.1 (Weak Harnack’s inequality). There exists a (small) universal constant w €
(0,1) and two positive universal constants Cypi and py such that for Qpast = Qu(—1 + w?,0,0)
and Qtuture = Qu, and u € pDG™(Q1,S) with S € L*(Q1) and f >0 a.e. in Q1, we have

ol @ < ot  nf w5l )
uture

1/
Remark 27 (About the LP°-“norm” for p € (0,1)). We let |[ul|zro(q,..) denote (prast up0> :
even if p could be smaller than 1.

It is then possible to combine the weak Harnack’s inequality with the local maximum principle
in order to get Harnack’s inequality for solutions of parabolic equations, and more generally for
all elements in the parabolic De Giorgi’s class of the domain with essentially bounded source
terms.

Theorem 3.6.2 (Harnack’s inequality). There ezist two universal constants Ry > 1 and w €
(0,1) and a positive constant Cy such that for Quam = (—1,0] x Br, x Bg, and Q5. =
Quy2(—1+ w?,0,0) and Qtupure = Qu, and u € pPDG(Quarn, S) with S € L*®(Quarn) and u >0
a.e. i Qparn, we have

sup u < Cq <Qinf U+ ”SHLO@(Qharn)> )

) future
past
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3.6 (Weak) Harnack’s inequality

Proof. Apply first Corollary 3.3.7 between Q,s and Qpas; (from the statement of the weak
Harnack’s inequality). Thanks to Lemma 3.3.1, it can be scaled and translated in time by
considering f(t,z) = f(—1 + w? + (t/w?),z/w). We can then combine the resulting estimate
with the one given by Theorem 3.6.1. O

Remark 28. The fact that Qpast is replaced with ()f,g in the statement of Harnack’s inequality
is irrelevant since infg, , f < ian;«umre J with Qf e = Qu/2-

3.6.1 Generating and propagating a lower bound

The proof combines the expansion of positivity from Proposition 3.4.3 with a covering argument.
We aim at estimating ||u/||zro (Qpase) PY the infimum of f in Qguture- By linearity, we can reduce to
infg,, ... v < 1. Establishing the estimate amounts to proving that there exists € > 0 (universal)
such that for all t > 1,

{u > t} N Qpast| < C°.

A further reduction is to prove that there exists M > 1 and p € (0, 1) such that for all integers
k > 1, we have

Hu > M"Y 0 Qpast] < C(1 — p)*.

In order to prove this, we consider Uy = {u > MF11 N0 Qpast and we want to prove that
|Ug+1| < (1—p)|Ug|. In order to prove this inequality, we cover the set Uy41 with small cylinders
() where we have a lower bound on f in measure. By using the expansion of positivity once, we
generate a lower bound on a cylinder in the future, with a larger radius. By applying iteratively
this expansion of positivity, we propagate this lower bound in the future, till the final time.
Since we know that f takes values smaller than 1 in Qgyture, this gives us some information on
the radius of the initial cylinder Q.

3.6.2 Covering sets with ink spots

In order to state the covering result that we need in order to establish the weak Harnack’s
inequality, we need to introduce the notion of stacked cylinders. Given an integer m > 1 and a
cylinder Q = @Q,(Xp), the stacked cylinder Q™ equals {(t,2): 0 <t —to < mr?, |v — vo| < 7}.

Theorem 3.6.3 (Leaking ink spots in the wind). Let E C F be measurable and bounded sets
of RxRY and E C FNQq. We assume that there exist two constants ro € (0,1) and an integer
m > 1 such that for any cylinder Q = Q,(Xo) C Q1 such that |QNE| > %]QL we have Q™ C F
and r < ro. Then |E| < (1 — ¢) (|F N Q1|+ Cmr). The constants ¢ € (0,1) and C > 1
only depend on dimension d.

Remark 29 (About the mental picture). The two sets E' and F' are seen as ink spots. They
stand in the wind because of the time variable (time delay). And the ink spot F can leak out
of the reference cylinder Q.

Remark 30 (About the factor 1/2). The factor % in both assumptions can be replaced with an
arbitrary parameter y € (0,1). In this case, the conclusion is |E| < L (1—cp)(|FNQ1|+Cmr)
for some ¢ € (0,1) and C' > 1 only depending on dimension.

We postpone the proof until the next section.
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3 Parabolic equations

3.6.3 Expansion of positivity for stacked cylinders and for large times

In this subsection, we derive the two results that will allow us to use the covering argument from
Theorem 3.6.3. There are two assumptions on cylinders intersecting F in a good proportion:
after stacking them, they should lie in F', and their radius should be under control.

e On the one hand, we check that if we choose 1 depending on the integer m (from the
statement of Theorem 3.6.3) then Proposition 3.4.3 yields a lower bound in the stacked
cylinder Q7" from an information in measure in Q1.

e On the other hand, we apply iteratively Proposition 3.4.3 with n = 1/2 in order to estimate
how the lower bound that is generated for small times deteriorates for large ones.

Expansion of positivity for a staked cylinder. We first scale and translate in time the result
from Proposition 3.4.3 in order to get a statement with (Qpos replaced with Q1. We notice that
the stacked cylinder Q7" equals (0, m] X By42 X Bj.

Proposition 3.6.4 (Expansion of positivity for a stacked cylinder). Let m > 1 be an integer
and let Ry, > 1 be given by Proposition 3.4.5 for n =1/\/m. Let Qstack = (—=1,m] x B z3.

There ezists a constant M > 1, depending on d, \, A and m, such that, if u € pPDG™ (Qstack, 0)
and u > 0 a.e. Qsack, then,

{u>MyNQi > 3|1 = {u>1ae Q)

Iteratively stacked cylinders. We are going to apply iteratively Proposition 3.4.3 to control
the lower bound generated after applying it once. We need to make sure that the iterated
cylinders do not exhibit the spatial domain and that their union captures the cylinder Quture,
see Figure 3.2. Recall that Qpast = Qu(—1+ w?,0) and Qtuture = Qu-

Lemma 3.6.5 (Tteratively stacked cylinders). Let w € (0,57%/2). Given Q = Q(X0) C Qpast,
we define for allk > 1, T}, = Z§:1(2j’l“)2 and pick N > 1 the largest integer such that to+Tn <
0. In particular 2Nr < 1.

If R denotes |to + T|"/?, we consider Ry 1 = max(R, p) with p = 2w and

Vked{l,...,N}, Xp=Xo+ (Tf,0 and X =
{ b &= Xo+ (T 0) N {0 if R < p.

We finally define Ry, = 2kr for k € {1,...,N} and Q[k] = Qg (Xx) fork € {1,...,N +1}.
These cylinders Q[k] are such that

QIk] € (-1,0] x By and Q[N +1] D Quuewre and  Q[N] D Q[N]
where Q[N| = Q%(XNH + (—=R3%,1,0)).

Proof. We first check that the sequence of cylinders is well defined for w < 57/2. Since r < w,
we have to + T} < —1 4+ w? +4r2 < —1 +5w? < 0. Let N > 1 be the largest integer such that
to+ TN <0.

We check next that Qfuture C Q[N + 1].

If R < p, then Q[N + 1] = Q, and we simply remark that w < p and recall that Qgture = Qu

to conclude.
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3.6 (Weak) Harnack’s inequality

— W

to + TN ——

Qpast

> (x,v)

Figure 3.2: Stacking iteratively cylinders above an initial one contained in QQ_. We see that the
stacked cylinder obtained after NV + 1 iterations by doubling the radius leaks out of
the domain. This is the reason why Q[N + 1] is chosen in a way that it is contained
in the domain and its “predecessor” is contained in Q[N]. Notice that the cylinders
Q[k] are in fact slanted since they are not centered at the origin. We also mention
that Q[N + 1] is choosen centered if the time o+ T is too close to the final time 0.

In the other case, that is to say when R > p, we have Q[N + 1] = Qr(Xn41) with Xy =
XN+ (R,0) = (to + Ty + R%,19) = (0,79). We have to check that Q, C Qr(0,z0). We have
w<p<Randw+|rg| <w+r<2w<p<R.

Let us now check that for all k € {1,..., N + 1}, we have Q[k] C Q1.

By definition of N, we have —(2¥+17)2 < tg+ Ty < 0. In particular, R = ]t0+TN|% < 2N+
and R < 1 (because to + T € (—1,0]) (2V7)?2 < Ty < —to < 1. This implies that for all
ke {l,...,N}, rp < 1. Recalling that X; = (to + Tk, z0) and xo € B, C B,, we thus gat
Q[k] € (~1,0] x Bs.

As far as Q[N + 1] is concerned, we have Ry41 = max(R,p) < 1. Moreover, xy11 = xg €
B, C B1- So we do have Q[N + 1] = Qgry,,(0,zn541) C (—1,0] x Ba.

We are left with proving that Q[N] C Q[N].
If R > p, then Qn = Qp/2(0,20) and Xy = (0,x0) and R/2 < 2Vr = Ry.
If now R < p, we have to check that Qp/Q(_p2, 0) C Qyn,.(0,20). This inclusion holds true if

2Vr)2 > p? /a4 p? =5p°/4 and  p/2 + |xo| < 2V
Because z9 € B, C B,, C B, the second condition holds if 3p/2 < 2Np. And in this case,
the first condition is also satisfied. In order to prove this inclusion, we first estimate 27 from
below. Since to+ Ty41 > 0 and —tg > 1 —w?, we have Tyy1 = (4/3)(4V Tt —1)r2 > 1 —w? and
in particular 4V72 > (3/16)(1 — w?) > 1/8 (because w? < 2/3). We conclude that

2Nr > 1/(2v2).

We finally remark that we do have 3/2p < 1/(2v/2) because p < 1. O
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3 Parabolic equations

3.6.4 lterated expansion of positivity

Proposition 3.6.6 (Iterated expansion of positivity). There exists a universal constant o > 0
such that for all u € pDG™(Q1,0), all A >0 and all cylinder Q,(Xo) C Qpast,

0> 0@ > gl 0l = {uz A6/27 ae in Quan .

Proof. We first apply Proposition 3.4.3 to the function v = u/A after scaling it. This implies
that v > Al in Q[1]. We then apply it iteratively and get v > AfK in Q[k] for all k € {1,..., N}.
In particular, v > Af) in Q[N]. This cylinder is the “predecessor” of Q[N + 1] and we thus
finally get v > AEéVH in Q[N +1]. Becauce Q[N + 1] contains Qyture, we finally get v > AEéVH
in Qfuture- Now we remember that 2V < 1 (see Lemma 3.6.5). We pick 7y such that ¢y = 277
and we write £ 1 = (27N > (5/2)%0, O

Proof of Theorem 3.6.1 (weak Harnack’s inequality). The proof proceeds in several steps.

REDUCTION. We first reduce to the case S = 0 by considering @ = u + [|S|| oo () (t + 1).
Second, we reduce to the case infg, .« < 1 by considering @ = u/max(1,infg, , . u).
Indeed, u <@ < u+ ||S||=(@,) and it is in pDG™(Q1,0).

PARAMETERS. We now aim at proving that there exist two universal constants p > 0 and
C > 0 such that |ullzro(Qua) < Cwhi- This is equivalent to prove that there exists three

universal constants M > 1 and ji € (0,1) and C' > 1 such that
VE>1,  [{u>M"YNQpas| < C(1— )k

For k = 1, we simply pick f1 < 1/2 and C > 2|Qpast|- We then argue by induction. We are going
to apply Theorem 3.6.3 (about covering with ink spots) for some integer m > 1 large enough so
that 21 (1—¢) < 1—¢/2. The parameter m only depends on ¢ = ¢(d), it is therefore universal.

We are going to use Proposition 3.6.4 (propagation of positivity for stacked cylinders) with
m universal as above. Then we obtain another universal parameter R, from Proposition 3.4.3,
see the statement of Proposition 3.6.4. We will also use Proposition 3.6.6 (iterated expansion
of positivity) from which we get yet another universal parameter R; . Now we choose Ry =
max(R; 2, 23m> Ry,).

THE COVERGING ARGUMENT. We are going to apply the ink spots theorem to the sets Fy =
{u> Mk+1}ﬁQpaSt and Fy = {u > M*}NQ; after tranforming Qpast into Q1. We thus consider
a cylinder @ C Qpast such that [Ey N Q| > %|Q| We have to check that the stacked cylinder

Q™ is a subset of Fy and that the radius of @ is controlled by some constant 7.
We start with checking that Q™ C Fy for @ such that |[Eg N Q| > %|Q\, that is to say

fu>MH1)NQl > 2]

If Q = Q.(Xy), we consider for z € Q1 the scaled function v(X) = M ~*u(r(Xo + X)), so that
[{v > M}N Q1| > 3|Q1]. We have v € pDG™ (Qstack, 0). We deduce from Proposition 3.6.4 that
v >1 a.e. in Q7. This means that u > M* a.e. in Q™. We thus proved that Q™ C Fy.

We now estimate r from above for @ = Q,(X¢) C Qpast such that [{u > MH1IINQ| > %|Q\
Proposition 3.6.6 implies that u > M**1(r/2)% in Quture. This implies that M*+1(r/2)70 <1

k41

that is to say r <2M 10 =:r.
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3.7 Proof of the ink spots theorem

CoNcLUSION. Now Theorem 3.6.3 implies that
{u > MM 0 Qpast| < (1—¢/2) (y{u > M*} 01 Qpast| + Cm4M*2kT+cf) .
We use the induction assumption and get
[{u> M*13 0 Qpase] < (1= ¢/2) (GO i) + CaM ™50 ).

Recall that M > 1 and 7o > 0 are universal. We now choose fi so that (1 — i) > M~2/7 and
(1—p)*>1-c/2. We get

> MY 0 Q] < (1 - ) (O~ ) + Oma(1 — )+)
< <(1 —)C + 4C’m) (1— )kt

We thus pick C such that (1 — 1)C +4Cm < C that is to say C > 4Cmji—". O

3.7 Proof of the ink spots theorem

The assumption of the ink spots theorem asserts that the set F can be covered by cylinders
and if more than half the cylinder lies in F, then the corresponding stacked cylinder Q™ is
contained in F. The conclusion asserts that the volume of E is bounded from above (up to
some multiplicative constant) by the volume of F. In order to relate these two volumes, it is
necessary to extract from the original covering another one made of disjoint cylinders, and to
make sure that we do not lose too much by doing so. This is made possible thanks to a parabolic
variation of Vitali’'s lemma with FKuclidian balls.

3.7.1 A parabolic Vitali’s covering lemma

As explained in the previous paragraph, Vitali’s lemma asserts that a countable disjoint family
of cylinders can be extracted from any covering of a set. We make sure that we do not lose too
much by doing so is by imposing that the whole set is recovered if the radii of cylinders of the
sub-covering are multiplied by 5.

For an arbitrary cylinder @ C R4, if Q = Q,(Xo) with Xy = (to,20), then 5Q denotes
Qs (to+ 1272, 19). It is necessary to update the top of the cylinder in order to extract a disjoint
sub-cover, see in particular Lemma 3.7.2.

Lemma 3.7.1 (Vitali). Let {Q;}jes be a family of parabolic cylinders whose radii r; satisfy
Supjes 15 < +00. There exists a countable sub-family {Qj, }ien of disjoint cylinders such that

UjesQj C Uien5Qj,.
In order to prove this lemma, we first deal with two overlaping cylinders.

Lemma 3.7.2 (Overlaping parabolic cylinders). Let Q; = Qr,(X;) for i = 1,2 such that
Q1N Qs #0 and ro < 2r1. Then Qo C 5Q1.
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3 Parabolic equations

Proof. We first reduce to the case X; = 0 by translating both cylinders. By assumption, there
exists X129 € Q1 N Q2. This means that there exists t; 2 € (—r7,0] and x1 2 € B,, such that

to — T% < t1’2 <ty and ‘.%'1’2 — xg‘ < T9.
The fact that Q2 C 5Q) is equivalent to the following condition
—13rf <ty —r2 <ty <12r? and  |my| 4 7o < 5ry.

We check these inequalities one after the other. First, to > t12 > —r% > r% — 137‘%. Second,
ty <t1o+13 <13 <4r?. Third, |ze| < |x12| + |212 — 22| <71+ 79 < 311, O

Proof of Lemma 3.7.1 (Vitali). Let R = sup;c;7; where 7; denotes the radius of the parabolic
cylinder @);. Let F denote the family of cylinders {Q;};c; and consider for all n > 1 the
sub-family,

. R R
]:n:{@j: JjeJ, 2n<rj§2n_1}.

We now construct families G,, by induction as follows: let G; be any maximal disjoint sub-family
of F1. Such a sub-family exists because of Zorn’s lemma from set theory. If now n > 1 and
Gi,...,Gn are already constructed, then G, is a maximal sub-family of

{QjE./Tn_H : QjﬂQlZQ)fOI‘aHQlGglu‘--Ugn}.

Roughly speaking, we add cylinders with smaller and smaller radii by making sure that they
do not intersect the ones we already collected. We finally consider

g - U%ozlgn-

We now verify that this sub-family satisfies the conclusion of the lemma. We consider the
sequence of cylinders @, for i = 1,...,n such that G = {Q, }ien. Then for Q; € F, there exists
n > 1 such that Q; € F,,. Assume first that n > 1. By maximality of F7, there exists Q; € F1
such that Q; N Q; # 0. Assume now that n > 2. Because G,, is maximal, there exists Q; € G,
with m € {1,...,n — 1} such that Q; N Q; # (). By definition of F,, and G,,, we have r; < Qn%

and r; > 2% with either m =n =1o0or 1 <m <n — 1. In both cases, r; < 2r;. Lemma 3.7.2
then implies that Q; C 5Q);. O

3.7.2 Lebesgue’s differentiation theorem with parabolic cylinders

Theorem 3.7.3 (Lebesgue’s differentiation). Let u € L'(R'*9). Then for a.e. X € R

lim lu —u(X)] =0
r—04+ QT(X)

where fQ v = Wll fQ v for any cylinder Q C R and v € LY(Q).

The proof of this theorem relies on a functional inequality involving the maximal function.
For v € L'(R'*9), it is defined by,

Muy(X) = Sup][ [v].
Q3XJQ

58



3.7 Proof of the ink spots theorem

Lemma 3.7.4 (The maximal inequality). For all k > 0,
1+d c
M > 5} AR < o),

for some constant C only depending on dimension.

Proof. For every X € R'*? such that Muv(X) > k, there exists a cylinder ) containing X such

that
K
> — .
JAEERE

This means that the set {Mv > &} is covered with cylinders {Q;} satisfying the previous
inequality. We know from Vitali’s lemma 3.7.1 that there exists a finite sub-family {Q;, }ien
such that

{MU > K:} C UieNjS-

With such a covering in hand, we can estimate the L'-norm of v as follows:

v| > v
L= [, w

1€EN

> 230104l

1€N
K
= vy Z 5Qj,
€N
K
We thus get the maximal inequality with C' = 51742, O

Proof of Theorem 3.7.3 (Lebesque’s differentiation). Let u, be continuous on R!*? and such
that

1
lun —ullpr < on

We can also assume that u, — u almost everywhere in R'*? [8, Theorem 4.9]. Let Ny denote

the negligible set outside which pointwise convergence holds. The maximal inequality from
Lemma 3.7.4 tells us that,

C
H{M (u, —u) >k} < ;2_”.
This is implies that the non-negative function ) n 1{ar(u,—u)>x} 18 integrable on R4, Tt is
thus finite outside of a neglible set A; C R'T%. This implies that there exists n, € N such that

for all n > n,,
M(u, —u) <k outside Nj.

For all i € N, we now we pick x = 1/7 and construct an increasing sequence n; such that
1

M (up, —u)
i

outside N7.
With such a sequence of functions in hand, we can write for X € R'*¢\ (NgUN7) and i € N,

][ ru—u<X>\s][ ru—unmf tty — i, ()] 4+ ity (X) — (X))
Qr(X) Qr(X) Qr(X)
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3 Parabolic equations

In the right hand side, the first term in bounded from above by 1/i because X ¢ N7 and the
third term goes to 0 as i — oo because X ¢ Ny. As far as the second term is concerned, the
continuity of w,, implies that it converges to 0 too as 7 — oco. We thus proved that the left
hand side tends to 0 as i — oo. O

3.7.3 Proof of the ink spots theorem

The first step of the proof of Theorem 3.6.3 is to address the case where the two sets £ and F
are contained in the cylinder @)1 and in which there is no time delay (no stacked cylinder).

Lemma 3.7.5 (Crawling ink spots). Let E C F C Q1 be measurable sets of R'*%. We assume
that |E| < 3|Q1| and that for any cylinder Q = Q,(z0) C Q1 such that |Q N E| > £|Q|, we have
Q C F. Then |E| < (1 —c¢)|F|. The constant ¢ € (0,1) only depends on dimension d.

Remark 31 (The factor 1/2). The factor % in both assumptions can be replaced with an arbitrary
parameter p € (0,1). In this case, the conclusion is |E| < (1 — cu)|F| for some ¢ € (0,1) only
depending on dimension.

