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Abstract

In this article, we study the Calabi invariant on the unit disk usually defined on
compactly supported Hamiltonian diffeomorphisms of the open disk. In particular we
extend the Calabi invariant to the group of C1 diffeomorphisms of the closed disk which
preserves the standard symplectic form. We also compute the Calabi invariant of some
diffeomorphisms of the disk which satisfies some rigidity hypothesis.
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1 Introduction
Let us begin with some basic definitions of symplectic geometry.

Let us consider pM2n, ωq a symplectic manifold, meaning that M is an even dimen-
sional manifold equipped with a closed non-degenerate differential 2-form ω called the
symplectic form. We suppose that π2pMq “ 0 and that ω is exact, meaning that there
exists a 1-form λ, called a Liouville form, which satisfies dλ “ ω.
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Let us consider a time-dependent vector field pXtqtPR defined by the equation:

dHt “ ωpXt, .q, (1)

where
H : RˆM Ñ R

pt, xq ÞÑ Htpxq

is a smooth function one periodic in t, meaning that Ht`1 “ Ht for every t P R. The func-
tion H is called a Hamiltonian function. If the vector field pXtqtPR is complete, it induces
a family pftqtPR of diffeomorphisms of M that preserve ω, also called symplectomorphisms
or symplectic diffeomorphisms, satisfying the following equation

B

Bt
ftpzq “ Xtpftpzqq.

In particular the family I “ pftqtPr0,1s defines an isotopy from id to f1. The map f1 is
called a Hamiltonian diffeomorphism. It is well known that the set of Hamiltonian diffeo-
morphisms of a symplectic manifold M is a group which we denote HampM,ωq, we refer
to [28] for more details.

Let us consider pM,ωq a symplectic manifold which is boundaryless, π2pq “ 0 and ω
is exact. We say that H is a compactly supported Hamiltonian function if there exists a
compact set K Ă M such that Ht vanishes outside K for every t P R. A compactly sup-
ported Hamiltonian function induces a compactly supported Hamiltonian diffeomorphism
f . Such a map is equal to the identity outside a compact subset of M . Let us consider a
compactly supported Hamiltonian diffeomorphism f and λ a Liouville form on M . The
form f˚λ ´ λ is closed because f is symplectic but we have more, It is exact. More pre-
cisely there exists a unique compactly supported function Af : M Ñ R, also called action
function, such that

dAf “ f˚λ´ λ.

In the literature the Calabi invariant Calpfq of f is defined as the mean of the function
Af and we have

Calpfq “

ż

M
Afω

n, (2)

where ωn “ ω^ ...^ω is the volume form induced by ω, see [28] for more details. We will
prove later that the number Calpfq does not depend on the choice of λ.

Let us give another equivalent definition of the Calabi invariant of a compactly sup-
ported Hamiltonian diffeomorphism f . We note H a compactly supported Hamiltonian
function defining f . The Calabi invariant of f can also be defined as follows:

Calpfq “ pn` 1q

ż 1

0

ż

M
Htω

ndt. (3)

To prove that
ş

M Afω
n does not depend on the choice of the Liouville form λ, one may

use the fact that the action function Af satisfies

Af pzq “

ż 1

0
pιpXsqλ`Hsq ˝ fspzqds, (4)

where pXsqsPR is the time dependent vector field induced by H by equation (1) and pfsqsPR
is the isotopy induced by the vector field pXsqsPR. Moreover,

ş1
0

ş

M Htω
ndt does not de-

pend on the compactly supported Hamiltonian function H defining f .
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The function Cal defines a real valued morphism on the group of compactly supported
Hamiltonian diffeomorphisms of M and thus it is an invariant of conjugacy. It is an im-
portant tool in the study of difficult problems such as the description of the algebraic
structure of the groups HampM,ωq: A.Banyaga proved in [3] that the kernel of the Calabi
invariant is always simple, which means that it does not contain nontrivial normal sub-
groups.
a In this article, we study the case of the dimension two and more precisely the case of the
closed unit disk which is a surface with boundary. We denote by ||.|| the usual Euclidian
norm on R2, by D the closed unit disk and by S1 its boundary. The group of C1 orientation
preserving diffeomorphisms of D will be denoted by Diff1

`pDq. We consider Diff1
ωpDq the

group of C1 symplectomorphisms of D which preserve the normalized standard symplectic
form ω “ 1

πdu ^ dv, written in Cartesian coordinates pu, vq. In the case of the disk, the
group Diff1

ωpDq is contractile, see [20] for a proof, and coincides with the group of Hamil-
tonian diffeomorphisms of D. Moreover, the 2-form ω induces the Lebesgue probability
measure denoted by Leb and the symplectic diffeomorphisms are the C1 diffeomorphisms
of D which preserve the Lebesgue measure and the orientation.

Let us begin by the case of the unit open disk D̊. The open disk is boundaryless hence
we already have two equivalent definitions of the Calabi invariant given by equations 2
and 3 on the set of compactly supported symplectic diffeomorphisms of D̊. Let us give a
third one. A. Fathi in his thesis [12] gave a dynamical definition which is also described
by J.-M. Gambaudo and É. Ghys in [16]: if we consider an isotopy I “ pftqtPr0,1s from
id to f , there exists an angle function AngI : D̊ ˆ D̊z∆ Ñ R where ∆ is the diagonal of
D̊ ˆ D̊ such that for each px, yq P D̊ ˆ D̊z∆, 2πAngIpx, yq is the variation of angle of the
vector ftpyq´ftpxq between t “ 0 and t “ 1. If f is a compactly supported C1 symplectic
diffeomorphism then this angle function is integrable (see section 3) and it holds that

Calpfq “

ż

D̊ˆD̊z∆
AngIpx, yqdLebpxqdLebpyq, (5)

where the integral does not depend on the choice of the isotopy.

In this article we will give an answer to the following question.

Question 1. How to define an extension of the Calabi invariant to the group Diff1
ωpDq?

M. Hutchings [23] extended the definition given by equation 3 to the C1 symplectic
diffeomorphisms which are equal to a rotation near the boundary. In another point of
view, V. Humilière [22] extended the definition given by equation 3 to certain group of
compactly supported symplectic homeomorphisms of an exact symplectic manifold pM,ωq
where a compactly supported symplectic homeomorphism f of M is a C0 limit of a se-
quence of Hamiltonian diffeomorphisms of M supported on a common compact subset of
M .

In the case of the open disk, for a compactly supported symplectomorphism f , the
choice of the isotopy class of f is natural but if f is a symplectic diffeomorphism of the
closed disk such that its restriction is not compactly supported then there is no such nat-
ural choice of an isotopy from id to f .

The rotation number is a well-known dynamical tool introduced by Poincaré in [31]
on the group Homeo`pS

1q of homeomorphisms of S1 which preserve the orientation. Let
us consider the set of homeomorphisms rg : R Ñ R such that rgpx ` 1q “ rgpxq, denoted
ČHomeo`pS

1q. One may prove that there exists a unique rρ P R such that for each z P R
and n P Z we have |rgnpzq ´ z ´ nrρ| ă 1. The number rρ “ rρprgq is called the rotation
number of rg. Let us consider g P Homeo`pS

1q and two lifts rg and rg1 of g in ČHomeo`pS
1q,
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there exists k P Z such that rg “ rg1 ` k and so rρprgq “ rρprg1q ` k. Consequently we can
define a map ρ : Homeo`pS

1q Ñ T1 such that ρpgq “ rρprgq ` Z where rg is a lift of g. The
number ρpgq is called the rotation number of g. We give further details about the rotation
number in the next section.

We now state the results of this article. The following proposition allows us to consider
a natural choice of an action function of a symplectomorphism of the closed disk.

Proposition 1.1. Let us consider f P Diff1
ωpDq, Af : D Ñ R a C1 function such that

dAf “ f˚λ´λ and µ an f invariant Borel probability measure supported on S1. Then the
number

ş

S1
Afdµ does not depend on the choice of µ and λ.

The first theorem follows.

Theorem 1.1. For each f P Diff1
ωpDq there exists a unique function Af : D Ñ R such

that dAf “ f˚λ ´ λ and
ş

S1
Afdµ “ 0 where λ is a Liouville form and µ a f -invariant

probability measure on S1. The application Cal1 : Diff1
ωpDq Ñ R defined by

Cal1pfq “

ż

D
Af pzqωpzq

does not depend on the choice of λ and µ. Moreover the map Cal1 is a homogeneous
quasi-morphism that extends the Calabi invariant.

In another direction, the definition given by the equation 3 and the definition given
by equation 5 are based on isotopies. Then we consider the universal cover ĄDiff

1

ωpDq of
Diff1

ωpDq which is composed of couples rf “ pf, rIsq where f P Diff1
ω and rIs is an homotopy

class of isotopies from id to f where f P Diff1
ωpDq. We will prove that for f P Diff1

ωpDq
and I an isotopy from id to f , the angle function AngI does not depend on the choice of
I P rIs. Hence, for rf “ pf, rIsq P ĄDiff

1

ωpDq we can denote Ang
rf
“ AngI for I P rIs.

