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1. INTRODUCTION

Cyclic homology and cyclic cohomology are two theories that had been introduced simultane-
ously by Connes and Tsygan at the beginning of the development of non-commutative geometry,
in the years 1980. Tsygan worked more on the homology, while Connes on the other hand worked
on the cohomology, introducing the periodic and negative cyclic cohomologies at the same time.
The idea was to treat geometrically the study of non-commutative algebras, by extending Gel’fand
duality between commutative C*-algebras and topological spaces. From this new approach he
developed special invariants which behave very well with the commutative and non-commutative
cases, namely the cyclic homology. It can also be linked to algebraic K-theory through the Chern-
Connes character. The definition of this new homology theory with Connes’ (b, B)-bicomplex
shows that this is also strongly related to Hochschild homology, which is a theory developed by
Hochschild some time before, in the years 1940. The link takes the form of an exact sequence,
named SBI by Connes. Later, Beckmann worked on generalizing the notions of Hochschild and
cyclic homologies to schemes over a field. The attempt is quite natural, as the category of algebras
over a given field is equivalent (through a contravariant functor) to the category of affine schemes
over this same field. We can thus wonder if the theory can be described for affine schemes in a
way that could extend to schemes, maybe asking some good properties for the scheme. Beckmann
did all that and once again linked it to K-theory, in his thesis [Beck|. In parallel, throughout the
last centuries, the analytic number theory had been introduced and then studied. The work of
Weil and Hasse on the fundation of the algebraic geometry, and the arithmetic geometry, with the
study of L-functions in the p-adic case in the 30s’ created a bridge between algebraic results and
analytic number theory, because it allows to associate to any algebraic variety, or even more gener-
ally a motive over a number field an arithmetic function, that can be defined in any characteristic.
Afterwards, with the intervention of Grothendieck and Serre, several conjectures for these zeta
functions or L-functions have been made, as stated in the paper [Ser|, using p-adic cohomology
and ['-functions. The study of these functions in positive characteristic is quite well known at the
time being, but some analogies for the 0 characteristic are still to be made. Studying these functions
in the years 1990, Deninger found a convenient way to express them by defining a new homology
theory, which he called archimedean, as a call back to the archimedean places of a number field.
In [Den|, he therefore defines this theory, and gives a way to understand the L-function associated
to a motive as the regularized determinant of a certain operator on this infinite dimensional space.
The good way to regularize a determinant in order to achieve this is non trivial and detailed as well
in his work. At the end of the 20th century, Connes began to work on the Riemann hypothesis, in
collaboration with Marcolli, and then Consani. They tried to use a non-commutative point of view
to refine the result of Deninger, defining a more natural archimedean homology which would carry
once again the information about the L-function associated to a motive, which will be called as one
could expect the archimedean cyclic homology. This homology is defined for any smooth projective
variety over a number field (containing Q), and is strongly related to the A-decomposition of the
cyclic homology, as treated by Loday in [Lod], or in the case of schemes by Weibel in [We2]. The
aim of this mémoire is to explain and prove the theorem by Connes and Consani, as done in [CC],
the theorem is stated as theorem 8.30

Theorem 1.1. Let X be a smooth, projective variety of dimension d over an algebraic number field
K, and let v|oo be an archimedean place of K (K, =R or C). Let © = ©g — I be the operator on
HC(X,), with ©¢ the "generator” of the A-operations on the homology (that is to say ©g = j on

HCfT’(j)(Xl,)), and T the grading operator (that is to say I' = n on HC,(X,)). Then the action
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of © satisfies the formula

1
detoo < (s =©)meey,, (x )>
(1.1.1) [T L™ x),s) 0" = 2717 ‘ ,
detoo ( )

0<m<2d - (s— @)\Hcggd(xu)

for all complex numbers s. The spaces labeled "even" and "odd" are defined as
Hcggen(Xl/) = @ HCZT(XD)7 and
n=0[2]
n>0
sa(X0) = @ HC(X,).
n=1[2]

n>1

(1.1.2)

The spaces HCY ™) are the A-decomposed archimedean cyclic homology groups, defined from
the cyclic homology groups of the variety X,. First, in section 2, we will recall how to define
Hochschild and cyclic homologies in the case of algebras, as well as the two variations which are
the negative and periodic cyclic homologies, following what is done in [Lod], in the case of unital
algebras. Then, in section 4.32, we will define the Kéhler differential modules of an algebra in order
to state the Hochschild-Kostant-Rosenberg theorem 3.11, which is a paramount tool to compute
Hochschild and cyclic homology, and which reaches beyond the algebra case, and allows to find
alternative definitions of the complexes used to define the cyclic homology of schemes. This will
lead to the definition of the homology theories for schemes, in section 4, in which we will also define
the A-decomposition, which is a result emanating from basic bialgebra theory, but allows to split
the homology as a direct sum of subspace, each of them being computable as a Deligne cohomology
group, and that is the goal of section 5. After this section, we will aim towards the definition of the
archimedean theories, beginning with the Tate-twisted cyclic homology, which takes into account
the difference between the periodic homology of the manifold associated to a scheme when it is
smooth over the real or complex numbers, and the periodic homology of the scheme itself. This
gives rise to a real cyclic homology, which comes with a Tate-twisted map from it to the usual
cyclic homology. When this is defined, we will be able to build the archimedean cyclic homology
in section 7, at first in the complex case, and then in the real case, as the two slightly differ. Then
we will be able to understand them as Deligne cohomology groups. When all of this is built, the
theorem is easy to understand, explaining at first how to take the determinant of an operator over
an infinite dimensional space, and this is done in section 8.30, leading to the statement and the
proof of the theorem. Afterwards, we will treat the case of a fundamental example, that is the
real and complex projective spaces of any dimension. The only example provided in [CC| was
the case of schemes consisting of a single point, that are SpecR and Spec C, which are included
in the general computation that we give. Our computation relies on several proposition showed
throughout the mémoire and used together to understand the cyclic homology of these schemes,
and then their archimedean cyclic homology. In parallel, to check that the theorem makes sense
in these cases, we will compute the L-functions associated to the schemes, by understanding their
cohomology as Hodge structures. The examples are shown in section 9.
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2. PRELIMINARIES: HOCHSCHILD AND CYCLIC HOMOLOGIES

2.1. Hochschild homology. We will first recall what are the Hochschild and cyclic homologies
associated to an algebra A over a field k, with A not necessarily commutative. However, we will
assume every algebra is unitary.