Proof. By applying Lebesgue’s differentiation theorem 3.7.3 to the indicator function 1g, we
know that for a.e. = € E, there exists a cylinder @* such that |[ENQ*| > (1 —¢)|Q*|. Let us
now choose a maximal cylinder Q% .. C @ satisfying |[E N Q% > (1 —¢)|Q*|. It is of the form

T o = Qr(t,T). By assumption, we know that Q% # Q1 and Q% ., C F.

We now claim that |E N Q2% | = 5|Q%.|- If the claim does not hold, then QZ,, # @1 and
there would be a cylinder Q* and a § > 0 such that Q% . C Q% C (1 +9)Q%., with Q@ C Q1
and |E N Q%| > 1|Q|, contradicting the maximality of Q%,,..

The set E is covered by cylinders Q% ... By Vitali’s lemma 3.7.1, there exists a countable
subcollection of nonoverlapping cylinders @7 = Qr;(zj), j > 1, such that £ C U;-";15Qj . Since

@’ C F and |Q? N E| = 1|@7|, this implies that |Q7 N (F\ E)| = 3|Q7].

> 1 — 1 > 1
F\ E| > IN(F\ E)| == i| = Z5~1—d 5Q7| > =514 p).
[F'\ !_Z\Q (F\E) 2;\@\ 5 ;L\Q!_z |E|

Jj=1

We conclude that |F| > (1 + 57179271)|E|, from which we get |E| < (1 — ¢)|F| with ¢ =
5—1-dg-2 ]

We need two preparatory lemmas beforing proving the ink spot theorem with time delay
(wind) and/or leakage. The first one concerns the measure of a union of time intervals (aj —
hi, ax] compared to the measure of the union of their stacked versions (ag, ap + mhy).

Lemma 3.7.6 (Sequence of time intervals). For all k > 1, let ar, € R and hy, > 0. Then,

m
27

h
U(ak,ak—i-m k) o

k

Uar = b, ax]

k

Proof. We consider the open set Uszl(ak, ay + mhy) of R. Its connected components are open

intervals and we can write
N

(ag, ap + mhy) = U,
=1
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3.7 Proof of the ink spots theorem

for some disjoint open intervals I;. Each interval I; is a union of a finite number of intervals
(ag,ar +mhy). Let a— — h_ be the minimum of the corresponding ay — hy'’s and a4 + mhy be
the maximum of the corresponding ay + mhy’s.

We have in particular I; D (a—,a— +mh_) U (a4, a4+ + mhy) with ay +mhy > a_ +mh_.
On the one hand this implies in particular that,

|I;| > ay +mhy —min(a_,ay) > ay +mhy —a—.
On the other hand, the fact that a_ + mh_ < ay + mhy implies that

ar +mhy —a_

m
> s 1(a+ +mhy — (a— — h_)).

We thus have

m
il 2 ——— (a4 +mhy — (a— = h-)).
We remark next that for all k£ such that (ag, ar +mhy) C I;, we have
ay +mhy — (a— —h_) > ap +mhy, — (a— —h_) > a, — (a— — h_).
Taking the supremum over k yields,
ay +mhy —(a- —h_) > U (ag — hi,ag)| .
k:(ak,ak—l-mhk)cll

We thus reach the intermediate conclusion that,

N
U (ak, a + mhk)
k=1

:UIl
l

> |nf > mﬂllz U (ak — hi, a]
l l

k:(ak,akerhk)CIl

Because the intervals I; are disjoint, this implies that

N
U ag, ag + mhk
k=1

N
U ar — hu, ai]
k=1

Letting N go to oo allows us to conclude. O

We can now use this lemma about sequences of intervals to deal with sequence of stacked
cylinders.

Lemma 3.7.7 (Overlaping stacked parabolic cylinders). Let {Q;} be a family of parabolic
cylinders and let Q;" be the corresponding stacked cylinders as defined on page 53. We have,

=m m
Uaer =257 Je)
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3 Parabolic equations

Proof. We use successively Fubini’s theorem, the definition of Q;” and Lemma 3.7.6 in order to
get,

LJJQ]- :/]Rd teR:(t,Jr)eLjJQj dx

:/Rd U .t +mrd)| dae

J:w€Br,; (x5)

m
2 it | U ol
]:xGBTj(:rj)

J

Our next task is to get the ink spot theorem in the case where F and F are contained in the
cylinder @1. In other words, we postpone the treatment of cylinders leaking out of ).

Theorem 3.7.8 (Ink spots in the wind). Let E C F' C Q1 be measurable sets of R x R%. We
assume that |E| < %|Q1| and that there exists an integer m > 1 such that for any cylinder
Q = Qr(20) C Q1 such that |Q N E| > 3|Q|, we have Q™ C F. Then |E| < (1 —c)™ELF|. The
constant ¢ € (0,1) only depends on dimension d.

Proof. We consider the family Q of parabolic cylinders @ contained in @1 such that |Q N E| >
31Q|. We let G denote their union: G = Ugeg @ We know from Lemma 3.7.5 (crawling ink
spots) that £ < (1 — ¢)|G|. Moreover, the assumption of the theorem implies that F' contains
the union of the corresponding stacked cylinders: F' D UQeQ Q™. Using Lemma 3.7.7 about
overlaping stacked cylinders, we obtain the following chain of inequalities,

_ m m
F| > m > - " />
e QLEJQQ SomAl QLéJQQ TESILE

We finally prove the covering result that was used in the derivation of the weak Harnack’s
inequality.

(m+1)(1—c)‘E|' =

Proof of Theorem 3.6.3. The assumption of the theorem implies that |E| < %]Ql\. Indeed, if
this does not true, then 1 < ry, contradicting the fact that ry € (0,1).
We consider again the family Q of parabolic cylinders ) contained in Q1 such that QN E_| >

%|Q\ We let F denote the union of the corresponding stacked cylinders: F = UQGQQm.
Theorem 3.7.8 implies that

m+1 m+1

(-9l =" g IFn il + 7\ Q|

| <

Moreover, the assumptions of Theorem 3.6.3 imply that F' C F. We are thus left we estimating
|F'\ Q1]. We claim that for all Q € Q, we have Q™ C (—1,mr] x By. Indeed, @ = Q,(zo) for
some 29 € Q1 and r < rg and Q™ = (to, to-+mr?)x B,(z0). In particular, Q™\Q1 C (0, mr3)x By
and thus F'\ Q1 C (0,mrd) x By. This implies that |F'\ Q1] < |Q1|mrd. We thus proved,

m+1

Bl< ™o @F NQul+ |ermr8]

as desired. ]
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3.8 Bibliographical notes

3.8 Bibliographical notes

Parabolic De Giorgi's classes. We refer the reader to Section 2.6 of the previous chapter
(concerned with elliptic equations) for first definitions of parabolic De Giorgi’s classes and first
proofs of Holder continuity and weak Harnack’s inequality for weak solutions and for elements
de pDG classes. The difference between pDG™ and pDG™ only lies in the propagation in time
of L?-norms. We will have to strengthen this assumption in the kinetic setting by imposing
a local Poincaré-Wirtinger’s inequality. This is the reason why we present in this chapter the
original proof by G. L. Wang [65] (see below).

Kruzhkov’'s method. We already mentioned that S. N. Kruzhkov [44] gave an alternative
proof of Moser’s Harnack inequality for elliptic and parabolic equations. In particular, is used
a different Poincaré inequality, due to S. L. Sobolev and V. P. Il'in, see [44, Theorem 1.1.] for
references. He follows J. Moser by considering the logarithm of the solution. He replaces the
logarithm by a smooth approximation of it. His proof is described in [29] with the notation
and techniques from this book. We draw the attention of the reader towards the fact he applies
his Poincaré’s inequality in the x variable for fixed times ¢. He thus have to prove a (time
propagation) result in the spirit of Lemma 3.4.5.

Degenerate equations. Let us come back to the techniques built on De Giorgi’s original ideas
(iterative truncation, gain of integrability, improvement of oscillation). They were used in many
subsequent works and we will give just a few references in this paragraph. Degenerate elliptic
equations like the porous medium one can be handled. This was first observed by L. Caffarelli
and A. Friedman [12]: they prove the continuity of global solutions. A local version of this result
can be found in [19] by E. DiBenedetto. Then E. DiBenedetto and A. Friedman addressed in
[21] the case of degenerate parabolic systems. All these articles build on De Giorgi’s techniques.
E. DiBenedetto contributed to this field by numerous articles, dealing in particular with p-
Laplace operators. His book [20] from 1993 was influential. He wrote another book with
U. Gianazza and V. Vespri [22] about equations of p-Laplace and porous media type.

Expansion of positivity. The wording “Expansion of positivity” first appears in a paper written
by E. DiBenedetto [20]. He gave a useful and meaningful name to a phenomena exhibited in
most of the works dealing with De Giorgi’s methods that are mentioned in the book you have
in hand (or on your screen). In other contexts, it is called the doubling property. It is related to
growth lemmas by E. Landis, N. V. Krylov, M. V. Safonov, among other authors. In this book,
the starting point of the proof of expansion of positivity is the one by G. L. Wang contained in
[65] and also presented in [52]. But the geometric setting is different, and we argue by following
the path that the kinetic proof will traverse.

Ink spots in the wind. We quicky come back to the measure result used in the covering
argument to derive the weak Harnack’s inequality, see Theorem 3.6.3. It differs from the crawling
ink spots lemma for elliptic equations (see Lemma 2.5.3 and Section 2.6) in the sense that
its statement involves so called stacked cylinders. Such cylinders are obtained by stacking
a finite number of copies of an original cylinder above it, in the future. They have to be
considered because of the time variable. Indeed, the expansion of positivity takes place in the
future. Moreover, it is necessary to consider cylinders that are going to leak out of the domain.
E. Landis [50] refers to this type of result as crawling ink spots “in the wind”, see for example
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3 Parabolic equations

[45, Lemma 2.3]. The proof that is presented in this chapter is the parabolic counterpart of the
one contained in [37] about the kinetic case.
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4 Kinetic Fokker-Planck equations

In this chapter, we prove that weak solutions of a class of kinetic equations with rough coefficients
are locally Holder continuous, in the spirit of De Giorgi’s theorem for elliptic equations and
Nash’s theorem for parabolic equations. In order to do so, we will proceed as in the two previous
chapters about elliptic and parabolic equations: we shall first show that these solutions lie in
an appropriate kinetic De Giorgi’s class, and then derive a local Holder estimate for elements
of this class.

4.1 Kinetic Fokker-Planck equations

Let us first define the kinetic equations that we are going to work with throughout this chapter.
Let I be a bounded interval of R of the form (a,b] with a,b € R, let Q, and €, be two open
sets of R%, and let

O =1xQ;: x8Q,.

Let A, A be two positive constants with A\ < A. We consider
ENA) = {A € L™(Q,S4(R)), ae. in Q,VE € RENE? < A€ - € < AJ¢?).
For A € E(A\,A) and B € L*(2) such that
| Bl oo () < A,
and S € L'(2), we consider the following equation,
Of+v-Vuf =divy(AV,f)+B-V,f+S in Q. (4.1)

In the left hand side of the equation, the differential operator is known as the free transport
operator. The right hand side contains the diffusion operator that was considered for (local)
elliptic and parabolic equations, together with drift and source terms. The diffusion operator
acts on the velocity variable v only.

Kolmogorov’s equation

When A is constant and equal to the identity matrix and B is constant and equal to zero, (4.1)
is called the Kolmogorov equation,

Of +v-Vaf = Auf + S (4.2)

Degenerate ellipticity & hypoellipticity

The key difficulty to be adressed in order to get a regularity result a la De Giorgi for this class of
equations is the lack of uniformly elliptic in (z,v). They are only elliptic in the velocity variable
v. The equation is thus degenerate elliptic (parabolic), in the sense that some eigenvalues (the
ones corresponding to the x diffusion) equal zero.
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4 Kinetic Fokker-Planck equations

But these degenerate parabolic equations enjoy a specific structure: the free transport oper-
ator knows how to talk to the diffusion operator in velocity. More precisely, the free transport
operator (0; + v - V) does not commute with the vector field V, and their commutator is
precisely V,: for a smooth function f, we have

[(Or+v-Vy),Vyl i= (0 +v-Vu)Vuf = V(O +v-Vy)f =V f.

The vector field V,, represents the diffusion since one can write div,(AV, f) = (VAV,)*(VAV,)
where (vAV,)* denotes the adjoint (in L?) of the differential operator (v AV,).

In Hérmander’s hypoelliptic theory [34], the map z — A(z) is assumed to be smooth. We
do not want to make such an assumption on coefficients because we aim at getting regularity
estimates for non-linear problems.

When proving the kinetic De Giorgi & Nash’s result (Theorem 4.4.1), the regularity in the x
variable will not be recovered by a commutator argument. It will take the form of a transfer of
regularity result, saying that any regularity in v can be transfered in some regularity in x. Such
a phenomenon was first discovered by establishing averaging lemmas: given a smooth function
¢, the transport operator ensures that any mean [pq f(t,2,v)¢(v)dv in v is more regular than
the solution f itself. It was then possible to use these lemmas to prove transfer of regularity
results, resulting in the translation of v regularity into some regularity in x of the function itself
(and not only its mean). See the bibliographical section 4.12 for references.

In order to prove such a transfer of regularity result, we will use a trick due to A. Pascucci
and S. Polidoro [57] that will described in due time (see Section 4.5).

Kinetic scaling

Let R > 0. For z = (t,z,v) € R x R? x R%, we define the scaling operator o by
or(2) = (R*, R®z, Rv).

If f is a solution of the kinetic Fokker-Planck equation (4.1) for some A € £(A,A), then the
function fr(z) = f(or(z)) satisfies (4.1) with A is replaced with Ar(z) = A(ogr(z)). Notice
that Ar € E(\, A).

We will some time abuse notation by simply writing Rz for og(z).

Galilean invariance

In contrast with elliptic and parabolic equations, the class of kinetic Fokker-Planck equations is
not invariant by translation: given zy = (%o, zo, v9) and a solution f of (4.1), the function g(z) =
f(z0 + z) is not a solution of (4.1) for another Ag € £(A, A). Since kinetic equations encode a
law from statistical physics, it is expected to be invariant under Galilean transformations. More
precisely, we define

200z = (to +t,xo + = + tvg,vo + v).

Times and velocities are just translated while the position variable is corrected by tvg, encoding
the fact that we look at the equation in a frame moving at constant speed vg relatively to the
reference frame. It is useful to compute for z = (¢, z,v) and z; = (t;, x;,v;), i = 1,2,

2_1:(—75,—954‘751)7—”) and 2110222(tQ—tth—xl—(tz—h)vl,vz—vl)-
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4.2 Kinetic geometry: cylinders, distance and Hélder regularity

4.2 Kinetic geometry: cylinders, distance and Holder regularity

Kinetic cylinders

In order to define a kinetic distance, we first introduce cylinders respecting the kinetic scaling
and Galilean invariance: for R > 0 and zg € R12¢,

Q1 =(-1,0] x By x By,
Qr = (—=R?,0] x Bgs x Bp,
Qr(20) ={2002: 2 € Qr}.
We will use next a more explicit definition of Qr(20),
Qr(z0) = {(t,z,v) e R : _R? <t — 15 <0, |z — o — (t — to)vo| < R®,|v — vg| < R}.
The following lemma is useful.
Lemma 4.2.1. If z; € Q,, fori=1,2, then z1 022 € Qr,4r,-
Proof. We recall that z1 0 zo = (t1 + t2, 1 + x2 + tov1, v + v2).
|t +to| < i +75 < (r1+72)°
lv1 +v2| <71+ 72
|21 + 2 + tove| < 73 4+ 78 +r3ry < (r1 + 1), O
Let 7B1 denote the closed unit ball. We also consider the closed cylinders Qr(z0), associated
with Q1 = [-1,0] x By X By.
Kinetic distance

We now define a kinetic distance on the space R1*+2¢,

Definition 12 (kinetic distance). For z1,2zo € R'2?, the kinetic distance dyn(21, 22) is the
infimum of the set of real numbers r > 0 such that there exists z € R1T2% such that 21, 20 € Q,(2).

It is not clear from this definition that dy;, satisfies the triangle inequality. Before justify-
ing it, we start with collecting elementary properties immediately obtained from the previous
definition.

Lemma 4.2.2 (Elementary properties of dyiy). The kinetic distance satisfies:
(i) (SYMMETRY) for all 21,29 € R1T24, dy (21, 22) = dyin(22, 21);
(ii) (LEFT INVARIANCE) for all z1, 22,2 € R129 dys (21, 20) = diin (271 0 21, 271 0 20);

(iii) (SCALING) for all z1, 20 € R1T24, R > 0, we have dyin(0r(21),0r(22)) = Rdyin(21, 22).
The triangle inequality will follow from the following lemma, that is of independent interest.

Lemma 4.2.3 (Formula for the kinetic distance). Let z1, 29 € R*2d Then
. 1 _
dkin(zla Zz) = Hg}é}i max (|t1 - tQ‘ 2, ’Ul - ’LU|, |U2 - U)|, 2 1/3|(5L'1 - 51;2) - (tl - t2)’(U|1/3) .
w

In particular, there exists z such that z1,z0 € Qp(z) for p = dyin(z1,22). More precisely,
z = (s,y,w) with s = max(t1,t2), y = “"’TM —w and w realizes the minimum in the previous

formula.
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4 Kinetic Fokker-Planck equations

Proof. We first remark that there exists z = (¢,z,v) € R4 such that 21,20 € Q,(2) with
p = dyin(z1,22). Indeed, if one considers a sequence 1, > 0 realizing the infimum from the
definition of the kinetic distance, and if z,, denotes the corresponding centers for cylinders, then
r, and z, are bounded sequences, in particular, they converge up to a subsequence.
The fact that z1, 22 € Q,(2) with z = (s,y,w) is equivalent to,
—p?<ti—s<0,
fori=1,2, lv; —w| < p,

|z —y — (t; — s)w| < p.

This is equivalent to s > max(¢1,t2) and,

p = max ((s = 1), (s = t2) %, Jor = wl,Jug = wl,Jo1 — y = (02 = s)wlF, as —y = (f2 = s)u]3)

Since p is as small as possible, this inequality is in fact an equality. Moreover, this equality
holds for any z such that 21, 20 € Q,(2). This implies that

p = min {max ((s — ti)%, |v; — wl|, |z —y — (t; — s)w\%> i=1,2,5 > max(tl,tz)} .

0,8,,w
We next remark that the minimum in y of max;—1 2 |z; —y — (t; — s)w]% is reached for y =
3 >iz12(@i — (ti — s)w) = sw + %21:1,2(372' — t;w). It is then equal to
2718 (1 — a2) — (t1 — to)w|5 .
We deduce from this observation that

p = min {max ((s — ti)%, lv; — w\,Q*%](ajl —x9) — (t1 — tg)w|%) ci=1,2,8> max(tl,tg)} .

1,8,W

We conclude the proof of the lemma by finally remarking that the infimum in s is reached for

s = max(ty,ta). O
We are now ready to prove that dy;, satisfies the triangle inequality.

Lemma 4.2.4 (Distance property). Let z1, 29,23 € R x R? x RY. We have: dyin(21, 22) <

diin(21, 23) + dyin(23, 22).

Proof. By the left invariance property (Lemma 4.2.2-(ii)), we can assume that z3 = 0. For
i =1,2, let r; denote dyin(z;,0) (recall the symmetry property). By Lemma 4.2.3, we know that
there exists w; € R4 such that r; = max(\ti]%, |vi — w;l, \wi],Q_%pci — tiwi|%) for: =1,2. We
now remark that,

It — 22 < ([ta] + [t2])2 < 1|2 + [t2]2 < 71+ 1o,

[vi — (w1 +w2)| < |vi —wi| + |wy| <7412, (G #£9),
and
(21 — 22) — (t1 — t2) (w1 +w2)|3 < ||y — trwy] + |22 — tywa| + [ta]|wa] + |ta] lwy]| 2
< |27 + 205 +rirg + r%rl‘é
< 2%(?"1 +7r2).
Then the result follows from the characterization of dyj, given by Lemma 4.2.3. O
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4.2 Kinetic geometry: cylinders, distance and Hélder regularity

We finally give upper and lower bounds of the kinetic distance in terms of a supremum norm
of kinetic type. For z € R2¢ we define

2o = max (3,213, Jo])
Remark 32. We notice that for z1, zo € R1T2¢ we have z; € Qry o (22) with 719 = \z;l 0 21]00-

Lemma 4.2.5 (Upper and lower bounds). For all 21,z € R4 we have: %]251 0 210 <
dyin (21, 22) < |22_1 0 21|eo. The constants 1 and % are optimal.

Proof. By left invariance, see Lemma 4.2.2-(ii), we reduce to the case zo = 0. Let d; denote
dyin(21,0) and Dy = |z1]|s. Let also w; denote the w realizing the minimum in the explicit
formula of the kinetic distance,see Lemma 4.2.3 From this lemma, we can pick w = 0 and get
that d; < D;. Let us prove the lower bound. If D; = |t1|%, then d; > D thanks to the explicit
form of dyi,, see Lemma 4.2.3.