Moreover, for a diffeomorphism f P Diff1pDq two isotopies I “ pftqtPr0,1s and I 1 “ pf 1tqtPr0,1s
from id to f are homotopic if and only if there restriction I|S1 and I 1|S1 to S1 are homo-
topics and so define the same lift Ąf |S1 of f |S1 to the universal cover ove S1. Hence it is
equivalent to consider ĄDiff

1

ωpDq as the set of couples rf “ pf, rφq where f P Diff1
ωpDq and rφ

a lift of f |S1 to the universal cover of S1.

Theorem 1.2. Let us consider an element rf of ĄDiff
1

ωpDq and an isotopy I “ pftqtPr0,1s
from id to f such that rφ is the time one-map of the lift of the isotopy pft|S1qtPr0,1s. The
number

ĄCal2p rfq “

ż

D2z∆
Ang

rf
px, yqωpxqωpyq,

defines a morphism ĄCal2 : ĄDiff
1

ωpDq Ñ R which induces a morphism Cal2 : Diff1
ωpDq Ñ T1

defined for every f P Diff1
ωpDq by

Cal2pfq “ĄCal2p rfq ` Z,

where rf is a lift of f in ĄDiff
1

ωpDq.

Along the same lines, we have the following result:

Theorem 1.3. Let us consider an element pf, rφq of ĄDiff
1

ωpDq. There exists a Hamiltonian
function pHtqtPr0,1s such that Ht is equal to 0 on S1 for every t P R which induces an isotopy

pφtqtPr0,1s
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form id to f where the lifted isotopy prφtqtPr0,1s satisfies rφ1 “ rφ . The number

ĄCal3pf, rφq “

ż 1

0

ż

D
Htpzqωpzq,

does not depend on the choice of the Hamiltonian function H. Moreover the map ĄCal3 :
ĄDiff

1

ωpDq Ñ R is a morphism and induces a morphism ĄCal3 : ĄDiff
1

ωpDq Ñ R defined by

Cal3pfq “ĄCal3pf, rφq ` Z.

Remark 1.1. We have the following commutative diagram:

ĄDiff
1

ωpDq
rπ //

ĄCali
��

Diff1
ωpDq

Cali
��

R π // T1

where i P t2, 3u.

The link between these three extensions is given by the following result:

Theorem 1.4. The morphisms ĄCal2 and ĄCal3 are equal and for rf “ pf, rφq P ĄDiff
1

ωpDq we
have the following equality

ĄCal2p rfq “ Cal1pfq ` rρprφq.

Moreover the applications Cal1, ĄCal2, Cal2, ĄCal3 and Cal3 are continuous in the C1 topol-
ogy.

In the following, ĄCal2 and ĄCal3 will be denoted ĄCal. Since the morphism ĄCal and the
quasi-morphism Cal1 are not trivial we obtain the following corollary about the perfectness
of the groups ĄDiff

1

ωpDq and Diff1
ωpDq. Recall that a group G is said to be perfect if

it is equal to its commutator subgroup rG,Gs which is generated by the commutators
rf, gs “ f´1g´1fg where f and g are elements of G

Corollary 1.1. The groups ĄDiff
1

ωpDq and Diff1
ωpDq are not perfect.

The non simplicity of those groups were already known since the group of compactly
supported Hamiltonian diffeomorphisms is a non trivial normal subgroup of Diff1

ωpDq.
The questions of the simplicity and the perfectness of groups of diffeomorphisms and
Hamiltonian diffeomorphism have a long story, especially the case of the group of area-
preserving and compactly supported homeomorphisms of the disk D. The question appears
on McDuff and Salamon’s list of open problems in [28] and we can refer for example to
[3, 6, 10, 11, 27, 26, 29, 30]. Recently D. Cristofaro-Gardiner, V. Humilière, S. Seyfad-
dini in [9] proved that the connected composant of id in the group of area-preserving
homeomorphisms of the unit disk D is not simple. The proof requires the study of the
Calabi invariant on the group of compactly supported Hamiltonian of D but also strong
arguments of symplectic geometry as Embedded Contact Homology (also called ECH)
developed by M. Hutchings and D. Cristofaro-Gardiner in [9].

To give an illustration of the extension we compute the Calabi invariant Cal1 of non
trivial symplectomorphisms in sections 5 and 6. We study the Calabi invariant Cal1
of some irrational pseudo rotations. An irrational pseudo-rotation of the disk is an area-
preserving homeomorphism f of D that fixes 0 and that does not possess any other periodic
point. To such a homeomorphism is associated an irrational number α R Q{Z, called the
rotation number of f that measures the rotation number of every orbit around 0 and
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consequently is equal to the rotation number of the restriction of f on S1. We refer to the
next section for more details.

The following results of this paper are well-inspired by M. Hutchings’s recent work.
M. Hutching proved as a corollary in [23] that the Calabi invariant Cal3 of every C8

irrational pseudo rotation f of the closed unit disk D such that f is equal to a rotation
near the boundary is equal to the rotation number of f . This means that for an irrational
pseudo rotation f which is equal to a rotation near the boundary, Cal1pfq is equal to 0.
The proof uses strong arguments of symplectic geometry such as the notion of open-books
introduced by Giroux (see [18] for example) and the Embedded Contact Homology. We
want to adopt a more dynamical point of view and we partially answer the following
question:

Question 2. Let f be a C1 irrational pseudo rotation of D. Is the Calabi invariant
Cal1pfq equal to 0?

With the continuity of ĄCal in the C1 topology, we can deduce the first result of C1-
rigidity as the following result.

Theorem 1.5. Let f be a C1 irrational pseudo rotation of D. If there exists a sequence
pgnqnPN in Diff1

ωpDq of C1 diffeomorphisms of finite order which converges to f for the C1

topology, then
Cal1pfq “ 0.

Corollary 1.2. Let f be a C1 irrational pseudo rotation of D. If there exists a sequence
pnkqkPN such that fnk converges to the identity in the C1 topology, then we have

Cal1pfq “ 0.

The morphisms ĄCal and Cal are not continuous in the C0 topology, see proposition
4.3. Nevertheless, by a more precise study of the definition of Cal we obtain a C0-rigidity
result as follows:

Theorem 1.6. Let f be a C1 irrational pseudo rotation of D. If there exists a sequence
pnkqkPN of integers such that pfnkqkPN converges to the identity in the C0 topology, then
we have

Cal1pfq “ 0.

There are already general results of C0-rigidity of the pseudo-rotations. Bramham
proved [7] that every C8 irrational pseudo-rotation f is the limit, for the C0 topology, of
a sequence of periodic C8 diffeomorphisms. Bramham [8] also proved that if we consider
an irrational pseudo-rotation f whose rotation number is Super Liouville (we will define
what it means later) then f is C0-rigid. That is, there exists a sequence of iterates fnj
that converge to the identity in the C0-topology as nj Ñ8. Le Calvez [25] proved similar
results for C1 irrational pseudo-rotation f whose restriction to S1 is C1 conjugate to a
rotation.

Then for f a C1 pseudo-rotation of the disk D the results of Bramham and Le Calvez
provide a sequence of periodic diffeomorphisms pgnqnPN which converges to f , the diffeo-
morphism gn may not be area-preserving but let us hope to completely answer question
2.

In a last section we give some examples where if the rotation number of a pseudo-
rotation satisfy some algebraic properties, then the hypothesis of Theorem 1.6 and Corol-
lary 1.2 are satisfied.

Organization
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We begin to give some additional preliminaries in section 1. In a second section we
give the formal definitions of the Calabi invariant of equations 2, 3 and 5 and their natural
extensions given by Theorems 1.1, 1.2 and 1.3. In section 3 we give the proof the link
betweens these extension given by Theorem 1.4. The last section concerns the results
about the computation of the Calabi invariant of pseudo rotations.

2 Preliminaries
Invariant measures: Let us consider f a homeomorphism of a topological space X. A
Borel probability measure µ is f -invariant if for each Borel set A we have

µpf´1pAqq “ µpAq.

In other terms, the push forward measure f˚µ is equal to µ. We denote by Mpfq the
set of f -invariant probability measures on X. It is well-known that the set Mpfq is not
empty if X is compact.

For a probability measure µ on D we will note Diff1
µpDq the subgroup of Diff1

`pDq that
is the set of orientation preserving C1 diffeomorphisms which preserve µ.

Quasi-morphism: A function F : G Ñ R defined on a group G is a homogeneous
quasi-morphism if

1. there exists a constant C ě 0 such that for each couple f, g in G we have |F pf ˝ gq´
F pfq ´ F pgq| ă C,

2. for each n P Z we have F pfnq “ nF pfq.

Rotation numbers of homeomorphisms of the circle: The rotation number is de-
fined on the group Homeo`pS

1q of homeomorphisms of S1 which preserve the orientation.
We begin to give the definition of the rotation number on the lifted group ČHomeo`pS

1q

which is the set of homeomorphisms rg : R Ñ R such that rgpx ` 1q “ rgpxq ` 1. There
exists rρ P R such that for each z P R and n P Z we have |rgnpzq ´ z ´ nrρ| ă 1, see [24] for
example. The number rρ is called the rotation number of rg and denoted rρprgq. It defines a
map rρ : ČHomeo`pS

1q Ñ R.