Definition 2.2. We define the Hochschild complex associated to the algebra A as
(2.2.1) Co(A)=... % A8+l by gom by by q@3 b q@2 0 4 g,

the tensor products being taken over k, with Cy(A) = A, and the operator b is defined as
(2.2.2)

n—1
b(a0®a1®'--®an):(aoal)®a2®---®an+Z(—1)ia0®a1---®(aiai+1)®-~-®an
i=1

+(_1)n(ana0) X aq R Ap—1-

The operator b is such that bob =0, and C,(A) is therefore a complex. The Hochschild homology
is defined as the homology of this complex.

(2.2.3) HH,(A) = H,(C,(A),b).
Definition 2.3. At the same time, we define the operator b on the Hochschild complex as

n—1

(2.3.1) b(ag® a1 @ @ a,) = (aga1) ®as @ -+ @ ay + Z(—l)iao ®ay @ (a;ai41) D+ @ ap-
i1

Example 2.4. A classic example is the Hochschild homology of the C-algebra. We have H Hy(C) =
C, and all the other groups are trivial.

Remark 2.5. The computation can be done easily in that case, because the formula for b is directly
usable. The result will be shown as a particular case of example 4.16, in which the computation is
done for Spec(C) ~ P2 as a scheme.

2.6. Cyclic homology. To define the different cyclic homologies (usual, periodic and negative),
we will define Connes’ bicomplex (By.(A),b, B), but in order to define this complex in the unital
case, it can be useful to first define cyclic homology through the Loday-Quillen bicomplex, as in
[Lod]. First, we define an action of Z/(n + 1)Z on A®"*! called the cyclic operator.

Definition 2.7. For any n, we set
(2.7.1) tag® - ®an) =(—1)"(a, ®ag® -+ @ ap_1),
this operator is such that t"+! = 1.

From this we define the norm operator.
Definition 2.8. We define the operator N on A®"*+1 as
(2.8.1) N=1+t+---+1t"
Proposition 2.9. The operators defined above satisfy the relations

r_

(2.9.1) 1 ;,);z] :?\([2 2

These operators are enough to define the cyclic bicomplex.
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Definition 2.10. The cyclic bicomplex B.,(A) as

A®3 A®3 A®3 A®3
lb 1—t l,b' N lb 1—t lbfT
(2.10.1) ) ) ) )
A® — A® < A® — A® <T
lb }b/ lb }b/
A 1—t A N A 1—t A N ’

the module in the left-hand corner is in position (0, 0), such that we have B,,(A) = C,(A) = A®IH1,

Definition 2.11. We define the total complex associated to this bicomplex CC,(A) = Tot,B..(A4),
that is to say

(2.11.1) COu(A) = Toty(Bun(A)) = €D Byy(A) = A" 0 A®" 1 g @ A.

ptg=n
the differential being the sum of the vertical and horizontal differentials of the bicomplex.
Definition 2.12. We define the cyclic homology of A to be the homology of this complex
(2.12.1) HC,(A) = H,(CC.(A)).

This complex can be rewritten, because the odd-indexed columns are acyclic, and therefore it
is possible to make them disappear.

Proposition 2.13. The complex

(2.13.1) Y aes Y ger Y 4,

s null-homotopic, and thus it is also acyclic.

Proof. We build a map s : A9™ — A®"*1 called the extra degeneracy by setting
(2.13.2) (a1 ® - ®ap)=1®a1 @ @ ay).

A quick computation shows that it is such that

(2.13.3) Vs+sbt =1,

that is to say s is a homotopy from the b’-complex 2.13.1 to the zero complex. O

Using a lemma proved in [Lod], called there the killing contractible complezes lemma, we obtain a
quasi-isomorphism from the cyclic bicomplex to another bicomplex often called Connes’ bicomplex.

Definition 2.14. We define a new map from the ones defined before:

(2.14.1) B=(1—1t)sN:A®" — A®"HL
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Then the lemma allows us to delete the odd-indexed columns, which are repetitions of the b'-
complex 2.13.1, filling the diagram with the new differential B as follows:

(2.14.2) Jb ‘k Jb ‘X lb

It is possible to change the indexation of this complex to get the usual (B, b)-bicomplex, denoted

B..(A),
lb lb J{b

2103 bl

The lemma also insures that it is a bicomplex and thus that we have Bb + bB = 0. Explicitly, the
map B : A®"Hl 5 A®7+2 ig given by
n

B(ao®"'®an):Z(—l)m(l(@ai@-'~®an®ao®"'®ai—1

(2.14.4) Pt

—0;R1®a41 R Ra, Qa Q- Qa;_1).

Theorem 2.15. We get an injective map of complexes Tot,(Bix(A)) — CCL(A), which is a
quasi-isomorphism, and therefore the cyclic homology can be computed as

(2.15.1) HC,(A) = Hy(Tot, (Buy(A))).

From this other way to compute the cyclic homology of an algebra, we get an interesting exact
sequence relating Hochschild homology and cyclic homology.

Proposition 2.16. There is a short exact sequence of bicomplexes
(2.16.1) 0 Cu(A) L Bi(A) 2 Bo1,_1(A) =0,

seeing the complex Cy(A) concentrated in the first column. This sequence becomnes, at the level of
total complexes,

(2.16.2) 0— C.(A) L CC(A) S CO,_5(A) — 0,
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the map S is really important and is called the periodicity map. The long sequence of homology
associated to this short sequence is called the SBI sequence and is of the form:

(2.16.3) L HC(A) S HC, 5(A) B HH, 1 (A) S HC,_1(A) S .

At the end we have

(2.16.4) L EC(A) S 08 HHY(A) L HC(A) S 0.

And thus we get HCy(A) ~ HHo(A) ~ A/[A; A]. We also get from this a spectral sequence
(2.16.5) E),=HH, ,(A) = HCp4(A),

the differential dy being Connes’ operator B.

Example 2.17. For the C-algebra C, we get (using the SBI sequence or again the example 4.16)
H(C5,(C) =~ C and HC4,+1(C) = 0 for every natural number n.

2.18. Periodic and negative cyclic homologies. The are two other homology theories which
can be useful, which are the periodic and negative cyclic homologies. They are obtained by
completing the cyclic bicomplex B, (A).

Definition 2.19. We define the periodic bicomplex T. as the completion of the bicomplex B,.(A)
in the left half-plane, that is to say T, = A®? whenever ¢ > 0, the other groups being trivial. The
differentials are still alternatively N and 1 — ¢ for the horizontal one, and b and —b’ for the vertical
ones. This bicomplex looks like

N Af: 1—t Afgb/ N Aflj) 1—t Afgb’ N Afj S
(2.19.1) A2 A®2 A®2 A®2 A®2
N 1-t N 1-t N 1-t
lb lfb’ lb lfb’ lb
oA Ay Ao Ay Ae

the group colored in red being the one in position (0, 0).