If Dy = |v1], then we distinguish two subcases. If |wi| < |v1|/2, then dy > v —w1| > |v1]/2 =
Dy /2. If now |wy| > |v1]/2, then dy > |wi| > |v1]/2 = D1/2.

We are left with assuming that D; = |x1\% We also distinguish two subcases. If |wi| <
1|3 /2, then [tyw1| < D2|a1|3 < |21]/2. In turn, |o1 —tywy| > |21]/2 and dy > ﬁ\xllé > 1D
If [wy| > |a1]3 /2, then dy > |wy| > |a1]3/2 = Dy /2.

The optimality of the constant % in the lower bound is obtained by choosing ¢; = 0 and

x1 = 0. In this case, d; = |v1]/2 = D1/2. The optimality of the constant 1 in the upper bound
is easily obtained for instance with x1 = z9 = w1 = wy and 1 # to. ]

Kinetic Holder regularity

We now characterize the Holder regularity of a function by its oscillation. It is convenient to
use osc(f | F) for oscg f when the writing of E is too long to be written as a subscript.

Proposition 4.2.6 (Holder regularity and oscillation). Let f € L>®(Qr(z0)) be such that for all
2 € Qr(20) and allT > 0, we have osc(f | Q-(2)NQr(20)) < Cor®. Then for all 21,22 € Qr(20),
we have |f(z1) — f(22)| < Codyin(21, 22)°.

Remark 33. If z ¢ QRr(20), then for r > 0 small enough, Q,(z) N Qr(z0) is empty.

Proof. We first prove the result by further assuming that f is continuous. Let 21,20 € Qr(20)
and p = dyin(21, 22). The definition of the kinetic distance implies that there exists z € R4
such that 21,z € Qgr(z). The assumption implies that

f(22) = f(21)] < osc(f | Qp(21) N Qr(20))
< Cop™.
We now address the case where f is only essentially bounded in Qr(zp). We regularize it by
a convolution procedure respecting the Lie group structure: for € > 0, we consider a mollifier

p°(z) = 5*2*451,0(5’1/5(2*1)) with p smooth, non-negative, supported in @ and [p1424 p(2) dz =
1, and we define for z € Qr—c(20),

FE = [ A o0 dc
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4 Kinetic Fokker-Planck equations

This function f¢ is continuous in Qr_c,(20) because f is essentially bounded. We now verify
that f° inherits the property satisfied by the oscillation of f. Let g9 > 0 and ¢ € (0,¢¢) and
z € R*24, Then for 21 € Qr_c,(20) and (7! € Q., we have ("1oz; € Qpr(20) (see Lemma 4.2.1).
In particular,

osc(f* [ Qr(2) N Qr—<(20)) < /R L ose(f | Qr(¢™ 0 2) N Qr(20))p=(¢) ¢

< Co?“a.

142

From the continuous case, we deduce that for all 21, z2 € Qr—c,(20), we have
|f9(22) — f(21)] < CFdyin(21,22)".

By dominated convergence, we see that f© — f a.e. in Qr—_c,(20). We thsu conclude that for
a.e. 21,22 € Qr—cy(20),
f(22) = f(21)] < CFdin(21, 22)"

In particular, f can be extended into a (Holder) continuous function in Qr—c,(z0). Since ¢g > 0
is arbitrarily small, the proof is complete. O

Kinetic Young’s inequality
We now introduce the kinetic convolution of two functions f and g defined in R'+2¢,
frmae) = [ 5T dc= [ f(Qgtze¢de.
R1+2d R1+2d
It can be useful to write the formula with z = (¢, z,v) and ¢ = (s,y,w),
f *kin 9(t, z,v) = / fit=s,z—y—(t—s)w,v—w)g(s,y, w)dsdydw. (4.3)
R1+2d

Notice that we used it in the previous proof to regularize f by considering a mollifier p. The
following elementary lemma will be useful in the sequel.

Lemma 4.2.7 (kinetic convolution and L? duality). For f,g,h: R'T2¢ & R, we have

/RHM(f *xin §)h = /RHM 9(f *uin h) = /RHM f(h*in §)

where f(z) = f(z71) and §(z) = g(z71).

The group (R'72¢ o) equiped with the Lebesgue measure is unimodular and the classical
Young’s inequality holds [5].
In order to state it, we let M;"(R1+24) denote the set of non-negative measures on R*24. For

m € M;"(R1*29), the total mass m(R'*2?) is denoted by ||mHM1+(R1+2d).

We also consider weak Lebesgue spaces LPVeaK(RN). It is the set of functions f: RV — R
such that their weak LP-norm is finite,

1
| f[| Lpwear ey :=sup  af[{€ € RV : f(&) > a}lr.
a>0
Remark 34. The reader that is unfamiliar with this notion can check that Bienaymé-Chebyshev’s

inequality implies that classical LP functions are in LP"*2K and that their weak LP norm is
bounded by their classical L norm. See also [7, p. 25].
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4.3 The Kolmogorov equation

Lemma 4.2.8 (Young’s inequality for the kinetic convolution). (i) For f € LP(R'*2%) and
g € LYRY™24) with p,q € [1,00], we have f #4n g € L"(R1T24) with 1 + % = % + é, and
the following estimate holds,

| f *kin g||LT(R1+2d) < ||f||Lp(Rl+2d)||g||Lq(R1+2d).
(ii) For m € M;"(R1*2d) and f € LP(R'29) with p € (1,00) and g € LPVeak(RIT2d)

I1f 160 Wl Lo riveay <l pogiveay [l goveay,

Hg *kln mHLp,wcak(R1+2d) S HgHLp,wcak(R1+2d) |’mHM1~&»(R1+2d)

4.3 The Kolmogorov equation

In order to study the regularity of solutions f and their truncation (f — k), we use a trick due
to A. Pascucci and S. Polidoro [57] and write the kinetic Fokker-Planck equation (0;+v-Vy)f =
divy(AVyf) + B -Vyuf + 5 as

O +v-Va)f — Af = divy((A — D)Vof) + B-Vof + S

where I denotes the d x d identity matrix. We thus turn the kinetic Fokker-Planck equation into
the Kolmogorov equation with a singular source term. We remark that local energy estimates
ensure that V, f is square integrable. In particular, the source term in the Kolmogorov equation
can be written as div, & + S for some &, 5 € L2

It is convenient to write the Kolmogorov operator /C,

Kf=0t+v-Va)f —Ayf.

4.3.1 Fundamental solution

A. Kolmogorov computed in [42] solutions of the linear Fokker-Planck equation in the case

where the diffusion matrix A is constant and equal to the identity. They can be represented
thanks to the counterpart of the heat kernel,

g Blatgol” 2]

3 1 v

Tt 2, 0) = (1) pa oxp [— g~ | iHt>0

0 if t <0.

Such a function is referred to as the fundamental solution of the Kolmogorov equation.
Proofs will use the following functions associated with I': for ¢ > 0 and z,v € RY,

)

Iy(z,v) =T(1,z,v)
1
20+

| <

F(z)(t,x,v) =tV I'(t,z,v) = ,

vr (

~+

w\w‘ 8
~

N[

1
(v) — —
', z,v) = V,I'(t,z,v) = vl V.1 <

T B
w\»—t‘ 4
N—

t

The second formulas for I'® and T'®) are consequences of the scale invariance stated in the
next proposition.
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4 Kinetic Fokker-Planck equations

Proposition 4.3.1 (Properties of the fundamental solution). Let I" be the fundamental solution
of the Kolmogorov equation. , )
(i) (SCALE INVARIANCE) If T'y(z,v) denotes I'(1,z,v), then T'(t,x,v) = 2T (t 22,1 2v)
and fde I (z,v)dxdv = 1.
(7i) (SOLUTION OF THE EQUATION) For any T > 0, the function I' is smooth in all variables
in [, +00) x R? x R? and its partial derivatives satisfy the Kolmogorov equation.
(ii3) (INTEGRABILITYI) For allT > 0, the function T is in LP((0,T) xR*?) for any p € [1,1455)
and it is in L1 20VK((0, T) x R??). The functions T'®) and T are in LI((0,T) x R>%)
1
for any q € [1,1+ ) and they are in LY@ veak (o, T) x R2d),

In order to prove this proposition, we need the following lemma.

Lemma 4.3.2 (Integrability of a time-scaled function). Let F(t,z,v) = t~24=B0G(t=3/2x t=1/2¢)
with G € L' N L=(R?%). Then for all T > 0, we have F € LP((0,T) x R?%) for p € [1, 124

7 2d+PBo
14+2d Wi
and F € L2550 (0, T) x R*).

Proof.

e )dt dz dv = o1 G (= C V¢ 2 de b dt
S (t,z,v xdv = ST Y <t3/2’t1/2> x dv

= llGl?,,

T 1
o — .
R2d) | p(2d+Bo)p—2d

This integral is finite if and only if (2d + Bp)p — 2d < 1.
For the end point case, we write

{F(t,z,v) >a}n(0,T) x R?Y| = HG(t™3 %2, t7%0) > at?*T7} 0 (0,T) x R}

T
_ / G (32, 1 /20) > af28+501) | dt
0
T
_ / {G(y,w) > ar2ioy2d g
0

- [T HG > H () g ()T
) v a 2d + By \« a

_142d @ _1
= o 2050 (2d + o) ! / {G(y,w) > s}|s75 ds.
0

1+42d
We conclude that sup, a2 [{F(t,z,v) > a} N (0,T) x R¥}| < +oo. O

Proof of Proposition /4.5.1. The scale invariance stated in (i) is straightforward. The constant
appearing in the formula of " (or equivalently, the fact that I'y has mass 1 in (z,v)) will be
justified together with (ii).

Proof of (ii). We compute the Fourier transform in (z,v) of the Schwartz function I'(¢, -, -),
g(t’ ©s 5) = / F(ty x, v)efiQmp-xfz'%rg-v dx dv
R2d
_ th/ Fl(t*3/2x, t*1/ZU)67i271't3/2go-t*3/21727rit1/2§-t*1/2v de do

Ye it 2 E =it 20 47 g5

Il
S
g
=
_
&
ST
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4.3 The Kolmogorov equation

We can write
glt, p,€) = D1 (3%, 11/2%¢).

We remark that I'; can be written as,

with Cr = (4—?@)‘1/ 2 and where the 2d x 2d real symmetric matrix C, its determinant and its

inverse are given by

(61 3I od (3 -1
C_<31 2I> and |detC|=3% and C _<—I o7 ) -

In particular,

fl(@,ﬁ) = CF/ e*%C(z,v)-(:r,v)6727”'(17”)_(%5) dz dv
R2d
d —
€ R2d

(2m)?Cr
| det C|1/2
the Gaussian pu = (27r)_dts’_%Kg_“_’)l2 at \@_l(cp,f). We know that fi(p,&) = e3Pl +El) 5,
Eq. (1.20)]. We thus conclude that,

We now remark that = 1 and fl(go,f) coincides with the Fourier transform j of
g(t, 0, ) = T1 (3%, t1/2¢) = e= 207 (Pt PO-(B2012€) _ o= (5t°lo~10-L41le)%)

In particular,

t t
ot 6 =exp (— [~ 250+ leP)as) —exp (- [ lop - €Pas).
We now check that g satisfies the differential equation,
Qg + ¢+ Veg = —[¢Pg.
In order to do so, we simply compute the right hand side as follows,
) ¢
g+ ¢ -Veg = <—!w — ¢ —/0 2[(§ = sp) - ¢] d8> 9-
Thanks to the inverse Fourier transform,
Dlto,0) = [ | glto 00 9 dg g
R2d

we finally deduce that (0 + v -V, — A,)[ = 0 in (0, +00) x R,

Proof of (iii). We only prove the integrability of I' since the cases of I'®) and T'® are treated
similarly. Now Lemma 4.3.2 leads to the result. O

The following lemma will be used in order to represent solutions by the fundamental solution.
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4 Kinetic Fokker-Planck equations

Lemma 4.3.3 (Kinetic convolution of I' with smooth functions). Let ¢ € C°(R'*24). Then
f *kin (8t +v- Vm + Av)(p = —p
where T'(2) = T(z71).

Proof. Let us consider the adjoint of the Kolmogorov operator K*¢ = (0; +v -V, + Ay)p. We
then write for z = (¢, x,v),

(Foian K79) (2) = [ T 0 2K70(0) ¢
— [ GO A
+oo
= / // D(s—t,y—x—(s—t)v,w—v)K*¢(s,y,w)dsdy dw.
t R2d
The integral being singular at s = ¢, we consider € > 0 and write
(f‘ *in IC*go) (2) =Z(2) + Re(2)
with
+o00
Z.(z) = / // (s—t,y—x—(s—t)hv,w —v)K*p(s,y,w)dsdy dw,
t+e R2d
t+e
Re(z) = / // I(s—t,y—x—(s—t)v,w—v)K¢(s,y,w)dsdy dw.
t R2d

We first deal with Z.(z). We can integrate by parts in time 0y and integrate by parts in
space v - V,p and in velocity A,p. If we let KT denote (0; + v - V; — Ay)T, this leads to,

+oo
I.(z) = / / Kl(s—t,y —x— (s — t)v,w —v)p(s,y,w)dsdy dw
+e R2d
—/ I(e,y —x —ev,w—0v)p(t + &,y,w) dy dw.
R2d

We now use that KI' = 0 in (0, 400) x R?? and T'(t,z,v) = t~29T (¢t 3/2z,t~1/?v) in order to
get,

T.(2) = — /de T(e,y —z—ev,w—v)p(t +¢&,y,w) dy dw
- _/RZdF<5’gaw)90(t+€7$+g—i-sv,v—i—w)dydw
= — /Rgd 5_2dF1(€_3/2g, 6—1/2@(/)@ be x4+ e v+ @) dydd
= _ /R?d T1(§, @)p(t + &, 2 + 325 + v, v + £/20) djj dad.

The constant in T is chosen such that [[524 I'1(z,v) dzdv = 1. This allows us to prove that

T (2) > —p(z) as e—0.
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4.3 The Kolmogorov equation

We now prove that R.(z) vanishes at the limit.

/// (r,y —x — 1,0 —0)(K*0)(t + 7,9, w) dsdy dw

R2d

:/// L(r,y,0)(K*p)(t + 7,2+ + Tv,v + w) ds dy dw
R2d

3
:/// L1 (5, @) (K ) (t + 72 + 7% + Tv,0 + 7/%0) ds djj dab.
R2d

This implies that
|R5(z)| < H’C*QOHLoo(Rsz)E.
In particular, R.(z) — 0 as € — 0. -

4.3.2 Uniqueness

In order to obtain the representation of sub-solutions (including truncated solutions), the fol-
lowing uniqueness result is used for the Kolmogorov equation in Lebesgue spaces.

Proposition 4.3.4 (Uniqueness for Kolmogorov). Assume that a function F: R'T2¢ — R
is supported in (0,+oc) x R2?, that there exvists p € (1,400) such that for all T > 0, F €
LP((=T,T) x R?%), and that it is a distributional solution of (O; +v-Vy — Ay)F = 0 in RF24,
Then F =0 in R1+24,

Proof. The formal argument is very simple. It is enough to mutliply the equation by p|F|P~2F
and integrate in (x,v) to get,

d -2

— |F|P(t,x,v)dzdv = —p Vo F - Vy|FIP*Fdxdv <0.

dt JRr2d R2d
The non-negative function ¢ — [poq |F|P(¢, 2, v) dz dv lies in L' ((=T, T))), vanishes for ¢ < 0 and
is decreasing: it has to be 0 for almost every ¢.

In what follows, given F' € R and ¢ > 0, we write F for | |91 F in order to clarify computation.

DIFFICULTIES AND SKETCH OF PROOF. To make the previous formal argument rigourous, we
shall mollify F. We do it by using the kinetic convolution in order to simplify integration by
parts. Since we may have p—1 € (0,1), the function 7 — 7P~! is not Lipschitz and the meaning
of V,FP~1 is to be made precise when F vanishes. We circumvent this difficulty by mollifying
by a function p that is positive everywhere, so that F*© is also positive and smooth everywhere.
Then we have to truncate the test function to ensure that it is compactly supported. We use
two smooth functions ¢ and v: we will first let ¢ converge to 1; second, we will integrate by
parts, rearrange terms and discard dissipation. Third, we will let ¢ converge to a function only
depending on time and conclude that the aforementioned L' function of the time variable is
non-increasing.

MOLLIFICATION AND TRUNCATION. It is convenient to use the fundamental solution I' at time
¢ as a mollifier, even if this is not mandatory. Let p. = I'(e, z,v) and let F® = F sy, p.. This
function F*¢ is C*°, positive everywhere if F' is not identically equal to 0, and converges to F
in LP((=T,T) x R??) as ¢ — 0 for all T > 0. We then consider two smooth and compactly
supported functions ¢, 1) € C°(R*2?) and define,

Gy = [[(F)P o] #xin pe] ¥
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4 Kinetic Fokker-Planck equations

where f.(z) = p-(z71). We are going to use that [pisa(f *kin 9)h = [gisza f(h *iin §) (see
Lemma 4.2.7). Taking G as a test function, we have

/ F(@H—wvm)Gw:—/ FAUGw
R1+2d

R1+2d

LiMiT AS ¥ — 1. We now write Gy, = G179 where G denotes Gy with » = 1. For ¢ > 0
fixed, all functions in the weak formulation are smooth and we can pass to the limit by using
dominated convergence in order to get,

/ F(@t—l—vvx)Gl :—/ FA,G1.
R1+2d R1+2d

INTEGRATIONS BY PARTS. We now consider the smooth and compactly supported function,
£ =y
that allows us to write G1 = f€ ki, pe. In particular,
(O +v-V)G1=[(0r +v- Vi) *uin pe and  AyG1 = [Ay f7] *xin fe-
We use these formulas and [p1404(f *kin 9)h = [gi+2a f(h *kin §) from Lemma 4.2.7 and get,

/ Fs(at"‘v‘vx)fe:_/ FsAvfez/ vvFE’vva-
R1+2d R1+2d

R1+2d

In view of the definition of f¢, this leads to

/ 90F€(3t+v‘vx)(F6)p_l+/ (FF)P (O +v-Va)p
R1+2d

R1+2d

N /Rl-‘r2d SDVUFE ' VU(FE)pil +/ (Fg)pilvvFE - V.

R1+2d

Since F* is smooth and positive, we have that
FE(0s +v- V) (F)P L =p7 Y0 +v - V)| FeP,
(FEYP IV FE = p IV, | FEPP.
We then integrate by parts and get,

p‘l/ |F€|p(at+v'vx)60+/ |FEP(O +v-Va)p
R1+2d R1+2d
=~ 1)/ @IFEIMVUFE‘VUFE—pl/ [FEPPAe.
R1+2d R1+2d

CONCLUSION. We next remark that the first term in the right hand side is non-negative if
i > 0: it corresponds to dissipation. We thus get,

(1—p ) / FP@ 40 Vo) > —p! / FPAgp.
R1+2d R1+2d

We finally consider o(t,z,v) = ®(x,v)0(t). Since F* — F in LP(R'*24) we can pass to the

limit ® — 1 and get,
/ {/ |FE|P dxdv} O'(t)dt > 0.
R R2d

This means that the integrable function ¢ — [poq [F¥[P(t, x,v) dz dv is non-increasing. It is thus
equal to 0 for almost every time ¢. This implies that F° = 0 as a function of LP((~T,T) x R??)
for all T > 0. Letting ¢ — 0 allows us to conclude that F' = 0. O
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4.4 Weak solutions and the kinetic De Giorgi & Nash’s theorem

4.4 Weak solutions and the kinetic De Giorgi & Nash’s theorem

In order to state the kinetic counterpart of De Giorgi & Nash’s theorem, the notion of weak
solutions is first made precise. The rest of the section is then devoted to the derivation of the
local energy estimates.

4.4.1 Weak solutions of kinetic Fokker-Planck equations

We recall that I is a bounded interval of R of the form (a,b] with a,b € R and that , and €,
are two open sets of RY,

Definition 13 (Weak solutions). Let S € L?(2). A function f: Q — R is a weak solution of
(O +v-Vy)f =divy(AV,f) + B - Vo f + S in Q if f,V,f € L*(Q) and for all ¢ € CX(Q),

1@t o Vo= [(49.5 Ve~ [ (B-9.1 4+ 90

It is also useful to introduce the notion of weak sub-solutions (resp. weak super-solutions).
Their a priori regularity coincides with the one of weak solutions, but the equation is only
satisfied (in the sense of distributions) with a non-negative (resp. non-positive) measure in the
right hand side.

Definition 14 (Weak sub/super-solutions). Let S € L*(Q). A function f: Q — R is a weak
sub-solution (resp.weak super-solution) of (0¢ +v - Vy)f = divy(AV,f) + B - Vuf + 5 in Q if
f,Vof € L3(Q) and for all o € C(Q) with ¢ >0 in §,

/f(8t+v-%)902/AVUf-VM—/(B-VuerS)sO
Q Q Q
(resp. /Qf(ﬁt—l—v-vz)gpg/QAVUf'chp—/Q(B-VUf—I—S)g)).