We denote by rδ : R Ñ R the displacement function of rg where rδpzq “ rgpzq ´ z is
one-periodic and lifts where for every rg P Homeo`pS

1q

rρprgq “

ż

S1
δdµ “ lim

nÑ8

1

n

n
ÿ

i“1

δpgipzqq.

The map rρ is the unique homogeneous quasi-morphism from ĄDiff
1

`pS
1q to R which takes

the value 1 on the translation by 1, see [17] for example. More precisely for each rf, rg P
ČHomeo`pS

1q it holds that |rρp rfq ´ rρprgq| ă 1 and for each n P Z we have rρp rfnq “ nrρp rfq.
Moreover, rρprgq naturally lifts a map ρ : Homeo`pS

1q Ñ T1. Indeed, if we consider
g P Homeo`pS

1q and two lifts rg and rg1 of g there exists k P Z such that rg1 “ rg hence
we have rρprg1q “ rρprgq ` k. By the Birkhoff ergodic theorem for every z P R and every
g-invariant measure µ we have

rρprgq “

ż

S1
δdµ.

Let us describe why rρ is not a morphism and only a quasi-morphism. A homeomor-
phism of the circle has a fixed point if and only if its rotation number is zero, see [24]
chapter 11 for more details. Below we give an example of two homeomorphisms φ and ψ
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of S1 of rotation number zero such that the composition φ ˝ ψ give us a homeomorphism
as in Figure 2 without fixed point and so the rotation number of the composition is not
equal to 0.

Let us consider the two homeomorphisms of rotation number 0 with one fixed point
as in Figures 1 and 2.

φ ψ

Figure 1

φ ˝ ψ

Figure 2

For g P Homeo`pS1q there is a bijection between the lifts of g to R and the isotopies
from id to g as follows. Let I “ pgtqtPr0,1s be an isotopy from id to g, the lifted isotopy
rI “ prg1qtPr0,1s of I defines a unique lift rg1 of g. Then for an isotopy I from id to g, let us
denote rg the time-one map of the lifted isotopy rI on R, we can define the rotation number
rρpIq P R of I to be the rotation number rρprgq of rg. If we consider f a homeomorphism of
the disk isotopic to the identity and I “ pftqtPr0,1s an isotopy from id to f then we will
denote rρpI|S1q P R the rotation number of the restriction of the isotopy I to S1. If we con-
sider another isotopy I 1 from id to g one may prove that there exists an integer k P Z such
that I 1 is homotopic to RkI where the isotopy R “ pRtqtPr0,1s satisfies Rtpzq “ ze2πit for
every z P S1 and every t P r0, 1s. We consider rI the lifted isotopy of I 1 and we denote rg1 its
time-one map. Hence rg and rg are two lifts of g such that rg1 “ rg`k and rρprg1q “ rρprgq`k and
so the number rρpIq does not depend on the choice of the isotopy in the homotopy class of I.

Irrational pseudo rotation: An irrational pseudo-rotation is an area-preserving
homeomorphism f of D that fixes 0 and that does not possess any other periodic point.
To such a homeomorphism is associated an irrational number α P R{ZzQ{Z, called the
rotation number of f , characterized by the following : every point admits α as a rotation
number around the origin. To be more precise, choose a lift rf of f |Dzt0u to the universal
covering space rD “ R ˆ p0, 1s. There exists rα P R such that rα ` Z “ α and for every
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compact set K Ă Dzt0u and every ε ą 0, one can find N ě 1 such that

@n ě N, rz P π´1pKq X rf´npπ´1pKqq ñ |
p2p rf

nprzqq ´ p2przq

n
´ rα| ď ε,

where π : pr, θq ÞÑ pr cosp2πθq, r sinp2πθq is the covering projection and p2 : pr, θq ÞÑ θ the
projection on the second coordinate. If moreover f is a Ck diffeomorphism 1 ď k ď `8
we will call f a Ck irrational pseudo-rotation.

Notice that for the rotation number α of an irrational pseudo-rotation f is equal to
ρpf |S1q.

One can construct irrational pseudo-rotations with the method of fast periodic ap-
proximations, presented by Anosov and Katok [1]. One may see [13, 14, 15, 19, 32]
for further developments about this method and see [5, 4] for other results on irrational
pseudo-rotations.

3 Three extensions
In this section we will explain why the functions Cal1, ĄCal2 and ĄCal3 are well-defined on
ĄDiff

1

ωpDq and we will establish the relations between them. The full statement like the
continuity or the quasi-morphism property will be proved in the next section.

3.1 Action function
Let us consider f P Diff1

ωpDq and λ a Liouville 1-form such that dλ “ ω. The fact that
H1pD,Rq “ 0 implies that the continuous 1-form f˚λ is exact: its integral is zero along
each loop γ Ă D. Consequently the application pr, θq ÞÑ

ş

γz
f˚λ ´ λ is a C1 primitive of

f˚λ ´ λ, equal to 0 at the origin, where for every z P D the path γz : r0, 1s Ñ D is such
that γzptq “ tz.

If we suppose that f is compactly supported on D then it is natural to consider the
unique C1 function A : DÑ R that is zero near the boundary of D and that satisfies

dA “ f˚λ´ λ. (6)

Without the compact support hypothesis we have the following proposition.

Proposition 3.1. If we consider a C1 function A : DÑ R such that dA “ f˚λ´ λ then
the number

ż

S1
A|BDdµ

does not depend on the choice of µ in Mpf |S1q.

Proof. To prove the independence over µ there are two cases to consider.

‚ If there exists only one f |S1-invariant probability measure on S1 the result is obvious.
In this case f |S1 is said to be uniquely ergodic.

‚ If f |S1 is not uniquely ergodic then by Poincaré’s theory ρpf |S1q “
p
q ` Z is rational

with p ^ q “ 1. The ergodic decomposition theorem, see [24] for example, tells us that
an f |S1 invariant measure is the barycenter of ergodic f |S1-invariant measures. Moreover,
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each ergodic measure of f |S1 is supported on a periodic orbit as follows. For z a q-periodic
point of f |S1 , we define the probability measure µz supported on the orbit of z by

µz “
1

q

q´1
ÿ

k“0

δfkpzq,

where δz is the Dirac measure on the point z P S1. Hence it is sufficient to prove that
ş

DApf, λ, µzqω does not depends of the choice of a periodic point z P S1.
Let us consider two periodic points z and w of f |S1 . We consider an oriented path

γ Ă S1 from z to w. We compute

ż

S1
Adµz ´

ż

S1
Adµw “

1

q

q´1
ÿ

k“0

Apfkpzqq ´Apfkpwqq

“
1

q

q´1
ÿ

k“0

ż

fkpγq
dA

“
1

q

q´1
ÿ

k“0

ż

fkpγq
f˚pλq ´ λ

“

ż

fqpγq
λ´

ż

γ
λ

“ 0

where the last equality is due to the fact that f qpγq is a reparametrization of the path
γ.

Proposition 3.1 allows us to make a natural choice of the action function to define an
extension of the Calabi invariant as follows:

Theorem 3.1. For each f P Diff1
ωpDq we consider the unique C1 function Af of f such

that dAf “ f˚λ´λ and
ş

S1
Afdµ “ 0 where λ is a Liouville form of ω and µ an f -invariant

probability measure on S1. The number

Cal1pfq “

ż

D
Af pzqωpzq

does not depend on the choice of λ or µ.

Proof. The independence of the measure µ comes from Proposition 3.1 and it remains to
prove the independence of λ.
Let us consider another primitive λ1 of ω. We denote A and A1 the two functions such
that dA “ f˚λ ´ λ and dA1 “ f˚λ1 ´ λ1 and such that for each µ P Mpf |S1q we have
ş

S1
Adµ “

ş

S1
A1dµ “ 0.

The 1-form λ ´ λ1 is closed because dλ ´ dλ1 “ ω ´ ω “ 0. So there exists a smooth
function u : DÑ R such that λ1 “ λ` du. We obtain:

dA1 “ f˚pλ` duq ´ pλ` duq

“ f˚λ´ λ` dpu ˝ f ´ uq

“ dA` dpu ˝ f ´ uq.

Thus there exists a constant c such that

A1 “ A` u ˝ f ´ u` c.

10



For a measure µ PMpf |S1q the condition
ş

S1
A1dµ “ 0 “

ş

S1
Adµ implies that

ż

S1
A1dµ “

ż

S1
Adµ`

ż

Ss1
pu ˝ f |S1 ´ uqdµ` c “

ż

S1
Adµ,

Howeover
ş

S1
pu ˝ f |S1 ´ uqdµ “ 0 since f |S1 preserves µ hence

c “ 0.

Finally f preserves ω hence we have
ş

Dpu ˝ f ´ uqω “ 0 and we can conclude that
ż

D
A1ω “

ż

D
Aω.