Definition 2.20. We can see the cyclic bicomplex as the bicomplex obtained by deleting the
negatively numbered columns. Therefore, we define the negative cyclic bicomplex T, as the
bicomplex made of the columns of number lower than or equal to 1. This bicomplex comes with
an obvious embedding I into T, which itself projects onto B..(A).

Remark 2.21. The sequence of morphisms of complexes is not exact as the columns 0 and 1 are
in the three complexes.

Definition 2.22. The periodic complex associated to the algebra A, PC,.(A) is the product total
complez of this bicomplex, that is to say

(2.22.1) PCy(A) = Toty(Tos) = [ Toa=]] A%
p=1

p+g=n
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with the differential being the sum of the horizontal and vertical differentials of Ti,. The periodic
homology of A is then defined as the homology of this complex

(2.22.2) HP,(A) = H,(PC.(A)).

Remark 2.23. It is crucial to take the product total complex and not the usual one, as the
bicomplex T, is not biregular (that is to say the diagonals are not finitely filled). The product
total complex thus keeps a lot more information, and in the case of the periodic bicomplex, one
can show that the homology of its sum total product is trivial. Moreover, if we consider a biregular
bicomplex (e.g. Connes’ bicomplex), then the two total complexes agree (because we are in an

abelian category).

Proposition 2.24. This periodic homology is really periodic as we have for any integer n
(2.24.1) PC,(A) =[] A",
p=1

with a 2-periodic differential,as it is easy to see on the bicomplex itself. Therefore for every integer
n we have

(2.24.2) HP,(A) ~ HP, ,5(A).

Definition 2.25. The negative complex associated to the algebra A, NC,(A) is defined as the
product total complex of the bicomplex T, that is to say

(2.25.1) NCW(A) =Totn(T) = [ Ty

ptg=n
For n <1, we have NC,,(A) = PC,,(A), but it is truncated if n > 2. The differential is as always

defined as the sum of the vertical and horizontal ones. The negative cyclic homology of A is then
defined as the homology of this complex

(2.25.2) HN,(A) = H,(NC.(A)).

Proposition 2.26. There is a short exact sequence of complexes, induced by the identification of
the translated cyclic bicomplex with the quotient of the periodic bicomplex by the negative bicomplex:

(2.26.1) 0 — NC.(A) = PC.(A) —» CC,_2(A) — 0,
and thus a long exact sequence in homology

(2.26.2) i 5 HNy (A) 5 HP, 1 (A) S HC_1(A) 2 HN,(A) > ...

Once again, it is possible, thanks to the killing contractible compleres lemma to rewrite this
periodic bicomplex as the bicomplex obtained by completing Connes’ (B, b)-bicomplex in the left
half-plane.
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Theorem 2.27. The periodic bicomplex 2.19 is quasi-isomorphic to the following bicomplez, de-

noted Tix,
b b b Jb lb
®5 ®4 ®3 ®2
B A B A B A B A B A
b b b Jb
= A®4 = A®3 = A®2 5 A
(2.27.1) b b b
®3 ®2
B A B A B A
b b
®2
B A B A
J{b
B A ’

the red A being located in position (0,0). And therefore we have
(2.27.2) HP,(A) = Hy(Tot(Tex))

The same applies for the negative cyclic homology.

Theorem 2.28. The negative bicomplex is quasi isomorphic to the subcomplex of T.. consisting
of the columns such that p <0, it is denoted T,,. We have also

(2.28.1) HN,(A) = H,(Tot.(T.,))-
3. DIFFERENTIALS AND HOCHSCHILD-KOSTANT-ROSENBERG THEOREM

In the rest of this mémoire, many properties of cyclic homology come from an identification
of certain algebras with algebras of Kéahler differential forms on the algebra A considered. This
correspondence comes from the Hochschild-Kostant-Rosenberg theorem. The definitions can be
found on nLab or in the book [We3].

3.1. Kahler differentials for an algebra. To understand the idea of K&hler differentials, we
will first define the first module with its universal property, as the "universal module equipped
with a derivation". When we say that A is a commutative algebra, we mean a ring with a ring
morphism k — A, which naturally makes it an algebra over k.

Definition 3.2. Let k be a field and A a commutative k-algebra, and M a A-module. A derivation
from A to M is a k-linear map D : A — M satisfying the product rule

(3.2.1) D(ab) = D(a)b+ aD(b),
for every elements a and b in A.
The first module of Kéahler differentials is then defined with a universal property.

Proposition 3.3. There exists a couple (Q*(A/k),d), where QY (A/k) is a A-module and d : A —
QY (A/k) is a derivation, such that for any A-module M with a derivation D : A —, D factors
uniquely through Q'(A/k), that is to say there exists a unique A-module morphism

(3.3.1) QY AJK) — M,
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such that the following diagram commutes

A D M

(3.3.2) X‘ /

QL (A/k)

Definition 3.4. The module of the previous proposition is called the first module of Kahler
differentials over A.

There is a more direct construction of this module, as seen in the following proposition.

Proposition 3.5. The A-module Q'(A/k) is isomorphic to the module generated by the symbols
da, for every a in A, with the relations

de =0 if ¢ is an element of k seen as an element of A,
d(ab) = (da)b + a(db),

d(a+b) = da + db,

(da)b = b(da),

for a and b elements of A. The derivation d is obviously defined as d(a) = da.

From this description, we can see that the first Hochschild homology group of an algebra A
always agrees with its module of Kéahler differentials.

Theorem 3.6. Let A be a commutative k-algebra, then HHy(A) ~ A, and there is an isomorphism
(3.6.1) HH,(A) ~ Q' (A/k).

Proof. Recall the complex defining the Hochschild homology of an algebra A:

(3.6.2) Co(A) =... 5 A®n+L by gom by by @3 b q@2 5 4 g

By definition, HHo(A) = A/[A; A], and if A is commutative, then Im(bjaga) = [4; A] = 0, and
HH,(A) = (A®y A)/Im(bjaes). For every a, b and c in A, we have

(3.6.3) ba®b®c)=ab@c—a®bc+ca®b.

Writing this with the notation da, we have

(3.6.4) b(adbdc) = abde — ad(bc) + cadb.

That is to say that in HH;(A), we have the relations

(3.6.5) ad(bc) = abdc + acdb,

which are equivalent to the relations given to define Q'(A/k). O

The goal of the Hochschild-Kostant-Rosenberg theorem is to relate the Kéhler differential mod-
ules with Hochschild homology at higher degrees. For this we need to define the higher degree
Kahler differential modules. These are often defined after the generalization to schemes, taking the
sheafification of Q!(A/k) on the k-scheme Spec A and so on. However, we can define them right
now in the case of algebras.