4.4.2 Kinetic De Giorgi & Nash’s theorem

The goal of this chapter is to establish the counterpart of De Giorgi & Nash’s theorem for
kinetic Fokker-Planck equations by following the general strategy presented in Chapter 1.

Theorem 4.4.1 (kinetic De Giorgi & Nash). Let A € E(A\,A) with Q@ = Q1 and \,A > 0.
There ezist two universal constants o € (0,1] and Cpg > 0 such that any weak solution f of

(Or+v-Vy)f =divy(AVLf)+ B -V f + 5 in Q with S € L>(Q) satisfies,
1 fllce @1)0) < Cpa (I1fllz2(@u) + I1Sllze@n) -

Remark 35 (Local maximum principle, intermediate value principle and expansion of positivity).
Like in the elliptic and parabolic cases, the proof of this theorem consists in establishing first
a local maximum principle and then proving that the oscillation of solutions improves by a
universal factor when zooming in with a universal factor. This improvement of oscillation
derives from the expansion of positivity of solutions. Such a property is established thanks to
an intermediate value principle, that can be seen as the kinetic counterpart of the elementary
intermediate value lemma 2.2.7.

Remark 36 (Kinetic De Giorgi’s class). We state the theorem for weak solutions but we will
prove it for functions that are in a De Giorgi’s class of kinetic type. More precisely, the local
maximum principle holds for functions in a class kDG while expansion of positivity holds for
functions in a class kDG™. Finally, the kinetic class kDG is made of the intersection of these
two classes kDG*.
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4 Kinetic Fokker-Planck equations

4.4.3 Local energy estimates

We recall that I is a bounded interval of R of the form (a,b] with a,b € R and that , and €,
are two open sets of R,

Proposition 4.4.2 (Local energy estimates). Let f be a weak sub-solution of (0y +v-Vy)f =
divy(AV,f) 4+ B -V,f + S in Q. There exists a set N C I of null measure such that for all
z,v0 €ER? and 0 < 7, < Ry and 0 < ry, < Ry, for all t1,ts € (tog — r%,to] \ N with t; < to and
all k € R,

A
/I (F =0tz o) dodot [ [9u(5 = w0
BTz(xO)XBTv (UO) Qint
S// (f—n)i(tl,x,v)d:cdv
BTz (IO)XBTv(vO)
8A 4R, A? 5
i _ 9 _
" |:(Rv - rU)Q + Rx — Tz + A :| /ext(f K/>+ * Qext S(f K:)+

with Qint = [tl,tg] X Brm (.110) X Bru (’Uo) and Qext = [tl,tg] X BRI (x()) X BRU (Uo).

In order to derive the local energy estimates, we need to use (u — k)4 as a test function
in the definition of weak solutions, for any smooth and compactly supported function ¢. The
following lemma allows us to do so.

Lemma 4.4.3 (A non-smooth test function). Let f be a weak sub-solution of (0y +v-V,)f =
divy(AV,f) + B - Vuf + S in Q. Then for all ¢ € CX(9),

A
~ [ =@+ Ve + 5 [ [9F = R

2 oA, 2 2

< [ (a9 + 256 ) (£ =02 42 [ 18107 - 0
Proof. We consider p € C°(R"2?) with p > 0 and [5,124 p(z) dz = 1. Then for any ¢ € (0,1),
we define p.(z) := ¢ 472p(e712) where ¢ 'z is a short hand notation for o.-1(z) (scaling

operator, see page 66). We also define f€ := f %y, pe.

We next consider another smooth function v € C2°(R) with v > 0 and [, v(r)dr = 1 and

suppy € [—1,0]. Then for any v € (0,1), we define the function P, (r) := (r — k)% * 7.
We finally define p.(z) = p-(z~1) and use 1 = (P.(f%)¢?) *in p- as a test function,

[P @ o = [ (@ v0r) (RU6?)
R1+2d R1+2d
—— [ g0+ 090 | (P2 ]
R1+2d

We now use the fact that f is a weak sub-solution in the sense of Definition 14 in order to get,

<AVUf6 . VUP;(f6)>cp2 — / (AVUf8 . VU902> PL(f%)
Q Q
[ LBVl i p ] PUEIE + [ (5 mam p) LN,

- [ PO+t <= |
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4.4 Weak solutions and the kinetic De Giorgi & Nash’s theorem

Because P, is a convex function, we remark that the first term in the right hand side is non-
positive and we move it to the left,

— | Po(f) (00 Va)@*+ | PU(f)| AV foVoufe )e® < =2 | ( VAV, fSVAV,0 |P(f)e
Q Q Q
[ LB Vud) i 0] PUEIE + [ (S am p ) PLFN,

In the two next lines, we use that suppy C [—1,0] so that we have P)/(r) > 21,>, and we
estimate P/ (r) from above in a rough way,

oo (r—k)

Vr >k, PJ(r)=2(15x) %7 = 2/ Y (r—s)ds = 2/ Y (7)dr = 2,

VreR P =2 =)o =2 [ (s )l — ) ds
0

<2 [ (0= s+t - 9 ds = 2(r =)y +0),

We can use these estimates to deduce from the weak formulation the following inequality,

_/Pu(f€)(at+v'vm)902+2/ l{fEZF»}(Avvfe'vaa)SDQ
Q Q

<1
Q

+2/Q <’(B : va) *kin Pe’ + |S*kin Pe|> [(fE - K)—l— —+ V] 902'

VAV, f* - VAV | [(f° = #)+ + 1] |4l

We now use dominated convergence to pass to the limit in the left hand side as v — 0 and we
finally get,

— / (f°— K)a_(at +v- Vi) + 2/ Lipesi (Avvf6 . va6> ©?
Q Q

<
Q

+ 2/9 <’(B Vo f) *kin pe| + |5 *kin /)s|>(fE — k)12

VAV, [ VAV,|(f* = k) +]¢l

Like in the elliptic and parabolic cases, we use next the fact that V,(f — x)+ = 15> Vo f©
and l{fEZHZ} — ]_{fszn}l{fszﬁ}’

O A R o

Q

<af
Q

+ 2/9 (’(B “Vo(f = £)+) *kin Pe| + S *xin pe| > (f° — k)1 p?

VAV,(f* = R)4 - VAVL0|(fF = K)+ ol
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4 Kinetic Fokker-Planck equations

We continue following what we did in the parabolic case by using Cauchy-Schwarz’s inequality
to get rid of the first error term in the right hand side,

_/gz(ff_m)i(8t+u.vx)@2+/g (Avv(fs_ﬁ)+.vv(f5—’i)+>902

g

+ 2/{) (’(B -Vol(f = /‘5)—&—) *kin pe‘ + ‘S*kin Pa‘)(fs - "i)+$02~

o] (fF = ’i)2+

We finally use ellipticity constants and |B| < A and get,

- / (FF 2@+ v Va)g? + A/ Vo(f° = R)4 262
Q 9]
<aA /Q Vogl2(f° — )2

+ 2/Q (A |Vo(f — K)+] *kin Pe + |S *kin Pe|>(f6 — K)1¢°.

We can now use the fact that (f¢— k)% converges to (f —x)2 in L2(I x Q,, H'(,)) and obtain,
~ [(F= 3@+ 0 T 1 [ 19,0 =)
<at [ [9upP(7 = w2 +2 [ (A9 = Rl +181) (= 0.

We conclude by using one more time Cauchy-Schwarz’s inequality. 0
With this technical lemma in hand, we can establish the local energy estimates.

Proof of Proposition /./4.2. The proof proceeds in two steps. We first localize the estimate in
(z,v), we then get the result for rational r, R, k’s and conclude by a monotonicity argument.

STEP 1. Let p be the truncation function from Lemma 2.3.3 that is supported in Br and equal
1in B,. Similarly, we consider p be the truncation function from Lemma 2.3.3 that is supported
in Bps and equal 1 in B,s. In particular, |V,p| < 2(R3 —r3)~L. Given t1,ty € I with t; < to,
we consider a 1D mollifier §: R — R (smooth and of unit mass) that is supported in [—1,0],
and the smooth function ©.: (0,400) — R such that ©.(0) = 0 and for all ¢t € R, we have
OL(t) = 0:(t — t1) — 0-(t — t2). We choose € > 0 small enough so that t; —e € I.

We now use Lemma 4.4.3 with (¢, z,v) = ©2(t)p?(z)p?(v) = (0. ® p ® p)?(t,x,v). Since

up(t,x,v) = 2(—0:(t — t2) + 0t — 11))O:(1)p* () (v),

we can rearrange terms and get,

2/{2(f—f<o)i(,5®p)2@e() (t—t2) + /V f=r) (00 p®p)?
<2 [ (F =@ pPe.(0.(t — 1)
2 [ (F =R 0 Vapla)pla)(©. @ o)

A2
+ [ (4A|vvp12+2kp2> (0 pP(f ~ n) +2 [ ISI(F = )1(0- 0 p & ).
Q Q
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4.5 Gain of integrability of sub-solutions

We use next that p® p = 11in B,s x B, and |Vyp| < 2(R, — 7,) ! and |V,p| < 2(Ry — )~ *
and p® p < 1p,,xB, and get

A
[ uempeni-w+ [ V- n.pe?
[><B7,3><BT I><Br3><BT

< /Q (f — K2 (5® pOu(t)0.t — t1) + / 1S|(f — ), 7

IXBRg XBR

8A 4R, A2
+/ ( + + ) f—r)iez
IxBp3xBpg (Ry — Tv)2 Ry — 1y A ( )+ :

We can now pass to the limit p® p — 1p ; ® 1p, by dominated convergence and get,

A
[ uempednt-w g [ V- nPe?
I><BT3><BT I><BT3><BT
< / (f — #)20.(1)0-(t — t1) + / 1SI(f — ), O
IxXB _3XBy, IxBR3><BR

8A 4R A2
+/ ( + 5 +) f—r)3Oz2
IXBR3><BR (R’U_TU)Q Rx_rx A ( )+

STEP 2. For r, R, r fixed, we consider Lebesgue points of the L' function

t— (f(t,z,v) — k)% dz do.
BT3><BT

This provides a set N; g, C I of null measure such that for all ¢;,t2 € I'\ NV, g, the announced
inequality holds (after passing to the limit as ¢ — 0).

We then consider the set of null measure N corresponding to rational r, R, x’s. For other
r, R, k, we remark that all integrals are non-increasing in x and non-decreasing in r and R. We
thus consider an increasing sequence k, of rational numbers and decreasing sequences 7,, R,
or rational numbers, write the corresponding inequality, and pass to the limit thanks to the
monotone convergence theorem. O

4.5 Gain of integrability of sub-solutions

This section is devoted to the key estimate yielding the local maximum principle for sub-
solutions: their gain of integrability. They are various ways to establish this property. We
choose to follow A. Pascucci and S. Polidoro [57] by representing sub-solutions with the help of
the fundamental solution of the Kolmogorov equation.

4.5.1 Representation of sub-solutions

The goal of this subsection is to prove that truncated solutions (f — k)4, and more generally
weak sub-solutions, can be represented thanks to the kernel of the Kolmogorov equation. The
definition of weak sub-solutions is given on page 77 and the reader is reminded that M; ()
denotes the set of non-negative measures on the set 2.
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4 Kinetic Fokker-Planck equations

Proposition 4.5.1 (Representation of sub-solutions). Let S € L*(Q) and f:  — R be a weak
sub-solution of (Oy+v-Vy)f = divy(AVuf)+B-V,f+S in Q and let 1o be C™° and compactly
supported in 2. Then for all k € R,

f‘/’loc = (F(x) + P(v)) *kin Oloc + I *kin (Sloc - mloc)
with Mg = Plocm for some m € M; (RY24) and Sy, Sioc € L2(R24) are given by,

6loc :(PIOC(A - I)vvf7
Sloc :(BSOIOC - (A + I)vvgploc) . va + SQDIOC + f(at + - va} - Av)wloc-

We write an equation for the product of a local sub-solution with a cut-off function.

Lemma 4.5.2 (Localization of solutions). Let f be a weak sub-solution of (0 +v-V,)f =
divy,(AV,f) + S in Q with S € LY(Q) and m € M; (Q) be given by

m = div,(AV,f) + 5 — (0 +v - Va)f.

Let Q be a kinetic cylinder Qr(zo) contained in Q and let pioc: RI*F2d 5 R pe C° (in all
variables) and compactly supported in Q. Then the function fioc = f@ioc Satisfies

(8 +v - Vi — Ay) fioe = divy Gloc + Sioe — Mige i1 R x RY x RY
(in the sense of distributions) where Mo = Yrocm and

Sloc = S‘Ploc - (A + I)vvf : vv@loc + f(at +v-Vg— Av)SDIOCa
Gloc = WIOC(A - I)vvf

Proof. Given ¢ € C’(?O(RlJer), we use pioe as a test function for the equation satisfied by f
and reach the desired conclusion for fioc. O

Lemma 4.5.3 (Representation formula). Let &,S € L*(R'*2d) and m € M (R'*24). We
assume that &, S and m are compactly supported in (0,+00) x R*?. Then for all T > 0, the
function
F =T g (divy & + S — m)
is supported in (0,+00) x R*, it is in LP((-T,T) x R?!) for any p € (1,14 o) and in
L' 20" ((~T, T) x R>?).
Moreover, (0 +v - Vi) F = A,F +div, & + S —m in R (in the sense of distributions).

Proof. The function F' can be written as follows,
F =T 4+T®) 55, & + T s (S —m)

Thanks to Young’s inequality (Lemma 4.2.8) and the integrability properties of the functions
I, 7@ 1) established in Proposition 4.3.1-(iii), we deduce that: for all p € (1,1 + %), all
o€(l,24 57=) and all 7 € [1,24 1),

Diginm € LP((=T, T)xR?%), TsinS € L7 ((=T, T)xR?*?), (I@ 4175, S € L7 (=T, T) xR??).

In particular, F' € LP((—T,T) x R??) for all p € [1,1+ o) and all T > 0. The end point case
is treated similarly since the convolution of a finite Radon measure with a function in LP-Veak
is in LP-veak,
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4.5 Gain of integrability of sub-solutions

Moreover,
(O 4+v-Ve—ADF = (0 4+v-Vy — AT #5gy (divy & + 5 —m) = div, & + S —m in R
in the sense of distributions. Indeed, consider a smooth and compactly supported test function

¢ € Cg° and write,

/ FO+v-Vy+Aye

R1+2d

= / {(F(I) +T™) w4, & + Tty (S — m)] (O +v-Vi+ Ay)p
R1+2d

= / S [(r(w +T0)) s (B + v+ Vg + Av)ap} + / (S —m) [f skin (0r + v+ Va4 Ay)ep| .
R1+2d R1+2d
We conclude thanks to Lemma 4.3.3. O]

We can now prove the representation formula.

Proof of Proposition J.5.1 (representation of sub-solutions). Without loss of generality, we can
assume that Q C (0,400) x R??. By Lemmas 4.5.2, we know that f,. is a distributional
solution of

(Or+v-Vi—Ay)g = divy Sioe + Sloc — Mioe in R (4.4)
with Giec, Sloc, Mioe given in the statement of the proposition. Now Lemma 4.5.3 ensures that
F =T sy (divy Sloc 4 Sloc — Mige) is LP((=T,T) x R?d) for all p € (1,1 + o) and all T > 0,
and is a distributional solution of (4.4) in R!*2d_ In particular, the function h = fr0c — F lies
in LP((—T,T) x R??) for all T > 0, it is a distributional solution of (9; + v -V, — A,)h =0
in R*24 and it is supported in (0,4+00) x R??. Uniqueness for the Kolmomgorov equation
(Proposition 4.3.4) implies that h = 0, leading to the representation formula. O

4.5.2 Gain of integrability for sub-solutions
We are now ready to prove that sub-solutions are locally better than square integrable.

Proposition 4.5.4 (Gain of integrability of sub-solutions). Let f be a weak sub-solution of
(Or +v-Vo)f = divy(AVyf) + B-Vuf + S in Q with A € EN\,A) and B € L*(Q) and
S € L?(Q). For all p. € (2,2 + é), there exists C. (only depending on A,d and p.) such that
for all Q(z0) C Qr(z0) C Q,

A+1
I(f = )4 lLre(@r(20)) < Cr <R—r”v“(f — )+ 2(Qn(20))
1
+ 2l = ®)+ll2@neo) + ”51{fzm}||L2<QR<ZO>>)~

This gain of integrability is in particular true for truncated solutions (f — ).

Lemma 4.5.5 (Truncated sub-solutions are sub-solutions). Let S € L?(Q) and f: Q — R be
a weak sub-solution of (Oy + v -V )f = divy(AVyf)+ B -V,f + S in Q and k € R. Then the
truncated function (f — k)4 satisfies

(O +v-Vo)(f — k)4 =divy(AVy(f —K)4) + ST —m}  inQ

(in the sense of distributions) with S§ = B - Vy(f — &)+ + Slisuey and some non-negative
measure m% € M (€).
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4 Kinetic Fokker-Planck equations

Proof. Let us first construct a 1-Lipschitz approximation of the function ry. Given € € (0,1),
we consider the function Pj(r) such that (P$)"(r) = 6.(r) for some mollifier : R — [0, 4+-00)
and P5(0) = (P5)'(0) =0.

Arguing as in the proof of Lemma 4.4.3 with P{ instead of ri/Q, we get,

_/Pi(f)(at-i-v-vx)go dt dz dv
Q
S//ngm«at_'_v'vz)f, (P-le—),(f)¢>H—17Hé dtdz

- /(Pé‘)"(f) [AV f-v f] / [AV f-Vsz] (P$)'(f)

//BVng /SPE
</Q[AVfVU4 ///BVfPa /SPE

Passing to the limit as ¢ — 0 by dominated convergence yields
— /(f — k)4 (0 +v-Vy)p dtdedo
Q

< —/Q |:Avvf'vv90:|1{f2/i}+//Q(B'vvf)1{f2m}+/§251{on}90-

We conclude by using that V,(f — k)4 = 115>, Vo f (Proposition 2.2.4) and by recalling that
a non-negative distribution is a Radon measure. Such a fact is an easy consequence of Riesz’s
representation theorem [25, Theorem 1.25, p. 39]. O

The proof of the gain of integrability uses the (easy) construction of a cut-off function.

Lemma 4.5.6 (Cut-off function). For r, R > 0 such that r < R, there exists a smooth function
Vloc Such that pioc =1 in Qr and pioc = 0 outside Qr. Moreover,

(0t +0-V ) Pl0c] < 4:(]%2—7*2)*1 and  |Vy@roc] < Z(R—r)*l and  |Ayproc] < 2al(R—fr’)*2

Proof. On the one hand, we consider p(z) supported in Bps and equal to 1 in B,s whose
gradient satisfies |[Vp| < 2(R3 — 73)~L. On the other hand, we consider p(v) supported in By
and equal to 1 in B,., whose gradient satisfies |Vp| < 2(R —r)~!. As far as the time variable is
concerned, we simply take © non-decreasing, equal to 1 in (—r2,0] and vanishes in (—oo, —R?].
Its derivative satisfies 0 < ©" < 2(R? — r2)~1. Then we consider pj,.(2) = (O ® p® p)(2).

(0 + v Vi) @Ploc| < 2(R? —r2)~t 4+ (2R)(R? — )7}
S 4(R2 o 7"2)_1

The bound on V¢ corresponds to the bound on Vp. U
We can now prove the gain of integrability for sub-solutions.

Proof of Proposition 4.5.4. We first deal with the case zg = 0. Let @joc be given by Lemma 4.5.6.
We use the representation formula from Proposition 4.5.1 and use mj,. > 0 to get,

0 S f(Ploc S (F(x) + F(v)> *kin 610(3 + r *kin Sloc-
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4.6 The kinetic De Giorgi’s class kDG™ and the maximum principle

We now can repeat the computations from the proof of Lemma 4.5.3 and get that for all
T € (1,2 + 1), there exists C, (only depending on dimension and ),

Hf‘Ploc”LT ri+2dy < Cr ||610<:HL2 Rl+2d) T HSIOCHL2 R1+2d
( ) ( ) ( )
where G and Sy, are given by the following formulas, see Proposition 4.5.1,

Gloc =P1oc(A — 1)V, f,
Sloc :(BSDIOC - (A + I)vvgoloc) Vo f + Sl{me}Qoloc + f(at +v-Vy — Av)%ploc-

HGIOCHL2(R1+2d) S(A + 1)”va||L2(QR)
St0cll 22y (A +2(A + 1)(R = )" DIVofllz2@n) + 15 r2m3 2 (0n)
+ (44 2d)(R—7) | fll22(qn)-

Combining the estimates leads to

£l 27 (@ (z0)) < CF ( {2/\ +1+2A+ )R —7) " IVofllr2(Qn(x0))
+ (44 2d)(R® =) "M fll 2@z + ||51{f2n}||L2(QR<zO>))-

Now we reduce to the case zp = 0 by considering g(z) = f(z002) and by applying the previous
reasoning to g. O

4.6 The kinetic De Giorgi’'s class kDG* and the maximum principle

In this section, we introduce the kinetic De Giorgi’s class kDG™ that ensures that the local
maximum principle holds. This class contains in particular all sub-solutions of kinetic Fokker-
Planck equations. It is made of functions satisfying the gain of integrability (from 2 to p. > 2)
in the three variables (¢, x,v).