We compute the extension Cal1 of the rotations of the disk:

Proposition 3.2. For θ P R the rotation Rθ of angle θ satisfies :

Cal1pRθq “ 0.

Proof. For the Liouville form λ “ r2

2πdθ of ω we have R˚θλ´λ “ 0 thus the action function
A is constant. So it is equal to 0 and we obtain the result.

3.2 Angle function
The following interpretation is due to Fathi in his thesis [12] in the case of compactly
supported symplectic diffeomorphisms of the unit disk. This interpratation is also devel-
opped by Ghys and Gambaudo in see [16].

Let us consider f P Diff1
`pDq and I “ pftqtPr0,1s an isotopy from id to f . For x, y P D

distinct we can consider the vector vt from ftpxq to ftpyq and we denote by AngIpx, yq
the angle variation of the vector vt for t P r0, 1s defined as follows.

We have the polar coordinates pr, θq and a differential form

dθ “
udv ´ vdu

u2 ` v2
,

where pu, vq are the cartesian coordinates. For every couple px, yq P D2z∆ we define

AngIpx, yq “

ż

γ
dθ, (7)

where γ : tÑ ftpxq ´ ftpyq.

The function AngI is continuous on the complement of the diagonal of Dˆ D. More-
over, if f is at least C1 then the function AngI can be extended on the diagonal into a
bounded function on D ˆ D. Indeed, we consider K the compact set of triplets px, y, dq
where px, yq P DˆD and d a half line in R2 containing x and y and oriented by the vector
joining x to y ifx ‰ y. If x and y are distincts, the half line d is uniquely determined and
Dˆ Dz∆ can be embedded in K as a dense and open set. We define AngIpx, x, dq as the
variation of angle of the half lines dftpdq for t P r0, 1s. This number is well-defined and
extends AngI into a continuous function on K.

11



For rf “ pf, rφq P ĄDiff
1

ωpDq and two Hamiltonian isotopies I “ pftqtPr0,1s and I 1 “

pf 1tqtPr0,1s from id to f associated to rφ. The isotopies I 1 and I are homotopic so for every
couple px, yq P D2z∆ we have

ż

γ
dθ “

ż

γ1
dθ,

where γ : t ÞÑ ftpxq ´ ftpyq and γ1 : t ÞÑ f 1tpxq ´ f 1tpyq. Hence, we can define the angle
function Ang

rf
of rf by

Ang
rf
“ AngI .

We have the following lemma.

Lemma 3.1. Let us consider rf “ pf, rφq P ĄDiff
1

ωpDq. For every px, yq P D2z∆ the number
Ang

rf
px, yq ´ rρprφq only depends on f .

Proof. Let us consider I 1 another isotopy from id to f .

There exists k P Z such that I 1 is homotopic to Rk2πI and by definition of Angh given
by equation 10 we have AngRk2πI

“ AngI ` k. Moreover I 1 is in the same homotopy
class of Rk2πI and we obtain AngI 1 “ AngI ` k. Since the rotation number also satisfies
rρpI 1|S1q “ rρpI|S1q ` k, the result follows.

Lemma 3.1 allows us to extend the Calabi invariant on the lifted group ĄDiff
1

ωpDq as
follows.

Theorem 3.2. Let us consider rf “ p rf, rφq P ĄDiff
1

ωpDq. The number

ĄCal2p rfq “

ż

D2z∆
Ang

rf
px, yqωpxqωpyq,

defines a morphism ĄCal2 : ĄDiff
1

ωpDq Ñ R and induces a morphism on Diff1
ωpDq defined by

Cal2pfq “ĄCal2p rfq ` Z,

where rf P ĄDiff
1

ωpDq is a lift of f .

Proof. First, ĄCal is well-defined since the angle function Ang
rf
is integrable on D2z∆.

Let us consider rf “ pf, rφq and rg “ pg, rφ1q two elements of ĄDiff
1

ωpDq and two isotopies
I “ pftqtPr0,1s P rIs from id to f associated to rφ and I 1 “ pgtqtPr0,1s from id to g associated
to rφ1. We consider the concatenation I ¨ I 1 of the isotopy I and I 1 which gives an isotopy
from id to f˝g associated to rφ˝rφ1 and we define the element rf˝rg “ pf˝g, rφ˝rφ1q P ĄDiff

1

ωpDq.
For each px, yq P D2z∆ we have

AngI¨I 1px, yq “ AngI 1px, yq `AngIpgpxq, gpyqq.

Hence we obtain
Ang

rf˝rg
px, yq “ Ang

rgpx, yq `Ang
rf
pgpxq, gpyqq.

We integrate the previous equality and since g preserves ω we deduce that ĄCal2 is a mor-
phism from ĄDiff

1

ωpDq to R.

Moreover, Lemma 3.1 assures that ĄCal2 induces the morphism Cal2 from Diff1
ωpDq to

T1.
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Notice that the morphisms ĄCal2 and Cal2 satisfy the following commutative diagram

ĄDiff
1

ωpDq //

ĄCal2
��

Diff1
ωpDq

Cal2
��

R // T1

where the horizontal arrows are the covering maps.

This interpretation allows us to generalize the definition to others invariant measures
of the disk. Let us consider rf “ pf, rφq P ĄDiff

1
pDq and an isotopy I from id to f associated

to rφ. We consider a probability measure µ on D without atom which is f -invariant. We
define the number rCµpIq by

rCµp rfq “
ż ż

D2z∆
Ang

rf
px, yqdµpxqdµpyq.

By Lemma 3.1 we obtain the following corollary.

Corollary 3.1. Let us consider rf “ pf, rφq P ĄDiff
1

ωpDq. For every px, yq P D2z∆ the
number rCµp rfq ´ rρprφq only depends on f .

Birkhoff ergodic theorem gives another way to compute rCµp rfq for rf “ pf, rφq P ĄDiff
1
pDq.

Let us consider an Isotopy I “ pftqtPr0,1s from id to f associated to rφ. For px, yq P DˆDz∆
we have

AngInpx, yq “ AngIpx, yq `AngIpfpxq, fpyqq ` ...`AngIpf
n´1pxq, fn´1pxqq. (8)

The function AngI is bounded so the function

yAngIpx, yq “ lim
nÑ8

1

n
AngInpx, yq,

is defined µˆ µ almost everywhere and depends only on the homotopy class of I. Hence
we can define yAng

rf
“ yAngI . Thus we obtain the following equality

rCµp rfq “
ż ż

DˆD
yAng

rf
px, yqdµpxqdµpyq. (9)

We state the proposition of topological invariance, see [16].

Proposition 3.3. Let us consider two probability measures µ1 and µ2 of D without atom
and two compactly supported elements of Diff1

µ1pDq and Diff1
µ2pDq denoted φ1 and φ2 such

that there exists a homeomorphism h P Diff0
`pDq satisfying φ2 “ h˝φ1 ˝h

´1 and h˚pµ1q “

µ2. We have that
Cµ1pφ1q “ Cµ2pφ2q.

For a probability measure µ of the disk, there is the equivalent result to extend the
invariant Cµ.

Theorem 3.3. Let us consider an element rf P ĄDiff
1

µpDq. The number

rCµp rfq “
ż

D2z∆
Ang

rf
px, yqdµpxqdµpyq,

defines a morphism rCµ : ĄDiff
1

µpDq Ñ R which induces a morphism Cµ : Diff1
µpDq Ñ T1

defined for every f P Diff1
µpDq by

Cµpfq “ rCµp rfq ` Z,

where rf P ĄDiff
1

µpDq is a lift of f .
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The proof of the previous theorem is basically the same as Theorem 3.2 and if we
consider the Lesbegue measure Leb then we have

rCLeb “
ĄCal2.

We have the following computation in the case of the rotations :

Lemma 3.2. For θ P R we consider rRθ “ pRθ, rrq P ĄDiff
1

ωpDq where Rθ is the rotation
DÑ D of angle θ. We have

ĄCal2p rRq “ rρprrq.

Proof. Let us consider R “ pRtqtPr0,1s the isotopy from id to Rθ given in section 2. For a
couple px, yq P DˆDz∆ we consider the complex z “ x´ y and we have for each t P r0, 1s
Rtpzq “ zeitθ and we can compute AngRpx, yq “ θ. By integration on DˆDz∆ we obtain

ĄCal2p rRθq “ θ “ rρprrq.

3.3 Hamiltonian function
In this section, the goal is to state the construction of the Calabi invariant given by equa-
tion 3 in the case of compactly supported diffeomorphisms of the disk. This construction
leads to Theorem 1.3 and we explain the definition of ĄCal3 given by this theorem but we
refer to the next section for the proofs of certain results.

Let us consider f P Diff1
ωpDq and a Hamiltonian isotopy I “ pftqtPr0,1s from id to f .

We consider the Hamiltonian function pHtqtPR which induces the isotopy I. We denote
pXtqtPR the associated vector field. We have that for every t P R, Xt is tangent to S1.
So each Ht is constant on S1 and we can consider pHtqtPR the associated Hamiltonian
function such that

Ht|S1 “ 0.