Definition 3.7. Suppose here that the field k£ has characteristic 0, then we define the higher degree
Kahler differential modules as the exterior products of the first module. For a k-algebra A, we set
O°(A/k) = A, and

(3.7.1) Q" (A/k) = ARQY (A/k).
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This definition allows us to define the de Rham complex associated with a commutative k-
algebra.

Definition 3.8. We define the de Rham complex as the following

(3.8.1) A=Q%A/k) S QY A/k) L Q2(A/k) S ..
The differential d being defined as
(3.8.2) d(apday Ndag A -+ ANday) = 1dag Aday A -+ Aday,.

The de Rham cohomology of the k-algebra A is then defined as the cohomology of this complex.
(3.8.3) Hir(A) = H* (" (A/k),d).

3.9. Hochschild-Kostant-Rosenberg theorem and applications. The preliminaries to the
Hochschild-Kostant-Rosenberg theorem are the isomorphism for the degree 1 3.6, and the following,
which gives a graded algebra morphism we would like to be an isomorphism.

Theorem 3.10. Given a comuutative k-algebra, the isomorphism 3.6 extends to a differential
graded ring morphism

(3.10.1) b QF(AJk) — HH,(A).

Proof. To show that the first morphism extends to a morphism v as we want to get, it is enough to
endow HH,(A) with a graded ring structure in order to use the universal property of the exterior
product. In order to do so, we define the signed shuffle product:

(3.10.2) p((ar® - ®ap), (ape1 ® -+ ® apiq)) = Z e(o)o- (a1 ® -+ @ apiq).
o (p,q)—shuffle

With this product, checking the commutation with the operator B, the Hochschild complex is
now endowed with a DG-algebra structure. Taking the homology, we get a graded commutative
algebra structure on the Hochschild homology HH,(A). The existence of the morphism follows
from this. O

Theorem 3.11. Let k be a field and A a commutative k-algebra which satisfies the following
properties:

(1) A is finitely presented over k,
(2) A is smooth over k, that is to say the A-module of Kdhler differentials Q'(A/k) is a
projective object in the category A — Mod — k.

Then the morphism
(3.11.1) P Q*(A/k) > HH.(A),
s an isomorphism.
The proof rely on the regularity of the rings that appear and their localizations, and therefore
uses dimension theory, and can be found in [We3].

Now we can see how this theorem is paramount in the computations of cyclic homology we are
going to do in the rest of this mémoire.

Proposition 3.12. With the hypotheses of theorem 3.11, it is trivial that the de Rham complex
with the differential d replaced with 0 is quasi-isomorphic to the Hochschild complex and therefore
computes the Hochschild homology too, the complex being

(3.12.1) A=0%A/k) L QY (A/k) S Q2(A/K) S ..
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From this we will want to replace the columns of Connes’ (B, b)-bicomplex with copies of this
de Rham complex with differential 0 instead of b. In order to do this, we must understand the
behaviour of the map B under this correspondence.

Proposition 3.13. For a commutative (non necessarily smooth) k-algebra A, with k a field of
characteristic 0, the following diagram is commutative

QU (A/k) —— QHL(A/k)
(3.13.1) l# I

HH,(A) —2 HH,.1(A).

There is also another map « : HH,.(A) — Q*(A/k), coming from the natural functorial map
Cy(A) — Q*(A/k), and we have m,, o1, = nlld.

Proposition 3.14. Under the same hypotheses as the previous proposition, the following diagram
15 commutative

HH,(A) —2 HH,,,(A)
(3.14.1) l,r lﬂ
ar(A/k) ST gnat A,
From this we see that when the algebra A satisfies the hypotheses of theorem 3.11, then we can

replace the columns of Connes’ bicomplex by shifted de Rham complexes, the vertical differentials
being 0 and the horizontal being d.

Theorem 3.15. Let A be a k-algebra which satisfies the conditions of theorem 3.11, with k of
characteristic 0, then the bicomplex B, defined as

lo Jo Jo lo
Q3(A/k) — O2(A/k) — QL (A/k) — A
I I Js
(3.15.1) O%(A/k) — QL (A/k) —— A
J{o lo
QY (A/k) 4
I
A
is quasi-isomorphic to Connes’ bicomplex B(A), and therefore we have
(3.15.2) HC,(A) = H,(Tot.(BQuy)).
Moreover, this homology can be computed in terms of de Rham cohomology
(3.15.3) HC,(A) = Q"(A/k) /A" (A/k) @ Hig*(A) @ Hig*(A) @ ...,
the last summand being HIp(A) or Hip(A) depending on the parity of n.

Remark 3.16. The same replacement is also possible for the periodic or negative cyclic homology.
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4. EXTENSION TO SCHEMES

In this section we will define what we would like to be a generalization of the Hochschild and
cyclic homologies, extending the definition to schemes. For it to be a real generalization, it would
require that the homology of any affine scheme agree with the homology of the corresponding
algebra, that is to say, for any affine scheme X over a field £,

(4.0.1) HH,(X) = HH,(Ox(X)).

That is however not true in general but it becomes true with a few hypotheses on the scheme.
From now on, when we talk about a k-algebra A, we mean a commutative unitary ring endowed
with a ring morphism k£ — A which gives A a natural algebra structure. Moreover, when we talk
about a k-scheme, or a scheme over the field k£, we mean a scheme X endowed with a morphism
of schemes X — Speck. In these two categories, the morphisms are also supposed to make the
obvious diagrams over £ commute.

4.1. Hochschild homology of schemes and hypercohomology functors. The definition of
the Hochschild homology of a scheme is slightly different from the one for an algebra as the category
on which we work is not the category of algebras over a give field, but of sheaves of algebras on
the given scheme over the field. Therefore, in order to get a simple group and not a sheaf, we
need to take the hypercohomology of the sheaf complex, which is a really convenient functor for
the definitions, but not for the explicit computations, as it requires to find injective resolutions of
the given complex. This definition seems to be first used by Beckmann in [Beck], but is then used
by Weibel in [Wel] and [We2].

Definition 4.2. Let X = Spec(A) be an affine scheme over a field & (A is a k-algebra), we define
the Hochschild complex associated to the scheme as the sheafification of the Hochschild complex
2.2.1:

(4.2.1) oD aent by pen by 5 A A@r AL AR, A% A 0.