4.6.1 The kinetic De Giorgi’s class kDGt

Definition 15 (The kinetic De Giorgi’s class kDG™1). Let I = (a,b] with a,b € R and Q,,
be open sets of R? and S € L?(9).

A function f: Q — R lies in the kinetic De Giorgi’s class kDG (2, 9) if f € L>(I, L*(Qy x
0,)) and V,f € L?(Q) and there exist p. > 2 and Cypa+ = 1 such that for all for all zg € Q,
all k € R and all r, R > 0 such that r < R <1 and Qgr(20) C £,

I = 00+ Boeiguieon < Cuvr (B0 [ (7= w2
QRr(20)

+ Cipg+ (R—7) 7> / 1S L {50y
Qr(20)

(4.5)

Remark 37 (Restriction to small radii). We restrict ourselves to radii , R € (0,1) to get cleaner
formulas. We do not lose generality by doing so because we can always reduce to this case by
scaling.
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4 Kinetic Fokker-Planck equations

Remark 38 (Universal constants). We recall again that a constant is universal if it only depends
on dimension and the constants Cypq+,Cypg- appearing in the definition of the De Giorgi’s
classes kDG,

By definition, this class of functions is invariant by scaling and left composition with zg €
R1+2d.

Lemma 4.6.1 (Invariance by scaling and translation of the De Giorgi’s class). Ifu € kDG1(Q, S)
and Q,(20) C Q and r € (0,1), then the function v = Mu(o,—1(zy " © 2)) lies in kDGT(Q1, &)
with &(z) = %S(UT—I(ZO_]' 0 2)).

The integrability estimate from Proposition 4.5.4 and local energy estimates from Proposi-
tion 4.4.2 can be combined to prove that weak solutions of kinetic Fokker-Planck equations in
a domain Q are in the kinetic De Giorgi’s class kDGT(Q, S).

Proposition 4.6.2 (Sub-solutions are in the kinetic De Giorgi’s class). Let f be a weak sub-
solution of (Oy+v-Vy)f = divy(AV,f)+B-V,f+S in Q with A € E(A\,A) and B, S € L*(Q).
Then f € kDGT (R, S) for some universal p. > 2 and a constant Cypa+ depending on the largest
R such that there exists zg € Q such that Qr(zo) C Q.

Proof. On the one hand, Lemma 4.5.5 and Proposition 4.5.4 can be combined in order to get
the following estimate,

A+1+A)R+2A
[(f = £)+llLre(@r(z0)) < Cr ( [( 7 _)r } IVo(f = K)+ 1 L2(Qr(z0)

A+1)R+1
4[( 7 l 2 ] I = m)+llz2(@ncon + HSl{on}”L?(QR(zO»)

for p. € (2,2 + é) In particular,

R+ 1)?
1CF = R)+ 1 0e (@1 (20)) < ClER_T;gHVv(f — K)+ 172 (@n(z0)

(R+1) 2 2
+ Cpr e I = e llie@neeon + C1lSr2m i2@nio  (46)

with C7 only depending on A, A and p..
On the other hand, we know from Proposition 4.4.2 with to = to and t; € (tg — R?,tg — r?]
that the following local energy estimate hold,

A
§||Vv(f_”")+”%2(c2r(z0)) S// (f—li)a_(tl,d?,’l)) dxdv—}-2/ S(f—lﬁ)+
B, 3(20)xBr(vo) Qr(

20)

320 +4 A2 5
[(R—T’)Q + )\] 1(f — “)+||L2(QR(zO))'

Taking a mean in ¢; yields

A
SIVe(F = 5) 4122, (20
L Agd N
= R2 _ ,,42 (R —_ ’]“)2 )\
32A+5 A2
< [(R—T)Z +5+ 1} I1(F = )+ 1720z +/Q 811209

r(z0)

I = 00+ Beueon +2 [ SU = n)s
Qr(z0)
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4.6 The kinetic De Giorgi’s class kDG™ and the maximum principle

We write the last inequality as

IVo(f = K)+ 1172, 2y < C2((R=7) 2+ DI =5)+ 1 72(0pz0)) T CollSLr2my 7200y 47)

for some constant Cy only depending on A, A and p..
Combining (4.6) and (4.7) yields

1Cf = 8)4 1 re (@n(20))

(R+1)? -2 2 2

< Oz (LR =17+ DI = )4 ey + ColSL 20 a0ntenn)
(R+ 1)2

+C ( rg)g 1(f = )+||L2 (Qr(20)) + ClHSl{f>m}”L2(QR (20))

< 0 (ER—F

> 1 R+1
e (e 1) * s ) 166 = e i

1)

r)

(R+1)°
+Cs (g +1) 15220 Esauton

In particular, for R < 1, we get (R —r) < 1 and the previous inequality simplifies into,
1(f = H)+H%PC(QT(ZO)) < Cy(R—r)YI(f - I{)+||%2(QR(ZQ)) +Cy(R— T)_2||S]‘{f2f€}||i2(QR(z0))' O

4.6.2 The local maximum principle

We are now ready to state and prove the local maximum principle for kinetic Fokker-Planck
equations and the associated kinetic De Giorgi’s class.

Proposition 4.6.3 (Local maximum principle). Let Q C R'2? be q kinetic cylinder and p. > 2
and Cypg+ > 1 defining a class kDG (Q,S). There exists Cpoap, only depending on p. and
Cypa+s such that for all f € kDGH(Q,S), all Qr(z0) C Q and allr < R < 1,

1+l Lo (@n(z0)) < Cimp (R =) fill L2 @n(z0)) + 1S L (Qr(z0)))

pc(3pc 2)

with wg = Sp._T)2

Remark 39 (Universal constants). We recall again for the reader’s convenience that a constant
is universal if it only depends on dimension d and the constants C,pq+,Cypg- appearing in
the definition of the De Giorgi’s classes kDG®.

Proof. We first assume that zp = 0 and prove that there exists some universal constant §y €
(0,1) such that, if [|S||pec(gr) < 1 and if || f+ | z2(qy) < b0, then f <2 a.e. in Q.

Iterative truncation. We follow the reasoning from the elliptic and parabolic cases by consid-
ering an increasing sequence xy and by integrating (f — k)2 on shrinking cylinders Q* = Q,, .
Precisely, we consider

Ay :/Qk(f—/ik)idz

with
VE>0, wkp=2-27% 1 :7“+(R—r)2_k.
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4 Kinetic Fokker-Planck equations

In order to obtain an upper bound on f in @,, we have to find two constants 5 > 1 and
C > 0 such that, for all £ > 0, we have Ag1q < CkHAg. Indeed, in this case, Lemma 2.3.5

__B_
implies that A — 0 as soon as Ay < C" B-1. Since

Ay = /Q (f = 12 do < 1412 my < 63,
R

__B
we see that we can choose dp = (1/2)C" 26G-1. And because the limit of Ay as k — +oo is
I(f — 2)+”2L2(QT)7 the fact that Ay — 0 yields f < 2 almost everywhere in Q,.

Local gain of integrability. We use the definition of the kinetic De Giorgi’s class to write the
local energy estimate for f with zg = 0, R = r and » = ry11. In particular, the difference of
radii is 7, — 741 = (R — 7)27%71, and recalling that 1]l o< (B,) < 1, we obtain,

1 = ki) e grnny < Cipge (R — )42+ /Q (F-
+ Cipat (R =) 220D f > 1} 0 QM.
Use Bienaymé-Chebyshev’s inequality to get |{f > krr1}NQF| < (kpy1 — ki) 2 A, < 220D 4,

< Cipgt (R —r) 420D 4 4 O o (R — ) 722400 4,
< Cypa+ (R —r) 712454,

since (R—7r) <R <1.

Nonlinear iteration. We now estimate Ay, from above by using Holder’s inequality with
¢c € (1,2) such that % = p% + q%,

2
Ak+1 < H(f - Hk—i-l)-‘rH%pc(Qk-H) Hl{leﬁ?k+1}Hch(Qk+l)
2

{(f = ki) > Fpy1 — mr} 0 B ™

< H(f - Kk+1)+||%pc(Qk+1)

2
< (CkDG+(R _ T)424k+5Ak> (22(k+1)Ak> ac

4 4Nk 142
_ 25+ o CkDG+ (R - 7,)74 <24+ qc> Ak e

This implies in particular that A,; < C*1(R — r)_4(k+1)A£ with the universal exponent
=1+ q% =3—2p. ! > 1 and the universal constant C' > 1 only depending on q. and Cypa+-

__ B
In particular, Lemma 2.3.5 implies that A converges to 0 as soon as Ag < [C(R - 7“)*4] (B-1)2
Since Ag < 62 (see the beginning of the proof) we pick o € (0,1) such that

__B _ 48

53 = [C(R — r)—4] <ﬁfl>2 = %Ci (6f1>2 (R—r)(-12,

| =
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4.6 The kinetic De Giorgi’s class kDG™ and the maximum principle

The general case. We now remark that if we do not assume anymore that [|S||pecg,) < 1
and || f+ | z2(gp) < o, either f <0 a.e. in Q1 or || f+|z2(g,) > 0. In the latter case, we consider

f
8o N f+llz2@m) + ISl o@n)

Fo

This function f € kDGT(Qg, S) with S replaced with

S

S=— <
S I1f+llz2@p) + 151 Lo @r)

Since Hf+||L2(QR) < &g, we conclude that ||f+HLoo(QT) < 2, that is to say
£+l @) < 205 M1+ ll2(@m) + 2015 oo (@r)-

__B _ ___28 _
Since d; ! = v/2C26G-02 (R —r) 3-D% | we have wy = 2_f61 — 9c(9ct2) _ pe(3pc—2) O

22 2(pe—1)% -

B

Corollary 4.6.4 (Upside down local maximum principle). Let r, R € (0,1]. There exist uni-
versal constants €91,€1 € (0,1), €91 only depending on Cypa+ and p. and €1 also depending on
R — 7, such that if —f € kDGT(Qg, S) with 1S oc(@r) < €01 and f >0 a.e. in Qg, then

/> 13NQr > (1-e)|Qnl = {f > Lo in Q,«}.

Proof. The function g = 1 — f also belongs to kDG (Qg,S) and g < 1 a.e. in Q. The local
maximum principle from Proposition 4.6.3 applied to g implies that

for a.e. z € Q,, 0<g(z2) <Crmp ((R — 1) | Q1] + 5071>.

We now simply pick €91 and e; such that (R—1r)"“0¢;|Q:| < (4Cpmp)~! and 0,1 < (4CLvp)
and deduce that ¢ < 1/2 a.e. in Q,. This means that f > 1/2 in the small cylinder Q,. O

Corollary 4.6.5 (Local maximum principle - again). Given a (universal) constant p € (0,2),
there exists a (universal) constant Civpp > 0, only depending on d, A\, A and p, such that for
any f € pDGT(Q1,S), then

1o (@, ) < Crmpp (1f+|zr@u) + 1S L= (@1))

1
where ||+ |o@n) = 1721151 gn):

Proof. We argue like we did in the elliptic setting. We give details for the reader’s convenience.
The result is a consequence of the interpolation of L? between Lf and L. If ¢ < 1, we interpo-
late L%/ between L' and L. Let us make this precise. We start by applying Proposition 4.6.3
for r, R € (0,1),

1l @) < Cimp (R —=7) 7N fill 2o + 1S 2o (@p))
< Cup (R =) 155 g 14 Ny + 181251

1 —w
< §||f+\|Loo(QR) + K (R—1)"**
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4 Kinetic Fokker-Planck equations

with
2—¢

K. =27

2
Cinp Il F4llre(@uy + Cmp ISl Lo (n)

and w, = 2%. We now consider rg = % and 7,41 = 7, +0(n+1)"2 with 6 = % (220:1 k*Z)fl =

ﬂ%. In particular, 3 <7, <1 for all n > 0. Letting N,, denote | £+l (q,, ), we thus have,
1 1
Ny < 5 Noy1 + K. (6 Y n4+1)H)* < g Nt + K07 (n + 1)%=.
By induction, we thus get for all n > 1,

1 ke
—w.
NO S 27Nn + K56 2]671 .
Letting n — 0o, we conclude that

[+l Lo (@, ) = No

0 kaa
.
< Ked Z 2k—1
k=1
= Crmpe (1f+1lLe(y) + Comp S| Lo (B,))
. _2wg 00 k%TO 2—¢ 2 3 .
with Crmpe =07 ¢ k=1 9Fi-T 27c Cfyp + CLmp | and § = 5. Since wp and Cpvp are
universal, the constant Cryp . only depends on d, A\, A and e. O

4.7 The De Giorgi’'s class kDG~ & the intermediate value principle
4.7.1 The kinetic De Giorgi’s class kDG~

We introduce next the kinetic De Giorgi’s class corresponding to DG™ and pDG™. The elements
of this class satisfies the intermediate value principle, that is key to reach Holder continuity and
to prove the weak Harnack’s inequality.

Definition 16 (The kinetic De Giorgi’s class kDG™). Let I = (a,b] with a,b € R and Q,$Q,
be open sets of RY and S € L>=().
A function f: Q — R lies in the kinetic De Giorgi’s class kDG™ (2, .S) if

e (LOCAL GAIN OF INTEGRABILITY) —f € kDGT (9, 9);

e (LOCAL GRADIENT ESTIMATE) For any (not necessarily kinetic) cylinders Qine = (T —
7_,T] X By, X By, Qext = (T' — 74+,T] X Bg, X Br, and Qint C Qext, and any k € R,

IVo(f = 8)=ll2(Que) < Cuna— (€7 I(F = K)=ll22(Quw) + 151 (7 <mpllz2(Qene)
where e = min((ty — 7_)"/2, R;l/Q(Rx —1o)Y2, Ry — 1y).

e (LOCAL POINCARE-WIRTINGER'S INEQUALITY) For any radius R > 1 and n € (0,1) and
Tia € (=1 =202, —1—n?), let Qmia = (Twid, 0] X Bsg X Bog and Q— = Q,(—1—1?%,0,0)
and Q4+ = Q1. For any 2z, p such that zy o 0,(Qmia) C Q and any k € R, the function
g=(f—K)- (p*1(251 0 z)) satisfies,

|6~ 9o +wm)_|

< _ - '
gy < Goa- (1IVegllLt@uia) + 15112 @uia)

where (9)g_ =T *in (910_nQuma) and w(R) — 0 as R — co.
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4.7 The De Giorgi’s class kDG~ & the intermediate value principle

Remark 40 (Universal constants). We recall again that a constant is called universal if it only
depends on the constant appearing in the definition of the De Giorgi’s classes kDG®.

By definition, this class is invariant under scaling and left composition with any zy € R1*2¢,

Lemma 4.7.1 (Invariance by scaling and translation of the De Giorgi’s class). Ifu € kDG~ (€2, .S)
and Q,(20) C Q and r € (0,1), then the function v = Mu(o,-1(z " 0 2)) lies in kDG~ (Q1, &)
with &(z) = T%S(arfl(zo_l 0 2)).

We will prove in the next subsection that weak super-solutions of kinetic Fokker-Planck
equations are in the kinetic De Giorgi’s class kDG™.

Proposition 4.7.2 (Weak super-solutions are in kDG"). Let f be a weak super-solution of
(Or +v-Vo)f = divy(AVyf) + B - Vyuf + 5 in Q with S € L®(Q) and A € E(N\,A) and
|B[zoo() < A. Then f € kDG™(Q,95).

4.7.2 Weak super-solutions are in the kinetic De Giorgi’s class kDG~

Because we alreay derived local energy estimates for super-solutions (see Proposition 4.4.2) that
provides the local gradient estimate (through a mean in time, see the proof of Proposition 3.3.2
from Chapter 3), and that we can deduce the gain of integrability (Proposition 4.6.2) from them,
the proof of Proposition 4.7.2 reduces to establishing the weak Poincaré-Wirtinger’s inequality
for weak super-solutions. Let us state it.

Proposition 4.7.3 (Weak Poincaré-Wirtinger’s inequality for weak super-solutions). Let Ti,iq €
(-1-27,-1—7?) and Qmia = (Tmia, 0] X Bsg X Bag and Q_ = Q,(—1—n%,0,0) and Q4 = Q1.
Let f be a weak super-solution of (O + v - Vy)f > divy(AV,f) + B - V,f + S in Quig with
S € L®(Qmida).- Then

|7 = the- +wm)_|

< _ - _
LNQy) Crna- (IVofllLr@uia) + 151 2 (@uia))

where (f)g_ =T *kin (le_QOid) and w(R) = CR™2 for some constant C only depending on
dimension d.

The proof of the weak Poincaré-Wirtinger’s inequality starts with establishing a local estimate
by using the representation of weak sub-solutions.

Lemma 4.7.4 (A local estimate). Let ¥: R'*24 — [0, 1] be C™, supported in Quia and iden-
tically equal to 1 in Q4. Let f € L*(Qmia) such that Vyf € L*(Qmia) and (0 +v - Vi) f >
divy(AV,f) + B -Vuf + 5 in D' (Qmia). Then

166 = -y < (19 lr @ + 1532

where C = C(d,\) and
f =T % (fKP).

Proof. We first use the representation of sub-solutions (Proposition 4.5.1 applied to — fioc) in
order to get that

floc = f\II = (F(I) + F(v)> *kin Gloc +T *kin (Sloc + mloc)
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4 Kinetic Fokker-Planck equations

with

Sloe = (BY — (A4+1)V,V)-V,f +SU + fKU.
We then consider g = fioc — f with f = I' %14, (f¥) and define
Sioc = (BY — (A+ 1)V, ¥) -V, f + ST,

{GIOC — U(A— D)V,

Then
—g < (F(x) + F(U)) *kin (_Gloc> +T *kin (_Sloc)-

In particular,
g- = max(0, —g) < [(T™) + T™) s Sioc| + |T #iin Sioc-

We now repeat the reasoning from the proof of Lemma 4.5.3. Thanks to Young’s inequal-
ity (Lemma 4.2.8) and the integrability properties of the functions I','(*), T(*) established in
Proposition 4.3.1-(iii), we deduce that for all T' > 0,

[ skin Stoe and (D@ 4+ T0)) sy Sy are in L (=T, T) x R?%).

Moreover, there exists Cy only depending on dimension such that,

||gf||L1(Q+) < Cy <||610(:HL1(R1+2d) + HglocHLl(RHQd)) .

The constant Cy only depends on dimension because it is related to Lebesgue norms of I on a
time interval that is related Q4 and Quiq, both contained in (—1,0]. We conclude by using the
formulas for &, and Sjc. O

The next step in the derivation of the weak Poincaré-Wirtinger’s inequality from Propo-
sition 4.7.3 is to construct a cut-off function whose free transport part is non-negative, and
bounded from below by 1 in the past. Here is a precise statement. Recall that T4 =
—1 — 212 4 e with e = 511722 /2.

Lemma 4.7.5 (Cut-off function). Given d1,m2 € (0, 1), there exists a C* function Wy : [Tiniq, 0] ¥
R2? that is supported in [Tiiq,0] X Bg X Ba, identically equal to 1 in Q, and such that
(at +v- Vx)‘;[fl >0 and (815 +v- Vx)\:[fl >11n [Tmid; —-1- 7’]22] X Bl X Bl.

Proof. Consider Uy (t,z,v) = ¢1(t)p2(x —tv)ps(v) for C* functions ¢; valued in [0, 1] and such
that

e 01(Tmia) =0, ¢] >0 in [T, 0], ¢} =1 in [Tiiq, —1 — n2%] and 1 =1 in [—1,0];
e (9 is supported in By and equal to 1 in Bs;
e (o3 is supported in By and equal to 1 in Bj.

Let us check that the conditions are satisfied. As far as the free transport is concerned, we
remark that (0; + v - V) (p2(x — tv)) = 0 and get,

(O +v - Vo) Ui (t,2,0) = ¢ (t)pa(x — tv)ps(v).
In particular, for (t,z,v) € [Tiia, —1 — 122] x By x By, we have |z — tv| < 2 and
(O +v- V)W (t,z,v) = @) () > 1.

Moreover, for v € By and t € [Ty,iq, 0] and |z| > 8, we have |z —tv| > 4 so that pa(z —tv) = 0.
This implies that Wy is supported in [Ti,iq,0] X Bg X Bg. To finish with, when (¢,z,v) € Q+,
we have |z — tv| < 3 and we conclude that Uy (¢, z,v) = 1. O
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We can now study the local mean f associated with this test function Wy, after rescaling it.