We have the following lemma.

Lemma 3.3. The integral

2

ż

zPD

ż 1

0
Htpzqωpzqdt´ rρpI|S1q,

depends only on f.

Proof. The result will be a corollary of Theorem 1.4.

Theorem 3.4. Let us consider an element rf “ pf, rφq P ĄDiff
1

ωpDq and a Hamiltonian
function H : S1 ˆ DÑ R of f which induces the flow pφtqtPr0,1s such that the lift of φ1|S1

is equal to rφ and such that Ht is equal to 0 on S1 for every t P R. The number

ĄCal3p rfq “

ż 1

0

ż

D
Htpzqωpzq,

does not depend on the choice of H. Moreover the map ĄCal3 : ĄDiff
1

ωpDq Ñ R is a morphism
and ĄCalp rfq ` Z depends only on f . It induces a morphism

Cal3pfq “

ż 1

0

ż

D
Htpzqωpzq ` Z,

defined on Diff1
ωpDq.
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The proof comes from the equality between ĄCal2 and ĄCal3 which will be proven in
the next section. Moreover, the definition of Cal3 comes from Lemma 3.3 and we obtain
the following commutative diagram where the horizontal arrows are the universal covering
maps.

ĄDiff
1

ωpDq //

ĄCal3
��

Diff1
ωpDq

Cal3
��

R // T1

4 Proof of Theorem 1.4.
In this section, we prove Theorem 1.4.

Theorem 4.1. The morphisms ĄCal2 and ĄCal3 are equal. For rf “ pf, rφq P ĄDiff
1

ωpDq we
have the following equality

ĄCal2p rfq “ Cal1pfq ` rρprφq.

Moreover Cal1, ĄCal2 and ĄCal3 are continuous in the C1 topology.

We separate the proof into two subsections, in the first one we establish the links
between the previous definitions then we prove the continuity of ĄCal2 and ĄCal3.

4.1 Equality between ĄCal2 and ĄCal3.

Proposition 4.1. The morphisms ĄCal2 and ĄCal3 are equal.

Proof. The proof is essentially the same as in [33], the only difference is that our sym-
plectic form is normalized and the Hamiltonian diffeomorphisms that we consider is not
compactly supported in the open unit disk. Nevertheless, we verify that the proof is still
relevant in our case.

Let us consider rf “ pf, rφq P ĄDiff
1

ωpDq and an Hamiltonian isotopy I “ pftqtPr0,1s from
id to f associted to rφ. For the proof we will give a definition of the angle function AngI
in the complex coordinates as follows. We define a 1-form α by

α “
1

2π

dpz1 ´ z2q

z1 ´ z2
.

The imaginary part satisfies
dθ “ Impαq,

where θ is the angle coordinate in the radial coordinates. For an element Z “ pz1, z2q P

D2z∆ of we consider the curve IZ Ă Dˆ Dz∆ defined by

t ÞÑ IZptq “ pftpz1q, ftpz2qq,

for each t P r0, 1s and that for every element Z “ pz1, z2q P Dˆ Dz∆pDq we have

AngIpz1, z2q “

ż

IZ

dθ (10)

Let us consider the Hamiltonian pHtqtPr0,1s which induces the flow of the isotopy I and
which is equal to 0 on the boundary of D. We consider the symplectic form ω “ i

2πdz^ z
written in the complex coordinates on D. We define ξt “ dzpXtq and then it satisfies

iXt

ˆ

i

2π
dz ^ z

˙

“
i

2π
ξtdz ´

i

2π
ξtdz.
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By definition

dHt “ ´
BHt

Bz
dz ´

BHt

Bz
dz,

so we have
ξt “ ´2iπ

BHt

Bz
(11)

We compute the integral of the angle function
ż

DˆDz∆
AngIpz1, z2qωpz1qωpz2q “

ż

DˆDz∆

ż

Ipz1,z2q

dθωpz1qωpz2q

“ Im

˜

ż

DˆDz∆

ż

Ipz1,z2q

α ωpz1qωpz2q

¸

.

The following computation is well-inspired by the proof in [33].
ż

DˆDz∆

ż

Ipz1,z2q

α ωpz1qωpz2q “
1

2π

ż

DˆDz∆

ż

Ipz1,z2q

dpz1 ´ z2q

z1 ´ z2
ωpz1qωpz2q

“
1

2π

ż

DˆDz∆

ż 1

t“0

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q
dtωpz1qωpz2q,

“
1

2π

ż 1

t“0

ż

DˆDz∆

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q
ωpz1qωpz2qdt,

“ 2ˆ
1

2π

ż 1

t“0

ż

z2PD

ż

z1PDztz2u

ξtpz1q

z1 ´ z2
ωpz1qωpz2qdt

“
1

π

ż 1

0

ż

D

ż

Dztz2u
´2iπ

BHt

Bz

i

2π

dz1 ^ dz1

z1 ´ z2
ωpz2qdt

“ 2i

ż 1

0

ż

D

ż

Dztz2u

1

2iπ

BHt

Bz

dz1 ^ dz1

z1 ´ z2
ωpz2qdt.

The third equality is obtained by Fubini because the integral is absolutely integrable
by Lemma 4.1. The fourth equality is due to the absolutely integrability of both terms.
We established the penultimate with equation 11 and the definition of ω.

We use the Cauchy formula for smooth functions (see [21]) : for any C1-function
g : DÑ C, we have

gpwq “
1

2iπ

ż

S1

gpzq

z ´ w
dz `

1

2iπ

ż

D

Bf

Bz

dz ^ dz

z ´ w

Moreover Ht is equal to zero on the boundary S1 and we have
ż

DˆDz∆

ż

Ipz1,z2q

α ωpz1qωpz2q “ 2i

ż 1

0

ż

D
Htpz2qωpz2qdt

It leads to
ż

DˆDz∆
AngIpz1, z2qωpz1qωpz2q “ 2

ż 1

0

ż

D
Htpzqωpzqdt,

To obtain the result it remains to prove the absolute integrability we used in the compu-
tation.

Lemma 4.1. We have the following inequality
ż

DˆDz∆

ż 1

t“0

ˇ

ˇ

ˇ

ˇ

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q

ˇ

ˇ

ˇ

ˇ

ωpz1qωpz2qdt ă 8.
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Proof. The total measure of D ˆ Dz∆ for ω and r0, 1s for the Lebesgue measure is finite
so by Tonnelli’s theorem it is sufficient to have the following inequalities
ż 1

t“0

ż

DˆDz∆

ˇ

ˇ

ˇ

ˇ

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q

ˇ

ˇ

ˇ

ˇ

ωpz1qωpz2qdt “

ż 1

t“0

ż

DˆDz∆

ˇ

ˇ

ˇ

ˇ

ξtpz1q ´ ξtpz2q

z1 ´ z2

ˇ

ˇ

ˇ

ˇ

ωpz1qωpz2qdt

ď 2

ż 1

t“0

ż

z1PD
|ξtpz1q|

ż

z2PDztz1u

1

|z1 ´ z2|
ωpz1qωpz2qdt

ď 8π

ż 1

t“0

ż

z1PD
|ξtpz1q|ωpz1qdt

ă 8.

To prove the second last inequality one may prove that
ż

z2PDztz1u

1

|z1 ´ z2|
ωpz2q ď 4π.

Remark 4.1. The number ĄCal2pf, rφq does not depend on the choice of the isotopy in the
homotopy class of I, we obtain the same result for the construction of ĄCal3pf, rφq which
completes the proof of Lemma 3.3.

Proposition 4.2. For each element rf “ pf, rφq P ĄDiff
1

ωpDq we have

ĄCal3p rfq “ Cal1pfq ` rρprφq.

Proof. Let us consider an element rf “ pf, rφq P ĄDiff
1

ωpDq and a Hamiltonian isotopy
I “ pftqtPr0,1s from id to f associated to rφ. There exists a unique Hamiltonian function
pHtqtPR which induces the isotopy I and such that Ht is zero on the boundary S1 of D for
each t P R.

We know that Cal1 does not depend on the choice of the primitive of ω. We consider
the Liouville 1-form λ “ r2

2πdθ in the radial coordinates. We consider a probability mea-
sure µ PMpf |S1q.

We describe the link between the action function of the first definition and the Hamil-
tonian of the third definition. We consider a C1 family of functions pAtqtPr0,1s, where
At : DÑ R satisfies for each t P r0, 1s

dAt “ f˚t λ´ λ,

and such that the map A1 is equal to Apf, λ, µq. So the isotopy pAtqtPr0,1s satisfies

d 9At “
d

dt
pf˚t λq

“ f˚t LXt
“ f˚t piXtpdλq ` dpλpXtqqq

“ dpHt ˝ ft ` λpXtq ˝ ftq.