Generalizing this to the case where the scheme X is not affine, we set the Hochschild complex to
be the following:

(4.2.2) C*(X)Z...LO?EN—H i)@?é”i}i}@x Rk Ox @ Ox i>OX Rk Ox b:—0>0)(—>0.

We change this complex into a complex of cochains by setting C*(X) = C_,(X), and switching
the direction of the arrows. The Hochschild homology of the scheme X is then defined as the
hypercohomology of this complex of sheaves, that is, for all integer n:

(4.2.3) HH,(X)=H"(X,C*(X)).
The hypercohomology functor is defined as follows:

Definition 4.3. Let C* be a complex of sheaves on a scheme X, we take a Cartan-Filenberg
resolution of the complex, that is to say a bicomplex (I**, d;, ds) with a family of monomorphisms
CF — I*0, such that every complex

0—CF STk 5 [k
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is an injective resolution of C*.

I

d _ d d
_di, p22 L, 02 _h

q

d _ d _ d d d d
1 T 2,1 1 T 1,1 1 IO,I 1 Il’l 1 1'271 1

(4.3.1) dQT dzT dQT dQT dQT

b 20 10 o0 0 20
dl { I R |
d_, o2 d c-1 d co d cl d 2 d

We can consider the product total complex of I**,
(4.3.2) (Tot™1**) = [] 1",
kEZ

with differential defined as d = d; —ds. This complex is independent of the choice of the resolution
I** up to homotopy equivalence. The hypercohomology of C* is then defined as the cohomology
of the complex of global sections of this product total complex:

(4.3.3) H'(X,C*) = H" (T (Tot*I**)) = H" (Tot*T (I**))..

Remark 4.4. We will sometimes omit the shift to cohomology when we work with homology
theories. For instance, the notation

(4.4.1) H"(X,C.(X))

must in fact be understood as

(4.4.2) H™"(X,C.(X)) = H"(X,C*(X)),

where the raising of the star is the same as done in 4.2.

Remark 4.5. If the complex C* is bounded below, then the product total complex of the Cartan-
Eilenberg resolution is the same as the usual total complex, with direct sums instead of products
as the families are finite. Therefore, the hypercohomology functor coincides with the usual right-
derived functor associated to the global sections functor I'; we have:

(4.5.1) H'(X,C*) = R'T(C*).
Proposition 4.6. This construction gives a Mayer-Vietoris sequence. Given a covering of X by
two open sets U and V', we have an exact sequence for every complex C:
(46.1) - > H'(X,C) > H(UCy) @ H(V,Cy) = H (U NV,Cluav) - HTH(X,C) — ...
Let us come back then to Hochschild homology. With this definition, there exists non trivial

homology modules at negative integers. However, if X is quasi-separated and quasi-compact, only
finitely many negative Hochschild modules can be non trivial.

Proposition 4.7. (Weibel, [Wel]) If X is a noetherian scheme over k of finite dimension d, and
we have HH,(X) =0 for n < —d.
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In the case of an affine scheme, the Hochschild homology can be computed as the first homology
sheaf of a quasi-coherent scheme. We define for every integer n the sheaf H#H,, as the sheafification
of the sheaf U — HH,(Ox(U)).

Proposition 4.8. (Weibel, [Wel|) For a scheme over a field k, the sheaves HH,, are quasi-coherent
sheaves o X. Moreover, on an affine open U = Spec A of X, there are natural isomorphisms

HH,(A) = H(U,HH,,).

Moreover the Hochschild homology of an affine scheme is, as one would expect, often equal to
the usual Hochschild homology of the algebra.
Theorem 4.9. (Weibel, [Wel]) Let X = Spec A an affine scheme, with A a noetherian algebra of
finite dimension, then we have isomorphisms for n > 0

HH,(X) ~ HH,(A).

4.10. Cyclic homology of schemes.
Definition 4.11. Similarly we define the cyclic homology of a scheme X over a field k by con-
sidering the double complex which is the sheafification of Connes’ double complex (B..(A), B,b)
on Spec A, defined in 2.14.3, which we denote again B,.(X). The cyclic homology of X is then

defined as
HC,(X) =H"(X, Tot, B.x(X)).

Proposition 4.12. As in the case of algebras, the two homology theories are related by an SBI
sequence, for any scheme X :

(4.12.1) e HCW(X) S HC,o(X) 2 HH, (X)L HC,1(X) = ...
Moreover, we get a spectral sequence
(4.12.2) E),=HH, ,(X) = HCp,(X),

the differential dy being induced by the sheafification of the operator B of Connes’ bicomplez.
As for the Hochschild homology, this definition agrees for affine schemes with good properties.

Theorem 4.13. (Weibel, [Wel]) Let X = Spec A an affine scheme, with A a noetherian algebra
of finite dimension, then we have isomorphisms for n > 0

HCp(X) ~ HCy(A).

However, the definition of the cyclic and Hochschild homologies through hypercohomology is
not really usable, unless there appears some way to get injective resolutions of the complexes (that
can sometimes be done by replacing the complex by de Rham complex when that is possible using
Hochschild-Kostant-Rosenberg theorem, as in section 3, see section 4.32). One way to compute it
in easy cases is using links with the Cech cohomology of suitable sheaves as it is done in [Beck].
We will see what is necessary to compute cyclic homology of simple schemes such as projective
spaces P}..

The main result is the following:

Proposition 4.14. Let X be a noetherian separated scheme of finite dimension over the field k.
Let C*(X) be the complex of sheaves for the Hochschild homology. Then there are isomorphisms
for all integers n

(4.14.1) H™"(X,C*(X)) ~H"(X,C*(X)) ~ HH_,(X).

Where H is the Cech cohomology functor for complexes of sheaves over a topological space.
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4.15. The example of the cyclic homology of the projective spaces over a field.

Example 4.16. Let us compute the Hochschild and cyclic homology of the projective space of
dimension 1 associated to a field k, X = P}. Recall that there is an affine covering of X given by
the two open sets U = (Uy, Uy), with

1 1
Uy ~ Spec (k[T]), Uy ~ Spec (k‘ [T}) , and Uy N U; ~ Spec (k: [T, T]) )

The Hochschild homology is the same as the usual Hochschild homology. For any integer q, we
have:

E[T] for ¢ =0,
.16. 0) ~ o~ ~ or g =1,
(4.16.1) HH,(Uy) ~ HH,(k[T]) ~ Q4(k[T]/k) k[T)dT f 1
0 for g > 1,
and
1 1 k % for ¢ =0,
(4.16.2) HH,(U,) ~ HH, (k {T]) ~ Q1 (k [T} /k;) ~q k|7 d% for g =1,
0 for g > 1,
Moreover, on the intersection set we have:
E[T,%] for ¢ =0,
(4.16.3) HH,(UyNUy) ~{ k|T,7|dT for =1,
0 for ¢ > 1,

From this, we can apply the hypercohomology spectral sequence to find the Hochschild homology
of X:

(4.16.4) EYY = HP(U,HY(C*(X))) = HH_, ,(X).