Lemma 4.7.6 (Control of the local mean). Let f: Qext — [0,1] and ¥y be the cut-off function
from Lemma 4.7.5. There exist R > 1 and 6 € (0,1), only depending on d,n2, 61,02, such that
the local mean

f=Txan (fKY)  with W(t,z,v) =V(t,z/R,v/R)

satisfies,
f = Tin (f1-nQuia) — CR™?

for some constant C only depending on the dimension.
Proof. We remark that the scaling implies that for all (¢,2,v) € (Tid, —1 — 1722) X Bsr X Bag,
(Or+v-V)¥(t,z,v) >1 and  AY(t,z,v) = R 2A,V(t,z/R,v/R).

We split f into two pieces: f = f(l) + f(g) with

fy =T % (f(Or +v- V)W) and  frg) = =T tpn (fALD).

We first estimate f(l)(z) from below for z = (¢t,x,v) € Q@+ = Q1. In order to do so, we first
remark that for ¢ = (s,y,w) € Q— N Qmia C (—2,—1] x By x By, we have

t—s/<3, lz—y—({t—s)w <5, |Jv—wl <2

This means that ("' oz € (—2,2) x Bs x Bs.
Keeping this remark in mind and using (4.8), we write,

Foy(e) = / D¢ 0 2) F(C)(@) 4 v - Vo) T(C) dC.

Remark that the three terms in the product forming the integrand are non-negative,

fo@z [ reteanod

We now turn our attention to f_(z). Since we have A,V (¢, z,v) = R2A, V4 (t,z/R,v/R) and
f€10,1] in Qext and W is supported in Qext, we can write

||Av\1j1||oo

< ||Av\1} < 3HAU\I’1HOO
R? '

r 1||oo
lf)] < (I #iin 1) < T (T stin 1y_1_2p,2<t<0}) < 72

We used that 1 + 213 < 3 and the fact that for ¢ fixed, I'(¢,-,-) has mass 1 to get the last
inequality. O

Then the weak Poincaré-Wirtinger’s inequality follows from the combination of the three
previous lemmas.

Proof of Proposition 4.7.2. Combine Lemmas 4.7.4, 4.7.5 and 4.7.6. O
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4 Kinetic Fokker-Planck equations

t

Qext

(z,v)

Figure 4.1: Geometric setting of the intermediate value principle.

4.7.3 The intermediate value principle

Proposition 4.7.7 (Intermediate value principle). Given d1,d2,m2 € (0,1), there exist R > 2
and 0,81 9,02 € (0,1), only depending on d, \, A, 81, 52, n2, such that for Qe = (=1 — 213, 0] x
Bsp X Bogp and Q— = Qp,(—1 — 12%,0,0) and Q4+ = Q1, for any f € kDG (Qext, S) with
1SN Loe (Qexe) < €025 if

Hf>21NnQ-|>6a|Q-| and [{f<0}NQ+]>02|Q4],

then |{9 < f < 1} N Qext| > 51,2

Qext | .

Proof. We choose Tyiqg = —1 — 21722 + e with e = 517722 /2. The proof proceed in three short
steps.

CROPPING THE CYLINDER )_. We start with proving that the cropped cylinder Q_ N Qmiq
satisfies

2 1)1 Q- 1 Quial > L1Q-|. (4.8)

Recall that e = 611722/2 and Tiq = —1 — 27722 + e and that we have by assumption that

—1-np?
/ {F(t) > 1) N By x Byl di > 81|Q|.

—1-292
This implies that

_1_7722

)
72 10Q-NGuial = | (1) > )N By x Byl dt > 511Q-| —emlQ-| = 1@ |.

—1—27722-1-6

LOWER BOUND ON THE LOCAL MEAN IF f € [0, 1]. We next assume that f takes values in [0, 1]
(recall that it is only assumed to be non-negative). We claim that, if [{f =1} NQ_| > 6:|Q_]|,
then there exists ¢ > 0 and R > 1 such that the local mean appearing in the definition 16 of
the kinetic De Giorgi’s class kDG~ (Qext, S) satisfies,

(flo- —w(R) > V0 in Q. (4.9)
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4.7 The De Giorgi’s class kDG~ & the intermediate value principle

Indeed, we can use the definition of kDG™ (Qext, S) and estimate the local mean (f)q_ as follows,

e =]  TETearu

> ((0’2) inf I‘) Hf =1} NQ- N Qmid

><B5><Bz

I
> Cd5n24d+2|Q1|
with Cy = inf (g 2)xBsxB, I'- We now choose R > 1 such that

)
w(R) < CdZ17724d+2‘Q1’

and we obtain the claim by choosing v/8 = C’d%n24d+2|Q1\.

REACHING THE CONCLUSION WHEN f € [0, 1]. We combine the local estimate from Lemma 4.7.4
with the lower bound on the local mean from (4.9) in order to write,

(VO —0)52Q+| < (VO —0)[{f <0} N Q]
< 1(VO = sl
<I(f = H+llrow
< c(uvufummid) n \Summm).

We now make appear the intermediate value set. We use that f € [0,1] and V,f =0in {f = 1}
(see Proposition 2.2.4) in order to write

vvf = 1{0<f<1}vv(f - 1)— + vv(f - ‘9)—-
This decomposition leads to the following estimate,
1 1
IVofll 21 (Quia) SHO < f <1} N @mial2 [V (f = 1=l 22(Quia) T 1@mial 2 Vo (f — O) =l 22(Qua)
we use now the local energy estimate for f from Qg t0 Qext,
1,
<Cipa- {0 < f <1} N Qext|2 (e 1(f = )=l z2(Quer) + 1511 £2(Qut))

+ Crpa- (e7MI(f — 0) 11 12(Quwe) + 151 22(Qurt))
<(14 e NCipg-|QextZ[{0 < f < 1} N Quxt|? + Crpg- (|Qexs| 70 + £02)

where we recall that we chose e = d1722/2.
We now combine the consequence of the local estimate with the estimate of the gradient and
we get,

<\/§_ 9) 52Q4| < (1+ 6_1)CkDG*’Qext\%|{9 <f<1}in Qext‘% + CkDG*(‘Qextﬁg + €0,2)-

We now pick § and £¢ 2 such that

(Vo -0) 0210+

N | =

Crpi (1Qext |20 + £0.2) <
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4 Kinetic Fokker-Planck equations

(V—0)55

and we get the result with 62 = .
2(1+671)CkDG7 |Qext|2

REMOVING THE UPPER BOUND CONDITION ON f. If now f takes values larger than 1, we
replace it with f = min(f,1) =1 — (1 — f)4+. Thanks to Lemma 4.5.5, we know that it is a
super-solution of (0 + v - V) f > divy,(AV,f) + B - Vyuf + 5 in D' (Qext) with S = Sl
Since their intermediate value and sub-level sets coincide and { f =1} ={f > 1}, the previous
conclusion for f implies the conclusion from the statement for f. O

4.8 Expansion of positivity and improvement of oscillation

4.8.1 Expansion of positivity

In this subsection, we prove that if {f > 1} is of positive measure in the cylinder Qpes lying
in the past, a pointwise lower bound is generated in the future (in Q1), see Figure 4.2. The

A

t

Qexp

Q1

Eoox

(z,v)

Figure 4.2: Geometric setting of the expansion of positivity.

parameter 1y € (0,1) is useful when proving weak Harnack’s inequality. We will use 79 = 1/2
and 1y = 1/y/m where m is an integer related to the covering argument, see Theorem 4.9.3 and
Proposition 4.9.4. In order to get De Giorgi & Nash’s theorem, 19 = 1/2 is enough.

Proposition 4.8.1 (Expansion of positivity). Let ng € (0,1). There exist constants {y,eq €
(0,1) and R > 1, depending on d,\,A and ng, such that for all f € kKDG™ (Qexp,S) with
S € L*(Qexp) such that [|S||poc(Quy) < €0 and f >0 a.e. Qexp,

2 110 Qponl > [Qpl = {200 e in Q)

where Qpos = Qny(—1,0,0) and Qexp = (=1 — 02, 0] X Bagr X Bsg.

Proof. The proof consists in applying Corollary 4.6.4 to the function f after scaling it. The
intermediate value principle from Proposition 4.7.7 ensures that one of the scaling functions
fr. = 67F f necessarily satisfies the assumption of the corollary.

GEOMETRIC SETTING. Because we want to get the lower bound on ()1, we need to get an
information in measure from Proposition 4.7.7 in a cylinder @, slightly bigger than @;. In
order to do so, we first produce a time lap between Q1 and Qpos (changing the latter in Qpos ),
to the cost of a factor 2 on the lower bound on the measure of the super-level set of f. Then we
adjust the scaling factor 7; in the intermediate value principle so that, after scaling, we recover

the geometric setting of the expansion of positivity: Q_ coincides with Qpos -
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Qexp -
1 \in (Q+ after scaling)

s ng)osp (Q— after scaling)

Figure 4.3: Geometric setting: from expansion of positivity to intermediate values.

We now make this precise. We first pick 171 € (0,79), only depending on 7, such that
|Quo| — |Qni| = 1@yl Such a choice ensures that

1
[{f 213 NEpes’l = 1@’ (4.10)

with Qpor’ = Qn, (=1 — 03 +17,0,0).
Then we consider 72 such that the scaling of @_ from the intermediate value principle (Propo-
sition 4.7.7) coincides with Qpos -
n m
L+ng =2 + —5 & np =

2 VIt —nt

The scaling factor 71 /79 is less than v/2, then Qexp contains Qext after scaling. In particular,
242 < 3 and 82" < 23.

We next consider fi,(z) = fu((n1/m2)z) = 0% f((n1/n2)z) where rz = 0,(2) is the kinetic
scaling, see page 66. We still have to fix the scaling parameter § € (0,1). Now fk can be
studied in the geometric setting of the intermediate value principle (see Proposition 4.7.7).

PARAMETERS FROM THE LOCAL MAXIMUM AND INTERMEDIATE VALUE PRINCIPLES. We have
to fix a parameter g9 measuring the size of source terms in such a way that all scaled functions
fi are in a kinetic De Giorgi’s class with a source term S, = 0% satisfying Conditions from
Corollary 4.6.4 and Proposition 4.7.7. In order to do so, we first get 1 from Corollary 4.6.4
with R = 1, » = n2/m < 1. Then we get 612 from Proposition 4.7.7 for 6, = % and o =
€1. We consider next the largest integer N > 1 such that Nd;o < 1. We finally take ¢g =

9N+1 min(8071, 6072) .

FINITE ITERATION. We remark that for all k£ € {1,..., N + 1}, we have

2110 Q 12 1{f > 110 Q1> {IQ-|

because fj, > fi and (4.10) corresponds to the previous estimate with k = 1.

Moreover, we consider the set E C {1,..., N + 1} of integers k such that |{fx < 0} N Q1| >
€1|Q1]. For those k’s, the intermediate value principle implies that [{§ < fi < 1} N Qext| >
612|Qext|- This means that [{#F+! < f< 0%} N Qext| > 612|Qext|- The sets {#FF! < f <
0"7} N Qext are disjoint in Qext and we conclude that

Qext| > D {0 < f < 0"} N Qext| > (#E)61.2|Qexc-

keE

In particular, (#E)d12 < 1 and this implies that #E < N.
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4 Kinetic Fokker-Planck equations

CONCLUSION. ~ We thus proved that there exists kg € {1,...,N + 1} \ E. This means that
H{ fro <0} NQ1| < e1|Q1] or equivalently,

{fros1 > 13N Q1| > (1 —e1)|Q1l-

The upside down maximum principle from Corollary 4.6.4 with R = 1 and 7 = /m then
implies that fr,+1 > % almost everywhere in (), that is to say f > %9’“0“ in Q1. We thus get
the desired estimate with £y = 0~ F1. O

4.8.2 Improvement of oscillation

An easy consequence from the progation of positivity is the improvement of oscillation and, in
turn, De Giorgi & Nash’s theorem.

Proposition 4.8.2 (Improvement of oscillation). Let gy be given by Proposition 4.8.1 about
expansion of positivity. There exists a universal constant u € (0,1) such that for all f €

kDGJr(QQ, S)NkDG™(Q2,S) with S € L*>®(Q2) with ”SHLOO(QQ) <&y and u € L>®(Q2),
oscg, f <2 = oscq, [ <2u.

Proof. We first embed Qexp from Proposition 4.8.1 into a large kinetic cylinder. Since ng € (0,1)
and R > 2, we see that Qexp C Qsr. Then we consider for z € Qgr,

f(2) = f((3R)™'2) — ess-infq, f.

The function f takes values in [0,2] and the corresponding source term S is such that

15 Lo (Qer) < €0-
We distinguish two cases.

o If [{f > 1} N Qpos| > 3|@pos|, then expansion of positivity from Proposition 4.8.1 yields
that f > ¢y a.e. in Q1.

o If {f > 11N Qpos| < 5|@pos|, then we consider g = 2 — f and we have |{g < 1} N Qpos| <
%yong or equivalently, [{g > 1} N Qpos| > 5|Q@pos|. In particular, [{g > 1} N Qpos| >
5|@pos|- Then expansion of positivity from Proposition 4.8.1 yields that g > /o a.e. in
Q1, or equivalently f <2 —/{j a.e. in Q1.

In both cases, we obtain that oscq, f < 2— 4, that is to say oscq, f < 2 — 4y with w =
(6R)~". O

4.8.3 Proof of the kinetic De Giorgi & Nash’s theorem

Proof of Theorem /.4.1 (De Giorgi € Nash’s theorem). The theorem is a consequence of the
local maximum principle (Proposition 4.6.3) and of the improvement of oscillation (Proposi-
tion 4.8.2). The local maximum principle applied to f and —f with zp = 0 and r = % and
R =1 implies that
SCSIP |f1 < Comp (4| fl 2@y + I f Lo 0u)) - (4.11)
3

4
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4.9 (Weak) Harnack’s inequality

As far as the Holder semi-norm is concerned, we prove that there exists o € (0,1] and Cy > 1
(both universal) such that for all zp € @1, and all r > 0,
2

oscquairiay 1 = €0 (Iflmiap) + =@ )

%
This implies that [f]ca (@) < Co (\fHLoo(QS) + ”SHLO@(Ql)) (see Proposition 4.2.6).
2 4
We thus consider an arbitrary point 2y € Q% We infer from (4.11) that f € L>(Q1(z0)). In

1
I
order to invoke the improvement of the oscillation of f (Proposition 4.8.2), we introduce

= 2008 1z
F(2) f(z0087"2)

=@y + & 18T=an

S(2008 12)

TSz~ satisfies [|S]| o0 (g,) < €0. We

Then ||fHLoo(Q2) < 1 and the source term S(z) = £82

thus get from Proposition 4.8.2 that oscq,, f < 2u. We now scale recursively the function f and
consider,

Vz€Qa frlz) =pFF((w/2)k2)
whose source term Sy, (z) = (w?/(41))*S((w/2)¥z). We remark that ||S’k||L°°(Q1) < ||§HL°°(Q1) <

go if we assume (without loss of generality) that u > w?/4. We conclude that oscq, fi < 2 for
all k£ > 1. This translates into,

. k
oscq,, [ < 2uf =217er®  with 7y = 2;}— and (w/2)* = p.

%
Now for r € (0, 2], there exists k > 0 such that rp11 < r < rg. This implies that
oscq, f < oscq,, f <270 =2y, < 27

In terms of the function f, this implies that for all r € (0, 2],
08CQy (20) f < 872 (HfHLOO(Q%) + 6_ol|!5||L<>o(Ql)> (r/8)%.
Since for s > %, we have

OSCQs(zo)ﬁQ% < 2Hf||L°°(Q%)(4S)a7

we conclude that
flogaey =27 <||f||L°°(Q2) +561|5|!L°°(Ql)> : =

4.9 (Weak) Harnack’s inequality

In this section, we show that elements of the kinetic De Giorgi’s class kDG™ satisfies a weak
Harnack’s inequality. We state it at unit scale. We already saw when deriving the expansion of
positivity that it is necessary to have some room in (x,v) around the unit cylinder if the time
interval is constrained to be (—1,0]. This impacts the geometric setting of the weak Harnack’s
inequality as well.
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4 Kinetic Fokker-Planck equations

Theorem 4.9.1 (Weak Harnack’s inequality). There exists two universal constants Ry > 1
and w € (0,1) and two positive universal constants Cyni and p such that for Qwni = (—1,0] x
BRO X BRO and Qpast = Qw(_l + W27070) and Qtuture = Qu, and f € kDG_(Qwhias) with
S € L®(Qwni) and f >0 a.e. in Qwni, we have

1£115@pn) < Co (intF + 1Sl ) -

future

1/
Remark 41. We let || f[|Lr(Q,.e) denotes (praSt fp) ¥ even if p could be smaller than 1.

It is then possible to combine the weak Harnack’s inequality with the local maximum principle
in order to get Harnack’s inequality for solutions of kinetic Fokker-Planck equations.

Theorem 4.9.2 (Harnack’s inequality). There exists two universal constants Ry > 1 and
w € (0,1) and a positive constant Cy such that for Quam = (—1,0] x Br, X Bg, and Qpast =
Quy/2(—1 +w?,0,0) and Quture = Qu, and f € kDG~ (Quarn, S) N kDG (Qparn, S) with S €
L>®(Qnarmn) and f >0 a.e. in Qnarn, we have

sup f < Cy (Qinf f+ IISHLOO(QM)> :

Q;ast future

Proof. Apply first Proposition 4.6.5 between Q},q and Qpast (from the statement of the weak
Harnack’s inequality). Then combine the estimate with the one given by Theorem 2.5.2. O

Remark 42. The fact that Qpast is replaced with ()7, in the statement of Harnack’s inequality
is irrelevant since infg, . f < ian;uture J with Qf e = Qu/2-

4.9.1 Generating and propagating a lower bound

The proof combines the expansion of positivity from Proposition 4.8.1 with a covering argument.
We aim at estimating || f|| LP(Qpase) DY the infimum of f in Qputure- By linearity, we can reduce to
infg, .. f < 1. Establishing the estimate amounts to proving that there exists e > 0 (universal)
such that for all ¢t > 1,

H{f >t} N Qpast| < Ct™°.

A further reduction is to prove that there exists M > 1 and p € (0, 1) such that for all integers
k > 1, we have

’{f > Mk} meast‘ < C(l - ,u)k

In order to prove this, we consider Uy = {f > M k“} N Qpast and we want to prove that
|Ugt1| < (1—p)|Uk|. In order to prove this inequality, we cover the set Uy, 1 with small cylinders
() where we have a lower bound on f in measure. By using the expansion of positivity once,
we generate a lower bound on a cylinder in the future, with a larger radius. Then by applying
iteratively this expansion of positivity, we propagate this lower bound in the future, till the
final time. Since we know that f takes values smaller than 1 in Qguture, this gives us some
information on the radius of the initial cylinder Q.
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4.9 (Weak) Harnack’s inequality

4.9.2 The Ink spots theorem in the kinetic geometric setting

We first review the covering result that we will be using in the derivation of the weak Harnack’s
inequality.

In order to state the covering result that we need in order to establish the weak Harnack’s
inequality, we need to introduce the notion of stacked cylinders. Given an integer m > 1 and a
cylinder @ = Q. (20), the stacked cylinder Q™ equals {(¢,7,v): 0 <t —tg < mr?, |z —xg — (t —
to)vo| < (m + 2)r3,|v — vo| < 7}

Theorem 4.9.3 (Leaking ink spots in the wind). Let E and F' be two bounded measurable sets
of R1%24 sych that E C F N Q1. We assume that there exist two constants ro € (0,1) and an
integer m > 1 such that for any cylinder Q = Q,(20) C Q1 such that |Q N E| > %|Q\, we have
Q™ C F andr <ro. Then |E| < (1 —¢) (|IF N Q1|+ Cmrd). The constant ¢ € (0,1) and
C > 1 only depend on dimension d.

The proof of this theorem is an easy adaptation of the parabolic one. We postpone it until
Section 4.10.

4.9.3 Expansion of positivity for stacked cylinders and for large times

In this subsection, we derive the two results that will allow us to use the covering argument from
Theorem 4.9.3. There are two assumptions on cylinders intersecting F in a good proportion:
after stacking them, they should lie in F', and their radius should be under control.

e On the one hand, we check that if we choose 1 depending on the integer m (from the
statement of Theorem 4.9.3) then Proposition 4.8.1 yields a lower bound in the stacked
cylinder Q7" from an information in measure in Q1.

e On the other hand, we apply iteratively Proposition 4.8.1 with n = 1/2 in order to estimate
how the lower bound that is generated for small times deteriorates for large ones.

Expansion of positivity for a staked cylinder. We first scale and translate in time the result
from Proposition 4.8.1 in order to get a statement with Qpos replaced with Q1. We notice that
the stacked cylinder Q7" equals (0, m] X Bp42 X Bj.