Then there exists a constant ct : r0, 1s Ñ R such that

9At “ Ht ˝ ft ` λpXtq ˝ ft ` ct,

and the map A : DÑ R satisfies for each z P D :

A1pzq “

ż 1

0
pHt ` iXtλqpftpzqqdt`

ż 1

0
ctdt.
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We denote by C the constant
ş1
0 ctdt. Since the restriction of λ to S1 is equal to 1

2πdθ then
for every z P S1 we have

ż 1

0
iXtλpftpzqqdt “

1

2π

ż 1

0
dθp

B

Bt
ftpzqqdt.

Notice that the last integral is equal to the displacement function δ : RÑ R of rφ.

Moreover, the rotation number rρprφq of the isotopy I satisfies for each z P S1.

rρprφq “ lim
nÑ8

1

n

n´1
ÿ

k“0

δprφkpzqq.

The map z ÞÑ δpzq is µ integrable and the Birkhoff ergodic theorem gives us
ż

S1
rρprφqdµpzq “

ż

S1
δpzqdµpzq.

We obtain
ż

S1

ż 1

0
iXtλpftpzqqdtdµpzq “

ż

S1
rρprφqdµpzq “ rρpI|S1q.

Moreover, the Hamiltonian Ht is equal to zero on S1. So if z P S1 it holds that A1pzq “
δpzq ` C and consequently

ż

S1
A1pzqdµpzq “ C ` rρprφq.

So the condition on A implies that

C “ ´rρprφq.

Thus
ż

D
Apzqωpzq “

ż

D

ż 1

0
pHt ` iXtλqpftpzqqdtωpzq ´ rρprφq

“

ż

D

ż 1

0
Htpftpzqqdtωpzq `

ż

D

ż 1

0
iXtpλqpftpzqqdtωpzq ´ rρprφq

We compute
ş

D
ş1
0 iXtpλqpftpzqqdtωpzq. Each 3-form is zero on the disk so we have

0 “ iXtpλ^ ωq

“ iXtpλqω ´ λ^ iXtpωq

“ iXtpλqω ´ λ^ dHt

“ iXtpλqω ` dHt ^ λ

“ iXtpλqω ` dpHtλq ´Htω.

We deduce that
ż

D

ż 1

0
iXtpλqpftpzqqdtωpzq “

ż

D

ż 1

0
pHtω ´ dpHtλqqdt

“

ż

D

ż 1

0
Htωdt´

ż 1

0

ż

S1
Htλdt

“

ż

D

ż 1

0
Htωdt,

where the last equality is due to the fact that ft preserves ω. Moreover Ht is equal to zero
on the boundary S1. We obtain

ż

D
Apzqωpzq “ 2

ż

D

ż 1

0
Htpzqωpzqdt´ rρprφq.
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We know that rρ is a homogeneous quasi-morphism, it gives us the following corollary.

Corollary 4.1. The application Cal1 : Diff1
ωpDq Ñ R is a homogeneous quasi-morphism.

Proof. The result is straightforward because Cal1 is equal to the sum of a morphism and
a homegeneous quasi-morphism.

Notice that Lemma 3.2 ensures that the morphisms ĄCal (resp. Cal) is not zero, then
its kernel is a normal non trivial subgroup of ĄDiff

1

ωpDq (resp. Diff1
ωpDq and we obtain the

following corollary

Corollary 4.2. The groups ĄDiff
1

ωpDq and Diff1
ωpDq are not perfect.

4.2 Continuity of ĄCal.
For every continuous map f from D to C we set ||f ||8 “ maxxPD |fpxq|.
We denote d0 the distance between two maps f and g of Diff0pDq defined by

d0pf, gq “ maxp||f ´ g||8, ||f
´1 ´ g´1||8q.

We denote d1 the distance between two maps f and g of Diff1pDq defined by

d1pf, gq “ maxpd0pf, gq, ||Df ´Dg||8, ||Df
´1 ´Dg´1||8q,

where for every C1 diffeomorphism f of D, ||Df ||8 “ maxxPD ||Dxf ||.

The distances d0 and d1 define naturally two distances, denoted rd0 and rd1, on ĄDiff
1

ωpDq
defined as follows. Let us consider rf “ pf, rφq and rg “ pg, rψq in ĄDiff

1

ωpDq, we have

rd0p rf, rgq “ maxpd0pf, gq, ||rφ´ rψ||8, ||rφ
´1 ´ rψ´1||8q,

rd1p rf, rgq “ maxpd1pf, gq, ||rφ´ rψ||8, ||rφ
´1 ´ rψ´1||8q.

We denote rid “ pidD, idRq P ĄDiff
1

ωpDq. In this section we prove the following result:

Theorem 4.2. The map ĄDiff
1

ωpDq Ñ R is continuous in the C1 topology.

We need some results about the angle function.

Lemma 4.2. Let us consider rf “ pf, rφq P Diff1
`pDq such that rd1p rf, ridq ď ε ď 1{2, then

for every px, yq P D2z∆, it holds that

| cosp2πAng
rf
px, yqq ´ 1| ď 2ε.

Proof of Lemma 4.2. The proof is a simple computation. Let us consider x, y P D such
that x ‰ y. One can write f “ id ` h where ||h||8 ď ε and ||Dh||8 ď ε. By the mean
theorem we have

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď ε. (12)

We have
cosp2πAng

rf
px, yqq “

B

fpyq ´ fpxq

|fpyq ´ fpxq|

ˇ

ˇ

y ´ x

|y ´ x|

F

,

where x.|.y is the canonical scalar product on R2. We compute

| cosp2πAng
rf
px, yqq ´ 1| “

ˇ

ˇ

ˇ

ˇ

B

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

y ´ x

|y ´ x|

F
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

.
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We compute
ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq ´ py ´ xq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

` |fpyq ´ fpxq|

ˇ

ˇ

ˇ

ˇ

1

|fpyq ´ fpxq|
´

1

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

|y ´ x| ´ |fpyq ´ fpxq|

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď 2

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď 2ε.

From Lemma 4.2, we deduce the following result.

Corollary 4.3. Let us consider rf P ĄDiff
1

ωpDq such that d1p rf, ridq ď ε ď 1{2. The angle
function satisfies

||Ang
rf
||8 ď

?
ε{π.

Proof. For every couple px, yq P D2z∆ there exists a unique k P Z such that Ang
rf
px, yq ´

k P r´1{2, 1{2q. So by Lemma 4.2 we have

1 ě cosp|2πAng
rf
px, yq ´ k|q ě 1´ 2ε ě 0.

The function arccos is decreasing so we obtain

0 ď arccospcosp|2πAng
rf
px, yq ´ k|qq ď arccosp1´ 2εq.

Moreover the function arccos is defined on r0, 1s and of class C1 on r0, 1q such that for
every x P p0, 1s we have

parccosp1´ xqq1 “
1

?
2x´ x2

ď
1
?
x
.

We obtain that for every x P r0, 1s we have

arccosp1´ xq ď 2
?
x.

Hence we have
2π|Ang

rf
px, yq ´ k| ď 2

?
2ε.

And so

|Ang
rf
px, yq ´ k| ď

?
2ε

π
ă 1{2.

Moreover D2z∆ is path connected. Indeed, let us prove that every couple px, yq P D2z∆
is path connected to pp0, 0q, p1, 0qq. We can consider an isotopy pgtqtPr0,1s of diffeomor-
phisms from id such that g1pxq “ 0. Moreover D2ztp0, 0qu is path connected so there
exists a path γ Ă D2ztp0, 0qu from g1pyq to p1, 0q. the concatenation of the paths
pgtpxq, gtpyqqtPr0,1s and γ is a path from px, yq to pp0, 0q, p1, 0qq in D2z∆.
Moreover Ang

rf
is continuous on D2z∆ we deduce from the last inequality that k does not

depends on the choice of px, yq. The fact that rd1p rf, ridq implies that k “ 0 and we obtain
that for every px, yq P D2z∆

|Ang
rf
px, yq| ď

?
ε{π.

We now prove the continuity of Cal1 for the C1 topology.
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Proof of theorem 4.2. By Theorem 3.2 we know that ĄCal is a group morphism. So it is
sufficient to prove the continuity at the identity. Let us consider rf “ pf, rφq P ĄDiff

1

ωpDq
such that rd1p rf, ridq ď ε ď 1{2. By Corollary 4.3 we have for every couple px, yq P D2z∆

|Ang
rf
px, yq| ď

?
ε{π.

By integration on D2z∆ we obtain that

|ĄCalp rfq| ď

?
2ε

π
.

Hence ĄCal is continuous at the identity.

Moreover, it is well-known that the rotation number rρ : ČHomeo
`
pS1q Ñ R is continuous

and we deduce from Theorem 4.1 the following corollary.

Corollary 4.4. The application Cal1 : Diff1
ωpDq Ñ R is continuous in the C1 topology.

Let us prove that the Calabi is not continuous in the C0 toplogy.

Proposition 4.3. The morphism ĄCal is not continuous in the C0 topology.

We give a counterexample which also prove that the Calabi invariant defined in the
introduction is also not continuous in the C0 topology, this counterexample can be find
in [16]

Proof. Let us consider a sequence phnqně1 of smooth functions hn : r0, 1s Ñ R such that

1. hn is constant near the origin,

2. hnprq is zero for r ą 1{n,

3.
ş1
0 hnprq2πrdr “ 1.