Moreover, we have isomorphisms:

k for p= —q and p € {0,1}

(4.16.5) ﬁp(U, HY(C*(X))) ~ H? (Xv Q)_(?k) = { 0 otherwise

as in exercise 7.3 of chapter III of Hartshorne. The sheaf Q;}k being the sheafification of the

sheaf of Kéahler differentials on the algebra A, Q~9(A/k) on Spec A. Thus, the spectral sequence
converges at page 2 and we get the following result:
k2 for ¢ =0
1 ~
(4.16.6) HHy(Py) = { 0 otherwise,

This method generalizes to P} for any integer n.

Ertlforq=0

(4.16.7) HH,(Py) ~ { 0 otherwise,

Now we can deduce from the Hochschild homology the cyclic homology thanks to the spectral
sequence 4.12.2. We have an upper-right quadrant spectral sequence
E),=HH, ,(X) = HCp(X).

Knowing that HH,_,(X) is isomorphic to k"™ if and only if p = ¢, the differential must be zero,
and the sequence converges immediately, for all n. We get from this that HC,,(X) ~ HHy(X) ~
k"t if m is even, and 0 if m is odd. The SBI exact sequence 4.12.1 gives then

(416.8) -+ —=0— HC{(X) = HC_1(X)—> HHy(X) - HCy(X) > HC 2(X)—=0— ...,



18 ARTHUR TROUPEL

Weibel states in [Wel] that the result can be obtained from this sequence, however, there is no
easy way to see how HC_1(X) is zero but that is exactly what needs to be proved in order to get
the first isomorphism. To avoid this issue, we will rely on another result to compute the cyclic
homology of these schemes, as done by Keller in [Kel]. In this paper, Keller shows, using the
existence of a tilting object in the derived category of sheaves of modules on the projective spaces,
that the cyclic homology can be computed as the cyclic homology of a certain category, and that
is easier to do. The result is

(4.16.9) HC,.(PY) = HC, (k)"
And the result follows from the cyclic homology of k as an algebra over itself. We have

k"t for ¢ > 0, q even,

(4.16.10) HCy(PR) = { 0 otherwise,

4.17. Periodic and negative cyclic homologies. In this section, as we did working with alge-
bras, we define the two other homology theories emerging from Connes’ bicomplex, completing the
complex in the upper-right and lower-left quadrants, the periodic and negative cyclic homology of
schemes.

Definition 4.18. We define the periodic complex T, as the sheafification of the periodic complex
2.19, with the same boundary operators as the complex B,.(X). This way, there is a canonical
injection of the complex B,.(X) < T.., seeing it as the upper-right quadrant. We define the
periodic cyclic homology of the scheme X as the hypercohomology of the product total complex
of this complex, HP,(X). The subcomplex truncated, keeping only sheaves with negative first
coordinate denoted NC,,, and the hypercohomology of its product total complex is called the
negative cyclic homology of X and denoted NC,(X).

Proposition 4.19. The three complexes fit in a short exact sequence of bicomplexes:
0— NC,— PC,—CC,_5—0.

The theory of hypercohomology gives therefore a long exact sequence

(4.19.1) «oo > HNyp(X) = HP(X) - HCp—2(X) > HNp1(X) — ...

4.20. The A-decomposition for cyclic homology. One of the most important tool in the
following study is the A-decomposition of the chain complexes, which is a decomposition of the
sheaves composing the complexes as eigenspaces of an operator,the A-operations. The construction
extends to the homology and this decomposition is crucial for the result we seek to obtain. In fact,
the operator comes from the general theory of bialgebras (called Hopf algebras in [Lod]).

4.20.1. A-operations in the general case.

Definition 4.21. Let A be a k-vector space, where k is a field containing QQ, we define the graded
cotensor algebra associated to A as

(4.21.1) H=T(A) =P A%,

n>0
where the tensor product are taken over k. The multiplication y : H ® H — H is defined by the
signed shuffle:

(4.21.2) p((ar® - ®ap), (ape1 ® -+ ® apiq)) = Z e(0)o - (a1 @+ ® apiq)-
o (p,q)—shuffle
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The comultiplication A : H — H ® H is given by the deconcatenation:

P
(4.21.3) Ala1 ®@---®ap) = (a1 ®@ - ®a;), (a1 Q- ®ap)).

i=0
The unit is denoted u : £ — H, being the identity on the first term, and the counit ¢ : H — k,

being the projector on the first term. With the multiplication and comultiplication, we can define
the convolution of two k-linear maps f,g: H — H, it is an associative law on End(#):

(4.21.4) frg=pno(f®g)oA.
This is enough to define the A-operations in a general framework.
Definition 4.22. We define an endomorphism A of H, for every integer j by
N = (Idy)" = pd o A7,
These endomorphisms are of degree zero, and we denote Xi the restriction of A to the subspace

H, = A®". At the same times, given a degree zero k-linear map f : H — H such that f(1) =0,
we define an endomorphism of H,, by setting

*2 . *14
f2 +~-~+(—1)l+1f7+...,

they are well defined because by induction, f** is zero when restricted to H,, if n < i. We define
from this endomorphism the following ones:

(4.22.1) eW(f) =log(uc+ f) = f —

(D)™

(4.22.2) eD(f) = -

They are such that egf) =0ifn <i.

Proposition 4.23. For every integer p we have the formula:
(4.23.1) (uc+ f)*P :uc—l—Zpie(i)(f).
i>1
Proof. Considering the formal series for exponential and logarithm,
(4.23.2) exp(X) =1+ X' and log(1 4+ X) = ZH)Z‘Hg
o £ g4’ ; 7
i>1 i>1
they are related by the following general identity
(4.23.3) (14+ X)?P =exp(plog(l + X)).

We can apply this identity to f in the ring of endomorphisms of H, endowed with the usual sum
and the convolution, to get:

(4.23.4) (uc+ )P = uc+ Zpie(i)(f).
i>1
O

This formula applied to f = Id — uc is what we are in fact interested in (we obviously have

f(1) =0).
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Proposition 4.24. We set for every integers i and n,
e = e (Id — uc), and e = W (Id — uc).