Proposition 4.9.4 (Expansion of positivity for a stacked cylinder). Let m > 1 be an integer
and let Ry, > 1 be given by Proposition /.8.1 forn =1/y/m. Let Qstack = (—1,m| X Byz,3pg, X

BBmRm-
There exists a constant M > 1, depending on d, X\, A and m, such that, if f € kDG~ (Qstack,0)
and f >0 a.e. Qgtack, then,

{2 MIn@i2 Q] = {f21ac inQT),

Iteratively stacked cylinders. We are going to apply iteratively Proposition 4.8.1 to control
the lower bound generated after applying it once. We need to make sure that the iterated
cylinders do not exhibit the domain in (z,v) and that their union captures the cylinder Qguture,
see Figure 4.4. Recall that Qpast = Qu(—1+ w?,0,0) and Quture = Qu-

Lemma 4.9.5 (Iteratively stacked cylinders). Letw € (0,1072). Given Q = Q;(20) C Qpast, we
define for allk > 1, T}, = Z?Zl (277)2 and pick N > 1 the largest integer such that to+Tn < 0.
In particular 2Nr < 1.
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— A

to + TN ——

Qpast

> (x,v)

Figure 4.4: Stacking iteratively cylinders above an initial one contained in QQ_. We see that the
stacked cylinder obtained after NV + 1 iterations by doubling the radius leaks out of
the domain. This is the reason why Q[N + 1] is chosen in a way that it is contained
in the domain and its “predecessor” is contained in Q[N]. Notice that the cylinders
Q[k] are in fact slanted since they are not centered at the origin. We also mention
that Q[N + 1] is choosen centered if the time o+ T is too close to the final time 0.

If R denotes |to + T|'/?, we consider Ryy1 = max(R, p) with p = (4w)'/3 and

ZNO(R,O,O) ZfRZPa

Vke{l,...,N}, zr=2z90(1},0,0 and z =
{ b zk =200 (Tk,0,0) N+1 {0 SR <p.

We finally define Ry, = 2*r for k € {1,...,N} and Q[k] = Qg (zx) for k € {1,...,N +1}.
These cylinders Qlk] are such that

QK] € (=1,0) x By x By and Q[N 4+ 1] D Quutwre  and  Q[N] D Q[N]
where Q[N] = Qryyi (2n41 0 (R 14,0,0)).

Proof. We first check that the sequence of cylinders is well defined for w < 1072. Since r < w,
we have tg + T < —1 +w? +4r2 < 0. Let N > 1 be the largest integer such that to + Ty < 0.

We check next that Qgture C Q[N + 1].

If R < p, then Q[N + 1] = Q, and we simply remark that w < p = (4w)'/3 to conclude.

In the other case, that is to say when R > p, we have Q[N + 1] = Qr(zn+1) with zy41 =
zy o (R,0,0) = (to + T + R?, z0,v0) = (0,20,v0). In particular, ZJ?I}H = (0, —z9, —vp) with
20 = (t0,70,v0) € Qpast = Qu(—1 + w?,0,0). We have to check that Qw(z;,i_l) C Qgr. In this
case, for z = (t,z,v) € Qu,

-1
Zyg1 02 = (t,—wo +x —tvg,v — vo) € Qr

if w? < R? and if w3 +w? +w? < R® and if 2w < R. This is true as soon as 4w < R3, that holds
true because we are dealing with the case p < R.

Let us now check that for all k € {1,..., N + 1}, Q[k] C (—1,0] x By x Bs.
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4.9 (Weak) Harnack’s inequality

As far as Q[N +1] is concerned, we use the fact that R = |t0+TN|% <landp= (4w)% <1lto
get Ry41 < 1. Moreover zy41 € Q1 (because it is obtained by translating in time zp € Qpast)
and thus Q[N + 1] C (—1,0] x By X Bs.

We remark (2V7)2 < Ty < —tg < 1. If Z = (t,75,vx) € Q[k] for k < N then there
exists (¢, 2,v) € Q1 such that z; = 2o o (T}, 0,0) o ((25r)t, (2¥r)3x, 2¥rv). This implies that
T = 20 + Tpvo + (287)%tvg + (287)32 and vy, = vo + 2¥rv and since 29 € Qpast,

k] < [aol + [vo| + [vo| + [ Sw? +2w+1<2  and  fu| Sw+1 <2

In particular Q[k] C (—1,0] x By x Bs.

We are left with proving that Q[N] C Q[N].

If R > p, then QN = Qr/2(zn41) and zy 11 = (0,20 — Rl/Qvo,vo). We remark that R/2 <
2N7 <1 (since Ty, 1 > 0). In particular [zy11| < w® 4+ RY2w < w? + V2w <1 and |oy41] < 1
and Qn C Q1(2n+1) C (—1,0] x By x By.

Let us deal with the case R < p. In view of the definitions of these cylinders, this is equivalent
to

Q,2(2) C Qon, with z = (=T, 0,0) 0 25" o (—p?,0,0).

In order to prove this inclusion, we first estimate 2Vr from below. Since to + Tnyr >0
and —tg > 1 — w?, we have Tiyy1 = (4/3)(4V+1 — 1)72 > 1 — w? and in particular 4Vr? >
(3/16)(1 — w?) > 1/8 (since w? < 107* < 2/3). We conclude that

2Nr > 1/(2V/2). (4.12)

With such a lower bound in hand, we now compute z = (R? — p?, —xo + (to + p*)vo, —vo) and
get for z € Q, 2,

502:(R2—p2—i—t,—mo—i-(t0+p2)vo+$—tvo,v—vo)EQgp.

Indeed, recalling that p3 = 4w = 0,04, we have —2p? < R? — p? +t < 0 and | — zo + (to + p* —
tvg + | < w? + 3w + (p/2)2 < (2p)® and v — vo| < (p/2) +w < 2p. O

4.9.4 lterated expansion of positivity

Proposition 4.9.6 (Iterated expansion of positivity). Let Ry /o be the universal constant given
by Proposition /.8.1 with ng = 1/2 and let Ry > Ry/5 and Qwni = (—1,0] x Br, X Bg,. There
exists a universal constant 9 > 0 such that for all f € kKDG™ (Qwhi,0), all A > 0 and all
cylinder Q'I’(ZO) - Qpast:

> ANQG > 5@kl = {72 A0/ e in Quime

Proof. We first apply Proposition 4.8.1 to the function g = f/A after scaling it. This implies
that g > Afp in Q[1]. We then apply it iteratively and get g > A% in Q[k] for all k € {1,..., N}.
In particular, g > A in Q[N]. This cylinder is the “predecessor” of Q[N + 1] and we thus
finally get g > ALY in Q[N +1]. Becauce Q[N + 1] contains Qputure, we finally get g > A¢) 1
in Qfuture. Now we remember that 2Vr < 1 (see Lemma 4.9.5). We pick g such that £y = 277
and we write £) 1 = (2=(VFD) > (r/2)0, O
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4 Kinetic Fokker-Planck equations

Proof of Theorem /.9.1 (weak Harnack’s inequality). The proof proceeds in several steps.

REDUCTION. We first reduce to the case S = 0 by considering f = f + 15| oo (@) (B + 1)
Second, we reduce to the case infg,,,.f < 1 by considering f = f/max(1,infq,,. f)-

Indeed, f < f < f 4 [|S|lpoo(Quyy) @nd it is in kDG (Qwni, 0).

PARAMETERS. We now aim at proving that there exist two universal constants p > 0 and

C > 0 such that || f[| Lr(Qpae) < Cwni- This is equivalent to prove that there exists three universal

constants M > 1 and fi € (0,1) and C' > 1 such that

Vi > 1, {f > M*} N Qpast| < C(1 — i)k

For k = 1, we simply pick fi < 1/2 and C' > 2|Qpast|- We then argue by induction. We are going
to apply Theorem 4.9.3 (about covering with ink spots) for some integer m > 1 large enough so
that ™1(1 —c) < 1—¢/2. The parameter m only depends on ¢ = ¢(d), it is therefore universal.

We are going to use Proposition 4.9.4 (propagation of positivity for stacked cylinders) with
m universal as above. Then we obtain another universal parameter R,,, from Proposition 4.8.1,
see the statement of Proposition 4.9.4. We will also use Proposition 4.9.6 (iterated expansion
of positivity) from which we get yet another universal parameter R;/,. Now we choose Ry =
max(R; /2,23m> Ry,).

THE COVERGING ARGUMENT. We are going to apply the ink spots theorem to the sets Ey =
{f > M1 n Qpast and Fy = {f > MF*} N Quni after tranforming Qpast into Q1. We thus
consider a cylinder @) C Qpast such that |[Ep N Q| > %|Q| We have to check that the stacked
cylinder Q™ is a subset of Fjy and that the radius of Q is controlled by some constant 7.

We start with checking that Q™ C Fy for Q such that |Ey N Q| > %|Q\, that is to say

> M0l > SlQl

We recall that o, denotes the scaling operator. If Q = @Q,(29), we consider for z € (1 the scaled
function g(z) = M % f(0,(200z)), so that [{g > M}NQ1| > 3|Q1|. We have g € kDG (Qstack, 0)-
We deduce from Proposition 4.9.4 that g > 1 a.e. in Q. This means that f > MF a.e. in Q™.
We thus proved that Q™ C Fp.
We now estimate r from above for Q = Q,(20) C Qpast such that [{f > M*1} N Q| > 1|Q|.
Proposition 4.9.6 implies that f > M**1(r/2)7 in Qpyure. This implies that M*1(r/2)%0 < 1
k+1

that is to say r <2M 10 =:r.
CoNCLUSION. Now Theorem 4.9.3 implies that

_oktl
{F > M0 Qpasl < (1= ¢/2) (11 > M*} 0 Qpast| + CmaM 50 ).
We use the induction assumption and get
~ _ok+1
{F > M0 Qpasl < (1= ¢/2) (C(L= ) + Cmab 50 )

Recall that M > 1 and 7o > 0 are universal. We now choose fi so that (1 — i) > M~2/7% and
(1—@)?%>1-c/2. We get

{f > MkH} N Qpast| < (1 — /1)2 (é(l - ﬂ)k +Cm4(1 — ﬁ)k“)
< <(1 —)C + 4Cm> (1— p)k+L.

We thus pick C' such that (1 — 2)C +4Cm < C that is to say C' > 4Cmj~". O
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4.10 Proof of the ink spots theorem

4.10 Proof of the ink spots theorem

This section is devoted to the proof of the ink spots theorem for kinetic cylinders. The proof
follows very closely the one presented for parabolic cylinders. Still, we repeat every reasoning
for the reader’s convenience, and to allow them to read both chapters independently.

The assumption of the ink spots theorem asserts that the set £ can be covered by cylinders
and if more than half the cylinder lies in F, then the corresponding stacked cylinder Q™ is
contained in F. The conclusion asserts that the volume of E is bounded from above (up to
some multiplicative constant) by the volume of F'. In order to relate these two volumes, it is
necessary to extract from the original covering another one made of disjoint cylinders, and to
make sure that we do not lose too much by doing so. This is made possible thanks to a kinetic
variation of Vitali’'s lemma with Euclidian balls.

4.10.1 A kinetic Vitali's covering lemma

As explained in the previous paragraph, Vitali’s lemma asserts that a countable disjoint family
of cylinders can be extracted from any covering of a set. We make sure that we do not lose too
much by doing so is by imposing that the whole set is recovered if the radii of cylinders of the
sub-covering are multiplied by 5.

For an arbitrary cylinder Q € R'24 if Q = Q,(z) with 29 = (to, x0,v0), then 5Q denotes
Qs (to + 1272, 20,vp). It is necessary to update the top of the cylinder in order to extract a
disjoint sub-cover, see in particular Lemma 4.10.2.

Lemma 4.10.1 (Vitali). Let {Q;}jes be a family of kinetic cylinders whose radii rj satisfy
Supje,s 1 < +00. There exists a countable sub-family {Qj, }ien of disjoint cylinders such that

Ujes@j C UiendQj,.
In order to prove this lemma, we first deal with two overlaping cylinders.

Lemma 4.10.2 (Overlaping kinetic cylinders). Let Q; = Qy,(2;) fori = 1,2 such that Q1NQ2 #
0 and ro < 2r1. Then Q2 C 5Q1.

Proof. We first reduce to the case z; = 0 by translating both cylinders. By assumption, there
exists z12 € @1 N Q2. This means that there exist 1o € (—r%,O] and z12 € Br? and v12 € By,
such that
to — ’I“% < 75172 <ty and |l‘172 — X9 — (75172 — tQ)U2| < ’I“% and |U172 — ’Ug| < T9.

The fact that Q2 C 5@ is equivalent to the following condition

—13rf <ty —1r3 <ty <12r} and |wo| +73|ve| + 75 < (5r1)°  and  |ua| + 7o < 5ry.
We check these inequalities one after the other. First, to > t12 > —rf > 73 — 13r%. Second,
ty <tio+73 <13 < 4r?. Third, |va| < |v12| + [v12 — v2| < 71+ 72 < 3r1. This implies directly
the last inequality and it also allows us to justify the third one because we also have:

22| < |z12] + [t1,2 — taf|va] + 7‘% < 7"5’ + 7"%7“2 + rg = 37”5’.

These estimates for xo and vy imply that |zo| + 73|va| + 5 < (5r1)3 < 5r3 < 25r3. O
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4 Kinetic Fokker-Planck equations

The proof of Vitali’s lemma is copied /pasted from the previous chapter but we include it here
for the reader’s convenience.

Proof of Lemma 4.10.1 (Vitali). Let R = sup,c;7; where r; denotes the radius of the kinetic
cylinder ;. Let F denote the family of cylinders {Q;};e; and consider for all n > 1 the
sub-family,

. R R
fn:{th jGJ, 2n<rj§2n—1}'

We now construct families G,, by induction as follows: let G; be any maximal disjoint sub-family
of F1. Such a sub-family exists because of Zorn’s lemma from set theory. If now n > 1 and
G1,...,G, are already constructed, then G, ;1 is a maximal sub-family of

{QjeffnJrl : QjﬂQl:@foraﬂQl691U~'-Ugn}.

Roughly speaking, we add cylinders with smaller and smaller radii by making sure that they
do not intersect the ones we already collected. We finally consider

g — U%ozlgn-

We now verify that this sub-family satisfies the conclusion of the lemma. We consider the
sequence of cylinders @), for i = 1,...,n such that G = {Q, }ien. Then for Q; € F, there exists
n > 1 such that Q; € F;,. Assume first that n > 1. By maximality of 1, there exists Q; € F;
such that @Q; N Q; # 0. Assume now that n > 2. Because G, is maximal, there exists Q; € Gy,

with m € {1,...,n — 1} such that Q; N Q; # 0. By definition of F,, and G,,, we have r; < 2,1%

and r; > 2% with either m =n =1or 1 <m <n — 1. In both cases, r; < 2r;. Lemma 4.10.2

then implies that Q; C 5Q);. O
4.10.2 Lebesgue’s differentiation theorem with kinetic cylinders

We now turn to Lebesgue’s differentiation theorem in the kinetic geometry. Because we have
Vitali’s lemma, proofs are exactly the same as in the parabolic chapter. Only notation slightly
changes.

Theorem 4.10.3 (Lebesgue’s differentiation). Let f € L*(R'*29). Then for a.e. z € R1+24

Jim 0.0 If = ()] =0

where ng = ﬁ fQ g for any cylinder Q C R1*2 and g € L1(Q).

The proof of this theorem relies on a functional inequality involving the maximal function.
For g € L'(R*24), it is defined by,

Mg(t,z) = sup ][|g|.
Q3(tx)JQ

Lemma 4.10.4 (The maximal inequality). For all k > 0,
142d) - C
{Mg>r}NR |§EH9HL1

for some constant C only depending on dimension.
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4.10 Proof of the ink spots theorem

Proof. For every z € R2¢ such that Mg(t,x) > k, there exists a cylinder Q containing z such
y g

that
K
[ 1ol
Q

This means that the set {Mg > H}ﬂRl+2d is covered with cylinders {Q;} satisfying the previous
inequality. We know from Vitali’s lemma 4.10.1 that there exists a finite sub-family {Q;, }ien
such that

{Mg > H} C UieNjS-

With such a covering in hand, we can estimate the L!'-norm of g as follows:

>
/RHM 9] > Z/% 9]

ieN
K
ieN
K
= §ivady Z 15Q|
ieN

K
2 wyaag 1M > K},

We thus get the maximal inequality with C' = 511272, O
Proof of Theorem /.10.3 (Lebesgue’s differentiation). Let f, be continuous on R'2? and such

that

1
o= Fllor < 5

We can also assume that f,, — u almost everywhere in R'*2? [8, Theorem 4.9]. Let Ny denote

the negligible set outside which pointwise convergence holds. The maximal inequality from
Lemma 4.10.4 tells us that,

|uﬂn—ﬂ>nﬂg§rm

This is implies that the non-negative function »_ . Liar(s,—f)>s} 18 integrable over RI+2d
(Borel-Cantelli). It is thus finite outside of a neglible set N7 C R*24. This implies that there
exists n, € N such that for all n > n,,

M(f,— f) <k outside V.

For all ¢ € N, we now we pick k = 1/i and construct an increasing sequence n; such that

| =

M(fn, — f) <= outside V.

~

With such a sequence of functions in hand, we can write for z € R1+24\ (MyUN}) and i € N,
Foar=t@lsf - tul o = @I ) - 1)
Qr(2) Qr(2) Qr(2)
In the right hand side, the first term in bounded from above by 1/i because z ¢ N7 and the
third term goes to 0 as i — oo because z ¢ Ny. As far as the second term is concerned, the

continuity of f,, implies that it converges to 0 too as @ — co. We thus proved that the left hand
side tends to 0 as ¢ — oc. O
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4 Kinetic Fokker-Planck equations

4.10.3 Proof of the ink spots theorem

We continue following the reasoning from the parabolic chapter. The first step of the proof of
Theorem 4.9.3 is to address the case where the two sets E and F' are contained in the cylinder
@1 and in which there is no time delay (no stacked cylinder). Again, the proof of this lemma
is copied/pasted from the parabolic chapter but parabolic cylinders are replaced with kinetic
cylinders.

Lemma 4.10.5 (Crawling ink spots). Let E C F C Qi be measurable sets of R'T24, We
assume that |E| < 3|Q1| and that for any cylinder Q = Qr(z0) C Q1 such that |Q N E| > |Q),
we have Q@ C F. Then |E| < (1 —¢)|F|. The constant ¢ € (0,1) only depends on dimension d.

Remark 43 (The factor 1/2). The factor % in both assumptions can be replaced with an arbitrary
parameter p € (0,1). In this case, the conclusion is |E| < (1 — cu)|F| for some ¢ € (0,1) only
depending on dimension.

Proof. By applying Lebesgue’s differentiation theorem 4.10.3 to the indicator function 1g, we
know that for a.e. x € E, there exists a cylinder Q* such that |[E N Q*| > (1 —¢)|Q*|. Let us
now choose a maximal cylinder Q% .. C @ satisfying |[E N Q% > (1 —¢)|Q*|. It is of the form

T = Qr(t,T). By assumption, we know that Q% .. # Q1 and Q% .. C F.

We now claim that |E N Q2| = 5|Q%.|- If the claim does not hold, then Q%,, # Q1 and
there would be a cylinder Q* and a § > 0 such that QF,,, C Q° C (1 +0)Q%, with Q@ C Q1
and |E N Q| > 1|Q%|, contradicting the maximality of QZ,.

The set E is covered by cylinders QF ... By Vitali’s lemma 4.10.1, there exists a countable
subcollection of nonoverlapping cylinders Q7 = Qr;(zj), j > 1, such that £ C U?‘;15Qj . Since

@’ C F and |Q’ N E| = $|@Q7|, this implies that |Q7 N (F \ E)| = 3|Q7|.

1) Lo 1y Lecta v 1w Leo1-d

[FAE| >3 |Q"N(F\B)| =53 Q| = 5577 ul5Q’| > 557 /|E).
7j=1 Jj=1 J=1

We conclude that |F| > (1 + 57179271)|E|, from which we get |E| < (1 — ¢)|F| with ¢ =

5—1-dg—2 ]

We need two preparatory lemmas beforing proving the ink spot theorem with time delay
(wind) and/or leakage. The first one was proved in the parabolic chapter and it concerns the
measure of a union of time intervals (ax — hg, a;] compared to the measure of the union of their
stacked versions (ag, ar + mhy).

Lemma 4.10.6 (Sequence of time intervals). For all k > 1, let ap € R and hy > 0. Then,

U(ak, ap + mhk)
k

>

Uar = b, ax]

k

m
m+1
We can now use this lemma about sequences of intervals to deal with sequence of stacked

kinetic cylinders. The proof of this lemma has to be adapted to take into account the x variable.
Here, there is a substantial difference with the parabolic proof.