We consider the Hamiltonian functionsHn : DÑ R byHnpzq “ hnp|z|q. Each function
Hn defines a time independant vector fild Xn, whose induced flow is denoted φtn. We have
the following property [16] about the computation of the Calabi invariant of compactly
supported and autonomous Hamiltonian function

Proposition 4.4. Let us consider H : D Ñ R a Hamiltonian function with compact
support. We denote φt the induced Hamiltonian flow and we have

Calpφtq “ ´2πt

ż

D
Hpzqωpzq,

where Cal is the Calabi invariant define by equation 3.

This result allows us to compute the Calabi invariant of φ1
n and we obtain for each

n ě 1
Calpφ1

nq “ ´2π.

For each n ě 1 we consider pφ1
n, idq P

ĄDiff
1

ωpDq and we have

ĄCal2ppφ
1
n, idqq “ ´2π.

Moreover, φ1
n converges to the identity in the C0 topology and we obtain the result.

5 Computation of Cal1 in some rigidity cases
In this section, we prove several results about the Calabi invariant of irrational pseudo-
rotations.
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5.1 A simple case : C1 rigidity.
Let us begin by the simple computation of the Calabi invariant for periodic symplectic
maps.

Lemma 5.1. If f P Diff1
ωpDq has a finite order, then we have

Cal1pfq “ 0.

Proof. By assumption there exists p ě 1 such that fp “ id and so Cal1pf
pq “ p Cal1pidq “

0.

We deduce the following properties

Proposition 5.1. Let us consider f P Diff1
ωpDq. If there exists a sequence of periodic

diffeomorphisms pgkqkPN in Diff1
ωpDq which converges to f for the C1 topology, then we

have
Cal1pfq “ 0.

Proof. By Lemma 5.1 for each n P N we have Cal1pgnq “ 0 and we obtain the result by
the continuity of the application Cal1 for the C1 topology.

Proposition 5.2. Let us consider f P Diff1
ωpDq. If there exists a sequence pqkqkPN such

that f qk converges to the identity in the C1 topology then we have

Cal1pfq “ 0.

Proof. We have Cal1pf
qkq “ qkCal1pfq and Cal1pf

qkq converges to Cal1pidq “ 0 so
Cal1pfq “ 0.

5.2 C0-rigidity
The following theorem is a stronger version of Corollary 5.2 :

Theorem 5.1. Let us consider f P Diff1
ωpDq. If there exists a sequence pqkqkPN of integers

such that pf qkqkPN converges to the identity for the C0 topology then we have

Cal1pfq “ 0.

To prove the previous statement we will give an estimation of the angle function of
f qn for a given isotopy I from id to f . For that we will consider two cases, the first one
if x is close to y and the other if x is not close to y. The following lemma gives us an
evaluation of what close means.

Lemma 5.2. Let us consider f a C1 diffeomorphism of the unit disc D, I an isotopy
from id to f . If d0pf, idq ď ε ď 1{4 then for every couple px, yq P D ˆ D which satisfies
|x´ y| ě

?
ε, we have

| cosp2πAngIpx, yqq ´ 1| ď 4
?
ε.

Proof. Let px, yq P Dˆ D be a couple such that |x´ y| ě
?
ε. Once can write f “ id` h

where h : DÑ R2 satisfies ||h||8 ď ε and we have
ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď 2
ε
?
ε
“ 2

?
ε. (13)

We use the equation

cosp2πAngIpx, yqq “
xfpyq ´ fpxq, y ´ xy

|fpyq ´ fpxq| |y ´ x|
(14)
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Moreover, if we write 1 “ x y´x
|y´x| ,

y´x
|y´x|y we obtain :

cospAngIpx, yqq ´ 1 “ x
fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|
,
y ´ x

|y ´ x|
y (15)

Equation 15 becomes :

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď |fpyq ´ fpxq|

ˇ

ˇ

ˇ

ˇ

1

|fpyq ´ fpxq|
´

1

|y ´ x|

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq ´ py ´ xq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

|y ´ x| ´ |fpyq ´ fpxq|

|y ´ x|

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď 2

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď 4
?
ε.

We obtain the following lemma.

Lemma 5.3. Under the same hypothesis, there exists an integer k P Z, uniquely defined,
such that for every couple px, yq P Dˆ D such that |x´ y| ě

?
ε, we have

|AngIpx, yq ´ k| ď 2 4
?
ε{π ă 1{2. (16)

Proof. We consider ε P p0, 1{16q and a couple px, yq P D such that |y ´ x| ě
?
ε. By

definition of the floor function there exists a unique k P Z such that 2πAngIpx, yq´ 2πk P
r´π, πq and we have

1 ě cosp|2πAngIpx, yq ´ 2πk|q ě 1´ 4
?
ε ě 0.

The function arccos is decreasing so we obtain

0 ď arccospcosp|2πAngIpx, yq ´ 2πk|qq ď arccosp1´ 4
?
εq.

The function arccos is defined on r0, 1s and of class C1 on r0, 1q. Moreover we have for
every x P r0, 1q

parccosp1´ xqq1 “
1

?
2x´ x2

ď
1
?
x
.

We obtain that for every x P r0, 1s

arccosp1´ xq ď 2
?
x.

Hence we have
|2πAngIpx, yq ´ 2πk| ď arccosp1´ 4

?
εq

ď 4 4
?
ε.

Thus we have
|AngIpx, yq ´ k| ď 2 4

?
ε{π ă 1{2.

Now we prove that k does not depend of px, yq. Indeed the set of couples px, yq P D2

such that |x ´ y| ě
?
ε is connected in D2. Indeed for a couple px, yq P D2 such that

|x´ y| ě
?
ε, let us construct a path from px, yq to pp´1, 0q, p1, 0qq.

We set d the line of D2 passing through x and y. The line d intersects S1 in two points
which we denote x̂ and ŷ such that x̂ is closer to x than y and ŷ is closer to y than x as
in figure 3.

Let us consider the path γx : r0, 1s Ñ D defines by γxptq “ tpx̂ ´ xq ` x from x to
x̂ and the path γy : r0, 1s defines by γyptq “ tpŷ ´ yq ` y from y to ŷ. So the path
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‚
x

‚
y

‚ x̂‚ŷ
d

Figure 3

Γ : t ÞÑ pγxptq, γyptqq defined on r0, 1s sends the coupe px, yq to px̂, ŷq.

Now we consider Rα the rotation of D of angle α “ argpx̂q. Notice that the rotation
R´1
α sends x̂ to p1, 0q. We denote pRtqtPr0,1s the isotopy from id to Rα such that for every

t P r0, 1s Rt is the rotation of angle tα. Notice that x̂ “ ´ŷ and so ŷ is send to p´1, 0q by
R´1
α .

Hence the composition of the path Γ and the path t ÞÑ pR´1
t px̂q, R

´1
t pŷqq sends px, yq

to pp1, 0q, p´1, 0qq.

Moreover, 2 4
?
ε{π ă 1{2 hence k does not depend on the choice of px, yq P D such that |x ´ y| ą

?
ε.

With these two lemmas we can give a proof of Theorem 5.1

Proof of Theorem 5.1. We can consider I “ pftqtPr0,1s an isotopy from id to f which fixes
a point of D̊. Up to conjugacy we can suppose that I fixes the origin and we denote I|S1
the restriction of I on S1. We lift I|S1 to an isotopy prφtqtPr0,1s on the universal covering
space R of S1 such that rφ0 “ id and set rφ “ rφ1. We will prove that ĄCal2pf, rφq “ rρprφq and
from Theorem 4.1 we will obtain

ĄCal2pf, rφq ´ rρprφq “ Cal1pfq “ 0.

For q P N we define the isotopy Iq from id to f q as follows. We write Iq “ pf qt qtPr0,1s
and for every z P D and t P rk´1

q , kq s we set

f qt pzq “ fqt´k`1 ˝ pf ˝ ... ˝ fq
looooomooooon

k´1 times

.

We will denote εn “ d0pf
qn , idq. For every k P Z we can separate the difference between

the integral of the angle function of f qn and k into two parts as follows

ż ż

DˆD
AngIqn px, yqωpyqωpxq ´ k “

ż

D

˜

ż

B?εn pxq
AngIqn px, yqωpyq ´ k

¸

ωpxq

`

ż

D

˜

ż

Bc?
εn
pxq

AngIqn px, yqωpyq ´ k

¸

ωpxq,

(17)

where Bc?
εn
pxq is the complementary of B?εnpxq in D.

We can suppose that εn ă 1{16 and by Lemma 5.3, there exists a unique kn P Z such
that for each couple px, yq P Dˆ D such that |y ´ x| ě

?
εn we have

|AngIqn px, yq ´ kn| ď 2 4
?
εn{π. (18)
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Moreover, by definition there exists a sequence pξnqnPN of 1-periodic functions ξn : RÑ R
such that ||ξ1||8 ď 1 for every n P N and such that for every y P S1 and every lift ry P R
of y we have

AngIqn p0, yq “
rφqnpryq ´ ry “ qnrρprφq ` ξnpryq.