Then we have

(4.24.1) (1), = Zp el

(¢ ) verify:

Moreover for every integer n, the endomorphisms ey,
(1) Id=ed + +e$l"),
(2) ePeld) = (51']'6%)
Proof. The relations 4.24.1 is just a rewriting of the previous identity. However, they represent
n equations verified by the endomorphisms egf ), which matrix is a Vandermonde matrix M with
M, ; = p', which is invertible on @ Therefore, the e(z) are determined by the endomorphisms

(Id*?)3,, . But we have Id*P o Id*?" = Id*P?" | and thus there is a unique formula of the form

n
e = 3 ayjmel™
m=1

Fixing m, we then get for all integers p and p’

(4.24.2) > ' aim = (p)"
1<i,j<n
The only solution to this equation is given by the second point of the proposition. O

4.24.1. A-decomposition of Hochschild and cyclic homologies. We have defined general operations
on the cotensor Hopf algebra associated to a k-algebra. These operators behave well with the
boundaries of the Hochschild complex and allow us to split it into subcomplexes that will give the
A-decomposition for Hochschild homology.

Proposition 4.25. Let A be a commutative k-algebra, and C,.(A) = A®QyH its Hochschild complex
as in 2.2.1, where H is its cotensor Hopf algebra, with the extension of the A-operations by id ®XZ.
The Hochschild operator b acts on C,(A), it is an operator of degree —1. For every integers n > 1
and p > 0, we have:

(4.25.1) bAY =20 b,
and
(4.25.2) bel) = e b

Proof. As = uP o AJ on H, is it enough to show that the map b on C.(A) and b® 1y + 1y @b
commute with 14 ® A and 14 ® u. That can be verified easily for A. For p, it is a consequence of
the fact that the boundary b is a graded derivation for the shuffle product. The same applies for
the second equality. O

Theorem 4. 26 Let A be a commutative k-algebra, where k is a field that contains Q, then the
idempotents el splzt the Hochschild complex C.(A) into a sum of sub-complezes c® (A) fori >0,
whose homology HH.' )( A) satisfies HHy(A) = HHéO)(A) and for alln >1

(4.26.1) HH,(A) = é; HH(A)



CYCLIC HOMOLOGY OF SCHEMES AND SERRE’S L-FACTORS AS REGULARIZED DETERMINANTS 21

Proof. We set for all integers ¢ and n, CE@(A) = egli)Cn(A), the image of C,,(A) under the projector
egf). As A is commutative, b is zero on C1(A). As eéo) is equal to Id|c,, the formula is trivially
true for n = 0. For n > 1, the formula 4.24 gives the decomposition

Co(A) =C(A) @ - @ CM(A).
Then proposition 4.25 shows that each Cii)(A) is a subcomplex, and more presicely a direct
summand of C(A). Taking the homology gives the decomposition that we wanted. (]

Theorem 4.27. (Loday) With the same hypothesis as before, we have an isomorphism
(4.27.1) Q" (A/k) ~ HH{™ (A).

Remark 4.28. Note that the previous theorem shows that if the algebra A is smooth in the sense
of theorem 3.11, then we have

(4.28.1) HH,(A) ~ HH™ (A) ~ Q"(A/k),
and therefore
(4.28.2) HHY(A) =0

for all integers n and j # n.

To extend this decomposition to cyclic homology, it is only necessary to see that the A-operations
behave well with Connes’ boundary operator B on the cylic complex.

Theorem 4.29. We have for integers i and n:
(4.20.1) Be)) = el}}'B.

For every integer n, the cyclic homology splits in a sum as follows, HCy(A) = HC(()O)(A) and
(4.29.2) HC,(A) =@ HC(A).
i=1

The same holds from the exact same arguments for periodic and negative cyclic homologies.

Theorem 4.30. (Loday) If the algebra A is smooth in the sense of theorem 3.11, the A-decomposition
agrees with the decomposition in terms of de Rham cohomology, as obtained in the computation
3.15.3. More precisely, we have

(4.30.1) HCM™ (A) = Q"(A/k)/dO" Y (A/k),
and

(4.30.2) HOP(4) = H"(A), if |5 <i<n,
and finally

(4.30.3) HCP(A) =0, if |5] =i

Remark 4.31. The definition of the A-operations extends to the case of a scheme X over a field
k which contains Q, and the splitting into a direct sum of spaces indexed by integers as in the
theorems before stays true. However, it is necessary to pay attention to the fact the integers j may
not have to be between 0 and n to have a nontrivial group HCY )(X ), as for example HC_; (X)
can be nontrivial.
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4.32. Correspondence of the A-decomposition with cohomology of suitable sheaves.
First of all, when ¢ = 0, we can express easily the groups HHT(LO)(X).

Proposition 4.33. If X is a scheme over C, then when i = 0, we have Cio)(X) = Ox, and
therefore its hypercohomology is simply cohomology and we get

H™(X,0x) ifn<0

(0) = X =1

(4.33.1) HH(X) = { 0 otherwise.

Proof. Let (I*,d) be an injective resolution of the sheaf Ox. Then a Cartan-Eilenberg resolution
of the part ¢ = 0 of the Hochschild complex can be taken as

(4.33.2) 0 0 | 0 0

0 0 0 0 0 OX 0 0 0 0 0

The total complex of the Cartan-Eilenberg resolution is therefore just the resolution I'*, and there-
fore its cohomology is (up to reindexation) by definition the usual sheaf cohomology of Ox. O

Proposition 4.34. Let X¢ be the scheme over C associated to a smooth projective complex alge-
braic variety X4 (the points are different but the categories of open sets agree). For all integers
n and j, we can compute the Hochschild homology as

(4.34.1) HHY) (X¢) ~ HI™" (XC, Q@WC)

the sheaves QJ)'(C/(C being once again the sheafification of the modules of Kdhler differentials of order
j on Xc.

The Hochschild-Kostant-Rosenberg theorem, 3.11, links the Hochschild homology complex to
the algebra of algebraic differential forms associated to the algebra as it allows to replace in the
computation of the Hochschid homology of a scheme X, the complex of sheaves by the complex of
sheaves Q}C /C of algebraic differential forms of degree *, with the boundary replace by the zero
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morphism, just as we did in section 3 in the case of algebras. The new bicomplex is the following.

Lo Jo I I

Dese 7 B 7 Yo <7 Oxe

d d
Jo lo lo
(4.34.2) Reoje “— Yoye 5 Oxc

ls |

Voo 3 Oxe

lo

Ox,

C

The Cartan-Eilenberg resolution can then be taken with the horizontal boundary being identically
zero. The A-decomposition is then read as the decomposition of the resolution bicomplex as sum
of its columns.