Lemma 4.10.7 (Overlaping stacked kinetic cylinders). Let {Q;} be a family of kinetic cylinders
and let Q;” be the corresponding stacked cylinders as defined on page 101. We have,

=m m
Uer =257 Je)
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4.10 Proof of the ink spots theorem

Proof. We use Fubini’s theorem in order to write,

UQT = /Rd (t,x) € RIT (t,z,v) € UQT dw.
J

We are thus left with proving that for v fixed,
(t,2) € RV : (1, 2,0) € L]JQ;H > mnle (t,2) € R (£, 2,0) € LjJQj
Let 7; > 0 and z; = (¢, 2;,v;) € R be such that Q; = Qr;(2j). If [v —v;] <rj, then
{(t,a:) e R (t,z,0) € Q;n}
= {(t,gg) eRMI0<t—t; <mi,|w—a; — (t—t;)v;] < (m+ 2)7"?} :

If v —vj| > rj, then the set in the left hand side is empty. In the other case, |(t —t;)(v; —v)| <
mr?. In particular, the right hand side contains the set

{(t,:L') €R1+d:0<t—tj <m’l“]2~,|217—1'j — (t—tj)v| <2T§-’}.

Because v is fixed, we can make the change of variables (¢, z) — (¢, + tv). It has Jacobian 1.
Let z; = x; — tjv. We thus have,

1+d A 2
(tx) eR™M: (Lzo) e Oy ol 2| U (tj,t; +mrj) X Byl .
J Jilvj—v|<r;
We use Fubini’s theorem again,
(t,x) e RV : (t,2,0) € UQ;” > /d U (tj, t; + m'r]2) dz.
J R j:|vj—v|<rj,|z—zj|<7’§-’

We now use Lemma 4.10.6 and the change of variables (¢, z) — (t,z — tv) (of Jacobian 1) in
order to get,

1+d | A m 2
(t,z) e R™™: (t,z,v) € UQ;” > el U (t; — 735, t5)| d=
J j:\vjfv|<rj,|z7z]'\<2r§’
m 2
2 T U (t = r}.15)| dz

Jilvj —U|<rj,|x—a:i—(t—tj)v\<27“§’

m 2
STES U (t = vt dz

Jilvj—v|<r;,|lo—x;—(t—t;)v; \<TJ3.

where we used in the last line again that |(t —¢;)(v — vj)| < T;’. We now recognize in the right
hand side the desired lower bound. O
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4 Kinetic Fokker-Planck equations

Our next task is to get the ink spot theorem in the case where F and F' are contained in the
cylinder Q1. In other words, we postpone the treatment of cylinders leaking out of ¢J;. Once
again, no change for this proof compared to the parabolic setting.

Theorem 4.10.8 (Ink spots in the wind). Let E C F C Q1 be measurable sets of R1*21. We
assume that |E| < %|Q1| and that there exists an integer m > 1 such that for any cylinder
Q = Qr(20) C Q1 such that |Q N E| > 3|Q|, we have Q™ C F. Then |E| < (1 —c)™ELF|. The
constant ¢ € (0,1) only depends on dimension d.

Proof. We consider the family Q of kinetic cylinders @ contained in @1 such that |QNE| > %]Q\
We let G denote their union: G = (Jgeo Q- We know from Lemma 4.10.5 (crawling ink spots)
that £ < (1—c¢)|G|. Moreover, the assumption of the theorem implies that F' contains the union
of the corresponding stacked cylinders: F' D UQeQ Q™. Using Lemma 4.10.7 about overlaping
stacked cylinders, we obtain the following chain of inequalities,

_ m m m
F|> > — =— |G| > —|E|. O
17l = QLGJQQ “m+1 QLEJQQ m+1| “(m—i—l)(l—c)‘ |

We finally prove the covering result that was used in the derivation of the weak Harnack’s
inequality. The parabolic proof is slightly changed because kinetic cylinders can leak out not
only on the top (times after ¢t = 0) but also in the spatial variable (z outside Bj).

Proof of Theorem 4.9.3. The assumption of the theorem implies that |E| < %]Ql\. Indeed, if
this does not true, then 1 < rg, contradicting the fact that ry € (0,1).

We consider again the family Q of kinetic cylinders @ contained in @ such that |@Q N E| >
3/Q|. We let F' denote the union of the corresponding stacked cylinders: F = UQGQQW.
Theorem 4.10.8 implies that

m—+ 1

PE - lF = " - o IFn @l + I\ Q|

|E] <

Moreover, the assumptions of Theorem 4.9.3 imply that F C F.

We are thus left we estimating [F'\ Q1]. We first remark that because |E| < |Q1], the
conclusion of the theorem is trivial if mrg > 1 (take C' = 1). We now assume that mr3 < 1.

We claim that for all Q € Q, we have Q™ C (—1,mrd] x Bl+mr'5’ x Bj. Indeed, Q@ = Q,(z0)
for some 29 € Q1 and r < 79 and Q™ = {(¢t,x,v) : tog <t < to+mr? |z — 29 — (t — to)vo| <
(m +2)73,|v — vo| < r}. For (t,z,v) € Q™, we have t < mr2 because tog < 0. We also have
|z| < |zo| + [t — to|Jvo] < 1+ mrd.

We thus proved that for all QQ € Q,

Q™ \ Q1 C (0,mrg) x Bi x BiU (=1,mrg) x (Byipm2 \ B1) X Bi.
This implies that
F\ Q1 C (0,mr§) x By x BiU (=1,mrg) X (B2 \ B1) x Bi.
We deduce from this inclusion that
[F\ Q1| < [BifPmrg +2 |(1+mrg)? — 1] | By
< (14 2d297Y)| By |Pmrd.
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In turn, this leads to,

|E| < (1—¢)||FNQ1|+ Cmrd

m—+1
m
with C = (1 + d29)| B1|?m. O

4.11 Transfer of regularity & regularity of sub-solutions

The main goal of this section is to study the regularity with respect to the spatial variable of
sub-solutions of kinetic Fokker-Planck equations. This spatial regularity is obtained from the
natural energy estimates for sub-solutions. Indeed, these estimates ensure that sub-solutions are
H'" in the variable v. The free transport operator transfers this regularity in v into regularity
in x.

4.11.1 Regularity of the fundamental solution of the Kolmogorov equation

In order to state a regularity property of the fundamental solution of the Kolmogorov equation,
we first give the definition of the fractional Laplacian. This singular integral operator is helpful
when measuring the regularity of fractional order of a function.

The fractional Laplace operator can be easily defined via Fourier transform, but it also has a
singular integral representation. We will use the latter definition.

Let a € (0,1). For f € C?>(R%) and f bounded in RY, the fractional Laplacian of f is defined
by the following singular integral,

dy
ly — x|dte’

(~8) (@) = PV es | (@)= 7))

it is understood in the principal value sense [61],

=l | U~ S =

The normalization constant cq, only depends on dimension and ca.
Here are some classical properties of the fractional Laplacian that we will use when studying
the integrability and the regularity of the fundamental solution of the Kolmogorov equation.

Proposition 4.11.1 (Fractional Laplacian). Let o € (0,1) and p € [1,2).
e For R >0, if fr(z) = f(Rx), then

(=2)% (fr)(x) = R*(=A)% (f)(Ra).

[N]l)

o There exist a constant Cnp > 1, only depending on s,p and dimension d, such that the
norm and the semi-norm,

[ fllwer@ay = I fllLr@ay + H(—A)%f“w (Rd)

1
FOP o)’
sy =[], 00 dwy

satz’sfy ||f||Wa,p(Rd) < Ca,prHWa’P(Rd)'
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4 Kinetic Fokker-Planck equations

We are now ready to state the regularity properties of I'.

Proposition 4.11.2 (Additional property of the fundamental solution). Let I' be the funda-

mental solution of the Kolmogorov equation.

For allT >0 ande € (0, ), we have (=AL)ET € LP=((0,T) x R?*¥) forp. € [1,1+

2—3e
4d+3e

) and

in L1+42d13§s’°°((0,T) x R24). The functions (—A;)20@) (=A,)2T®) gre in L% ((0,T) x R24)
1—-3¢
for g € [1,1+ 555) and in LM adnss veak((0, T) x R24).

Proof. Thanks to the properties of the fractional Laplacian recalled in Proposition 4.11.1, we

know that
e 1 t . ]1(fxT v
(—A)%F(t, Z, U) = th? (—A)%Fl (tga tl) )
2 L - 2 2
e 1 £ r v
_A)2T (= — = |(=A)Z = 2
I ) = e [0 (£.5)),
e 1 £ xr v
J— 2 (U) = -1 — 2 Ty T 1
( A)LBF (tvxav) t2d+% ( A)xrl_ (tg ) té) .
We now compute,
1+2d 2 — 3¢ 1+2d 1y 1-— 3¢
20+ = 4d + 3¢ 2d + 13 dd+1+ 3¢’

The conclusion follows from Lemma 4.3.2.

4.11.2 Regularity in the space variable of sub-solutions

In the next proposition, we obtain the regularity in the x variable of (f —k),, and more generally
of sub-solutions. Given a cylinder Q = Qr(z0) with zo = (to, 2o, v0), we define,

l9llzz virer ()

_ p
_ // {// |f(t,2,0) ﬁt,y,v)l dxdy} dt du
(to—R2,to]x Br(vo) Q) x Q1Y) |z — y|@rer

with Q%) = {z € R?: (t,2,v) € Q} = Bps(xo + (t — to)vo).

D=

Proposition 4.11.3 (z-regularity of sub-solutions). Let f be a weak sub-solution of (0; + v -
Vo) f = divy(AV,f) + B-Vyuf + S in Q with A € E(\,A) and B € L*(Q) and S € L*(2). For

all e € (0,%) and p. € (1,14 255, all Qr(20) C Q with R <1 and r € (0, R) and pf € R,

1l e vz 72 Qo oy SCelB = 1) M IV fllz2(Qaao)
+Ce(R = 1) |1 fllr2(@rtz0)) + Cell S r2(@uzo)
for some C. that only depends on A and d.

Remark 44. For & ~ %, we conclude that (—A),&”S‘O)/Qf € L}, withp =1+ (4d + 1H)~t—o.

This estimate is a slight improvement of the one obtained by J. Guerand and C. Mouhot in [30].

Remark 45. One could use the Sobolev’s inequality to gain some integrability in = from this
regularity estimate. But they do not provide integrability above L?. More precisely, for all e
and p. as in the statement, WP (R?) does not embed into L?(R%).
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4.11 Transfer of regularity & regularity of sub-solutions

Proof of Proposition 4.11.3. Let us assume that zg = 0. Let ¢}, be given by Lemma 4.5.6. We
use the representation formula from Proposition 4.5.1 in order to get

f‘Ploc = (F(ﬁ) + P(v)) *kin Oloc + I *kin (Sloc - mloc)

with Gioe, Sioe € L2(R12%) given by

610(: = (PIOC(A - I)va,
Sloc = (B(ploc - Avv@loc) . V’Uf + SSDIOC + f(at +v- V:p - Av)‘ploc

and some measure mj,. € M (R'T29). In particular, if D[S denotes (—Am)%, then we have
from Proposition 4.3.1 that for all € € (0,1/3),

DS fer0e = (IDIST® + [DIET™) 16 Siog + (I DIST) #1n (Sioc — Mioc)
M~ N——
La= L2 Lpe

with pe € (1,14 Z5%) and ¢c € [1,1 + 7550).
This imphes that the first term is in L”S (]R1+2d) with 7. such that 1 4+ i =1+ 1 If

then r. = 24C‘lij'32€ >14+ . We conclude that | DS fyiee € Lf"E (R1+2d) and

qe =1+ 4d+1+3 ’ 4d
' _
H(_Aa:) 2 fSOIOCHLps(RH?d) < C. (H6100||L2(R1+2d) + ”SIOCHLQ(RHM) + HmIOCHMi(RH?d))

for some constant C. > 1 only depending on dimension d and €. Moreover, from Lemma 4.5.3,
we have

”f(PIOCHLl’a (R1+24d) < éa (HGIOCHLQ(RHM) + HSIOCHL?(RH%) + ”mIOCHM}r(RH?d))

for some constant C. > 1 only depending on dimension d and €. Thanks to Proposition 4.11.1,
we conclude that,

||f90loc”Li’€UW§»Pe (R1+2d) S Cg (HGIOCHL2(R1+20[) + H5100||L2(R1+2d) + ||m10C”MJ1r(R1+2d))

for some C; > 1 only depending on ¢ and d.
We now estimate ||mjoc|| M (r+24) by simply integrating (4.4) against 1,

1
[Wiocl|art (rr+2ay < (|1l L1 ri+2ay < |QRI2 |St0c] L2 (R1+24)-
We finally obtain
1
”stIOCHLfinPE (R1+2dy < C.(14+|Qr|2) (HGlOC||L2(R1+2d) + HS10CHL2(R1+QCL)> .

Arguing as in the proof of Proposition 4.5.4, we get, estimates for S, and S, that leads to,

171 e virzre () <Ce(R — ) Vs ll2@n)
+Ce(R =) 2 flz2@n) + 151 romtl2(0p)-

In the case where zg # 0, we applying the previous reasoning to g(z) = f(z o 2). O
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4 Kinetic Fokker-Planck equations

4.12 Bibliographical notes

Kinetic geometry. We explained in the introductory chapter (see page iii) that the regularity
theory for kinetic Fokker-Planck equations took a new direction with the work by E. Lanconelli
and S. Polidoro [47] about ultraparabolic equations. The geometric setting is the one obtained
from Hérmander’s hypoellipticity theory where non-smooth coefficients are considered. Roughly
speaking, the free transport operator equals a finite sum of squares of vector fields In particular,
in the papers mentioned in this chapter, the authors used systematically the geometry associated
with these ultraparabolic equations. Among other things, they introduced functional spaces
respecting this geometry, by studying for instance the Holder regularity of solutions with respect
to the norm ||z; ' o 21]|e (see Lemma 4.2.5). The kinetic distance from Definition 12 was
introduced more recently by L. Silvestre and the author in [38]. Kinetic Holder spaces where
introduced and used in the context of Schauder estimates. See in particular the definition of
kinetic Holder spaces in [38, 35].

Kinetic De Giorgi & Nash’s theorem and Harnack inequalities. Theorem 4.4.1 was first
proved by W. Wang and L. Zhang [67]. The strong Harnack inequality was proved in [28]
by a compactness argument (for the intermediate value principle). Then constructive proofs
where given in [29] and [30], by Kruzhkov’s method [44] and through a trajectory argument,
respectively. The result was then extended in various directions, for instance by dealing with
ultraparabolic equations [3].

Weak solutions. Various notions of weak solutions were used in the works mentioned in this
section. In [57, 67], the authors impose that (0; + v - V) f is square integrable, which is too
strong. In [28], the definition imposes f € L;’owa because of the natural energy estimates.
In this book, we follow a point of view that aligns with the classical parabolic one [46, 52]
by replacing the condition f € L;X’wa with f square integrable. More recently, P. Auscher,
L. Niebel and the author introduced in [4] an even weaker notion of solutions and showed that
time continuity with values in chcm can be obtained, in the spirit of Lions’s embedding theorem.
It is worth pointing out that the study of weak sub- and super-solutions is out of the scope of
this study. This being said, the section dedicated to the representation of weak sub-solutions
borrows ideas coming from [4]. This is true in particular for the uniqueness proof, even if it

differs from the one contained in this work.

Functional analysis framework and kinetic Poincaré inequalities. In [2], D. Albritton, S. Arm-
strong, J.-C. Mourrat and M. Novack significantly clarified the functional analysis framework
for the study of kinetic (including Fokker-Planck) equations by introducing some kinetic coun-
terpart of the classical Sobolev space H'. They also also establish some functional inequalities,
including some of Poincaré and Hérmander types, and introduce new techniques to establish
them.

Pascucci-Polidoro’s trick. A. Pascucci and S. Polidoro [57] first obtained the local maximum
principle for ultraparabolic equations by a Moser iteration procedure. The gain of integrability
was obtained in three steps: by first deriving local v-gradient estimates a la Caccioppoli; second,
by artificially adding and substracting a Laplacian in v; third, by using the fundamental solution
of the Kolmogorov equation, the diffusion operator with rough coefficients being treated as a
source term. More generally, many of the papers of the Italian school and later of W. Wang
and L. Zhang [67] use this trick. In contrast, averaging lemmas were used in the article by
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F. Golse, C. Mouhot, A. F. Vasseur and the author [28] in order to gain integrability and
establish the intermediate value principle. This latter result is obtained by a compactness
argument. Pascucci-Polidoro’s trick was used by L. Silvestre and the author [37] when deriving
a local Holder estimate for a class of kinetic equations with integral diffusion.

Weak Poincaré’s inequalities. Weak Poincaré’s inequalities are Poincaré’s inequalities where
the L2-norm of the function (minus its local mean) is replaced with the L2-norm of its positive
part. They are typically satisfied by sub-solutions. They first appeared in [67] where W. Wang
and L. Zhang established Holder regularity of solutions of so-called ultraparabolic equations.
This class of equations contains in particular kinetic Fokker-Planck equations that are studied
in this chapter. J. Guerand and the author [29] established an inequality directly inspired from
[67], but relating the cylinder Q1 from the “past” to the cylinder @ in the “future”. At the
same time, J. Guerand and C. Mouhot [30] also established some weak Poincaré’s inequalities
by using the z-regularity of subsolutions and by relating points in the past to point in the future
by trajectories. Their trajectories are piecewise smooth and follow alternatively the vector field
associated with free transport (0, + v - V,) and the one related to V,. It relies on the idea
coming from [35] that hypoellipticity with rough coefficients can be recovered by commuting
trajectories rather than vector fields (like in Héormander’s far reaching hypoelliptic theory). A
key observation where then made by L. Niebel and R. Zacher [56]: it is possible to construct
directly kinetic trajectories, without trying to commute trajectories along vector fields. This
approach reached maturity with the paper [3] by further simplifying the construction from [56]
and by dealing with ultraparabolic equations and integral diffusion. We finally refer the reader
that is interested in this trend of research to the very recent contribution [23].

Gain of integrability. The proof of the gain of integrability (see Proposition 4.5.4) using the
fundamental solution originates from the work A. Pascucci and S. Polidoro [57] and it is also
inspired by the reasoning by J. Guerand and C. Mouhot [30]. In the former work, the authors
use the fundamental solution as a test function in the weak formulation while in the latter one,
the representation of subsolutions contained in Proposition 4.5.1 is used (without proof).

Intermediate value principle. The proof of the intermediate principle from Proposition 4.7.7
relies on ideas from various works. The idea of retrieving to the function f the function f =
I #kin (fK%) (where K denotes the Kolmogorov operator) comes from [67], while the control
of the mean slightly departs from this work and follows the reasoning from [29]. In particular,
information from the past is used in [29] while [67] followed the parabolic proof by propagating
for short times some bounds on the super-level set of f (see Lemma 3.4.5 from Chapter 3).

The kinetic ink spots theorem. For general comments about ink-spots covering results, the
reader is referred to the bibliographical section 3.8 of Chapter 3. Theorem 4.9.3 and its proof
are extracted from [37, Corollary 10.2]. They rely on ideas introduced in the parabolic setting
in [36]. This being said, the parabolic proof contained in this book makes use of a Caldéron-
Zygmund decomposition instead of a covering lemma a la Vitali. Such an approach seems
impossible to adapt to the kinetic setting because kinetic cylinders are slanted and overlap in
the spatial variable.

Regularity of subsolutions and transfer of regularity. The last section of this chapter contains
regularity results with respect to the space variable for sub-solutions of kinetic Fokker-Planck
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4 Kinetic Fokker-Planck equations

equations. A similar result where first proved in [28] by using classical transfer of regularity
properties due to F. Bouchut [6]. The use of the fundamental solution was used in [30]. The
reasoning contained in this book is new. In particular, the estimates that are obtained are
sharp in view of the sharpness of Young’s inequality on unimodular groups. Moreover, this
reasoning can be used to prove some sharp results from [6] by changing the diffusion in the
Kolmogorov operator. For instance, [6, Proposition 1.1] can be proved by considering K =

(s +v- Vo) + (—Ay)2.

Kinetic De Giorgi's classes. The notion of kinetic De Giorgi’s class (see Definitions 15 and
16) is new. Their definition can be modified in different ways. For instance the perturbed weak

Poincaré-Wirtinger’s inequality from Definition 16 can be proven without an error term wp and
with (f)q_ replaced with f, f.

Conditional regularity program for Landau. An important motivation for the study of such a
class of equations is the one derived by Lev Landau — see [48]. The Landau equation is nonlinear
and describes the interaction between charged particles in a plasma, see for instance [49, § 4].
It can be written as follows,

atf‘i'v'vxf: Vv(Afvvf_bff)

where Af(v) = [pa f(v — w)a(v — w) dw with a;;(z) = |2]7(45]2|* — zi2;) for some v € [—d, 1]
and by = div, Ay. Under some conditions on the following density functions,

p(t,z) = flt,z,v)dv, E(t,x)= / f(t,z,v)|v]*dv, H(t,z)= fIn f(t,z,v)dv,
Rd Rd R

it has been known for a long time that the matrix Ay is uniformly elliptic, see for instance the

article by L. Desvillettes and C. Villani [17] and more recently the contribution by L. Silvestre

[60]. Tt was conjectured in [28] that, as long as the three previous density functions are “under

control”, solutions of the Landau equation (at least for v > —2 in dimension 3) remain smooth.

The local Holder estimate from [28] was the first step in this program. It was completed in [15]
and [32].
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