So, for every y P S1 we have

|AngIqn p0, yq ´ kn| “ |qnrρp
rφq ` ξnpryq ´ kn| ď 2 4

?
εn{π,

where ry is a lift of y. Hence we obtain

|qnprρprφq ´ knq| ď 2 4
?
εn{π ` 1.

Thus we have
rρprφq “ lim

nÑ8

kn
qn
.

By the equation 18 we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ż

D

˜

ż

Bc?
εn
pxq
pAngIqn px, yq ´ knqωpyq

¸

ωpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 4 4
?
εn{π. (19)

We know that for every couple px, yq P D2z∆ and for every n P N we have

AngIqn px, yq “ AngIpx, yq `AngIpfpxq, fpyqq ` ...`AngIpf
qn´1pxq, f qn´1pyqq (20)

Hence for every n P N the angle function satisfies

||AngIqn ||8 ď qn||AngI ||8. (21)

We can estimate the first integral of the equation 17 as follows
ˇ

ˇ

ˇ

ˇ

ˇ

ż

D

˜

ż

B?εn pxq
pAngIqn px, yq ´ knqωpyq

¸

ωpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď εnpqn||AngI ||8 ` |kn|q (22)

So we can deduce from the previous equations a new estimation of the Calabi invariant
ˇ

ˇ

ˇ

ˇ

ż ż

DˆD
AngIqn px, yqωpyqωpxq ´ kn

ˇ

ˇ

ˇ

ˇ

ď 2 4
?
εn{π ` εnpqn||Angf ||8 ` knq. (23)

By definition we obtain
ˇ

ˇ

ˇ

ˇ

ĄCal2pf, rφq ´
kn
qn

ˇ

ˇ

ˇ

ˇ

ď
2 4
?
εn

qnπ
` εn||Angf ||8 ` εn

kn
qn
. (24)

Hence we have
ˇ

ˇ

ˇ

ĄCal2pf, rφq ´ rρprφq
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ĄCalpf, rφq ´
kn
qn

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

rρprφq ´
kn
qn

ˇ

ˇ

ˇ

ˇ

ď
4 4
?
εn

qnπ
` εn||Angf ||8 `

1

qn
` εn

kn
qn
.

(25)

By taking the limit on n P N, we conclude that

ĄCal2pf, rφq “ rρprφq.
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Remark 5.1. If we consider a sequence prgn “ pgn, rφnqqnPN P ĄDiff
1

ωpDq which converges to
rfpf, rφq P ĄDiff

1

ωpDq in the C0 topology where for each n P N, gn is a periodic diffeomorphism
of the disk and f is an irrational pseudo-rotation, then the previous method fails to prove
that ĄCal2pgn, rφnq converges to ĄCal2pf, rφq. It is easy to see that Ang

rf
is close to Ang

rgn

but if we compute the difference ĄCalpgn, rφnq ´ĄCalpf, rφq, as we did in the equation 17, we
do not have a control of ||Ang

rgn ||8 so we cannot estimate properly the integral
ż

x

ż

yPB?εnpxq

Ang
rgnpx, yqωpxqωpyq,

where εn “ ||gn ´ f ||8.

6 Examples
In this section, we will be interested in irrational pseudo rotations with specific rotation
numbers.

Best approximation: Let Any irrational number α P RzQ can be written as a
continued fraction where paiqiě1 is a sequence of integers ď 1 and a0 “ tαu. Conversely,
any sequence paiqiPN corresponds to a unique number α. We define two sequences ppnqnPN
and pqnqnPN as follows

pn “ anpn´1 ` pn2 for n ě 2, p0 “ a0, p1 “ a0a1 ` 1

qn “ anqn´1 ` qn´2 for n ě 2, q0 “ 1, q1 “ a1.

The sequence ppn{qnqnPN is called the best approximation of α and for every n ě 1 we
have

tqn´1αu ď tkαu, @k ă qn

where txu is the fractional part of x P R. And for every n P N we have

1

qnpqn ` qn`1q
ď p´1qnpα´ pn{qn, q ď

1

qnqn`1
. (26)

The numbers qn are called the approximation denominators of α.

6.1 An example of C0 rigidity : the super Liouville type.
In this section, we show that a C1 irrational pseudo rotation with a super Liouville rota-
tion number satisfies the assumptions of Theorem 5.1.

Super Liouville. A real number α P R{ZzQ is called super Liouville if the sequence
pqnqnPN of the approximation denominators of α satisfies

lim sup
n

q´1
n logpqn`1q “ `8. (27)

If we consider a real α P R which has super Liouville type then for each k P Z the real
α ` k is also super Liouville and to simplify the notations we will say that an element
rα P T1 is super Liouville.

Bramham already showed in [8] that any C8 irrational pseudo-rotation f of the disk
with super Liouville rotation number is C0 rigid, meaning that f is the C0-limit of a
sequence of periodic diffeomorphisms. More recently Le Calvez [25] proved that any C1

irrational pseudo-rotation which is C1 conjugated to a rotation on the boundary is C0

rigid. These results go as follows.
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Theorem 6.1. Let us consider either a C8 irrational-pseudo rotation or a C1 irrational
pseudo rotation f of rotation number α which is C1 conjugated to a rotation on the bound-
ary. For a sequence of rationals ppnqn qnPN which converges to α there exists a sequence
pgnqnPN : D Ñ D of qn-periodic diffeomorphims of the unit disk which converges to f for
the C0 topology.
Moreover, if f is a C1 irrational pseudo rotation of rotation number α which is C1 con-
jugated to a rotation on the boundary there exists a constant C determined by f such that
for every n P N we have

d0pf, gnq ă Cpqnα´ pnq
1
2 .

We deduce the following corollary.

Corollary 6.1. Let us consider a C8 irrational pseudo-rotationan or an irrational pseudo
rotation f P Diff1

ωpDq which is C1 conjugated to a rotation on the boundary. If the rotation
number of f is super Liouville then we have

Cal1pfq “ 0.

Proof of Corollary 6.1. If f is a C8 irrational-pseudo rotation then the result of Bramham
[8] assures that f satisfies the hypothesis of Theorem 5.1 and we obtain the result.

For the remaining of the proof, let us consider f a C1 pseudo rotation which is con-
jugated to a rotation on the boundary, we will prove that f satisfies the hypothesis of
Theorem 5.1. We consider α P R such that α ` Z is equal to the rotation number of f
and we consider a sequence of rationals ppn{qnqnPN which converges to α such that qn
satisfies equation 26. Let pgnqnPN be the sequence of qn periodic diffeomorphisms given by
Theorem 6.1 associated to f and the sequence ppn{qnqnPN. We denote by K the C1 norm
of f and we set εn “ Cpqnα´ pnq

1{2 where C is the constant given by Theorem 6.1.

For all k P N and each n P N the following inequality holds

d0pf
k, gknq ă Kkεn (28)

By equation 26 we can majorate εn by C
qn`1

to obtain for k “ qn the inequality

dpf qn , idq ă Kqn C

pqn`1q
1
2

. (29)

Since K ě 1, equation 27 assures that

lim sup
n

Kqn

pqn`1q
1{2
“ 0.

Thus we obtain that
lim sup

n
d0pf

qn , idq “ 0.

Hence up to a subsequence we can suppose that

d0pf
qn , idq Ñ 0.

So f satisfies the hypothesis of Theorem 5.1 and we conclude

Cal1pfq “ 0.
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6.2 An example of C1-rigidity : the non Bruno type
Bruno type. A number α P RzQ will be said to be Bruno type if the sequence pqnqnPN
of the approximation denominators of α satisfies

8
ÿ

n“0

logpqn`1q

qn
ă `8.

If we consider α P R which is not Bruno type then for each k P Z the real α` k is also
not Bruno type and to simplify the notations we will say that an element rα P T1 is non
Bruno type.

A. Avila, B. Fayad, P. Le Calvez, D. Xu and Z. Zhang proved in [2] that if we consider a
number α P RzQ which is not Bruno type, for H ą 1 there exists a subsequence qnk of the
sequence of the approximation denominators of α such that for every n P N qnj`1 ě Hqnj

and there exists an infinite set J Ă N such that for every j P J we have

tqnjαu ă e
´
qnj

j2 . (30)

We can also find the following result in the same paper.

Proposition 6.1. Let us consider a C2 irrational pseudo rotation f P Diff1
ωpDq. Suppose

that ρpf |S1q is not Bruno type, then the sequence qnj satisfies

d1pf
qnj , Idq Ñ 0.

Hence a C2 irrational pseudo rotation f P Diff1
ωpDq satisfies the hypothesis of Corollary

5.2 and we obtain the following corollary.

Corollary 6.2. Let us consider a C2 irrational pseudo rotation f P Diff1
ωpDq. Suppose

that ρpfq is not Bruno type, then we have

Cal1pfq “ 0.
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