The same applies for cyclic homology, we can replace Connes’ bicomplex by the following
( }C /C,O,d), where d is the usual de Rham differential. The total complex of this bicomplex
becomes

T, = EB Q;}j{cﬂ, with boundary operator d Z Wn—om | = Z dwp—2m € Tn_1.

m>0 m>0 m>1

Passing to the corresponding complex of cochains 7* = T_,, we get the following decomposition

(4.34.3) T = @ L
0<j<—-n
and so
* <q .
(4.34.4) (7*.d) = P (Q)—(i P d) =5
j=0

corresponding to the A-decomposition of the cyclic homology complex. Selecting the corresponding
parts of the Cartan-Eilenberg reslution, we get the following.

Proposition 4.35. For all integers n and j, we have

(4.35.1) HOW (X)) = HY—" (X@ oy /C) ,
and thus,
_ 2j—n <j
(4.35.2) HC,(Xc) = E[ZH j (XC,Q C/C).
J

5. DELIGNE COHOMOLOGY AND CORRESPONDENCE WITH THE A-DECOMPOSITION OF CYCLIC
HOMOLOGY

In this section we will see how spaces obtained in the previous section thanks to the A-operations
can be computed through another homology theory in certain cases, that is the (potentially re-
duced) Deligne cohomology of a scheme over R or C. In most of the cases, we need to suppose X
to be a smooth projective variety over one of those fields.
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5.1. The reduced Deligne cohomology. In this section, let X be a smooth projective scheme
over the complex numbers.

Definition 5.2. We denote for every integer r by R(r) the additive subgroup (27i)"R of C, and
by R(r)p the truncated complex of sheaves of holomorphic differential forms of type (p,0), for p
between 0 and r — 1, on the complex manifold X (C) associated to the complex points of X with
R(r) placed in degree 0:

the map ¢ is the inclusion of elements of R(r) as constant holomorphic functions on X (C). The
real Deligne cohomology of X is defined as the hypercohomology of this complex:

(5.2.2) HE (X, R(r)) = HY(X(C),R(r)p).

Definition 5.3. There is a short exact sequence of complexes

(5.3.1) 0 (Q;QC)) [1] = R(r)p — R(r) — 0.

We call the first complex of the sequence the reduced Deligne complex, and we define the reduced
Deligne cohomology to be the hypercohomology of this complex:

(5.3.2) HB(Xc,R(r)) = H" (X((C), (Q}T(C)) [1]) = H" (X((C), Cone(F Qo) 4 Q}(C))[l]) :

where F'"Q% © is the subcomplex of Qj{(«:) of differential forms of degree greater than or equal to
r. As an analogy, we will write

(5.3.3) Hip(X(C)/F" = Hp™ (Xe, R(r) = H" (X(C), (25, ) )

for all integers n and r.

If we consider a smooth projective variety X over a number field K, then we must precise what
we mean by Deligne cohomology of X, when v|oo is an archimedean place depending on the fact
that v can be either real or complex.

Definition 5.4. For a variety X as above, if the place v is complex, then we define the real Deligne
cohomology groups as in 5.2.2, with X,, = X¢. However, if the place is real, then they are defined
as

(5.4.1) H(Xz,R(r)) = H(Xe, R(r) "7,
where X¢ is defined as the complexification of the variety Xg, i.e.
(542) X(c = X]R XSpecR Spec C.

That is to say the elements of the previously defined Deligne cohomology of the complex variety
associated to Xg, fixed by the de Rham conjugation denoted F', defined as the conjugation of the
coeflicient of the function taken for the form. The fixed points correspond to the forms with real
coeflicients.

5.5. Relation between cyclic homology and reduced Deligne cohomology.

Theorem 5.6. Let X be a smooth projective algebraic variety over C. Then there are canonical
isomorphisms, for all non negative integers n and j:

(5.6.1) HCY(X) ~ Hyl7 ™ (X(C),C) /F+ = AFT " (X,R(j +1)).



CYCLIC HOMOLOGY OF SCHEMES AND SERRE’S L-FACTORS AS REGULARIZED DETERMINANTS 25

Proof. The identification is a result of the comparison of the algebraic de Rham cohomology on
Xc and the analytic de Rham cohomology on X (C). O

Remark 5.7. The de Rham cohomology, whether algebraic or analytical, is naturally isomorphic
to the topological cohomology of X (C), which we will call the Betti cohomology, and denote HJp.
The filtration F* is the filtration by the degree of the differential forms.

The goal of this mémoire is to obtain an expression of an algebraic L-function associated to a
variety in terms of a determinant on an infinite dimensional space which will be an archimedean
version of the cyclic homology. The previous isomorphism raises the following equality.

Corollary 5.8. Let X be a variety as above, of dimension d, then we have an isomorphism

(5.8.1) PHc.(Xe)~ @ HYTT(Xe,R(G+1),
n>0 (n,j)€Eq

the set Ey being defined as a subset of Z2 as follows

(5.8.2) E;={(n,j)€Z?|0<n<2j<2d+n}.

Proof. The sum is at first taken over any pair of integers, but the previous theorem 5.6 insures

that the group H C’,Sj ) (X)) must be zero when 25 — n is not between 0 and the real dimension 2d of
the variety. O

In parallel to this identification, Beilinson proved that the Deligne cohomology carries the in-
formation about the poles of the L-functions associated to a variety or more generally a motive
(as seen in [Denl). The L-functions will be introduced in section 8, defined as a shifted product of
I'-functions, but the formula can be stated right now, in order to understand the difference with
the cyclic homology as we defined it.

Theorem 5.9. Let M be a motive over a number field k (or in our case, a smooth projective
variety of dimension d). Let also w be a Hodge weight for M, and v be an infinite (archimedean)
place for k. Then for every integer m such that m < w/2, we have

(5.9.1) ordg—, L, (H"(M),s)”" = dimg HZT (M, R(w + 1 — m)).

The Deligne cohomology is different if the place v is real or complex, as in definition 5.4. Moreover,
this formula shows every possible pole for the considered L-function.

Definition 5.10. Therefore, this theorem leads us to consider the following infinite dimensional
space in order to express the L-function as a regularized determinant (see again section 8), for an
algebraic variety of a number field k, of dimension d,

(5.10.1) H" = @B Hy™ (X, Rw+1-m)),
(m,w)€EAy

where the subset A, of Z2 is defined as

(5.10.2) Ag={(m,w) € Z*|0 <w<2d, m<w/2}.

However, there is a bijection between Ay and Ey which allows to bring out the similarities of
this space and the direct sum of the cyclic homology groups of the variety X.

Proposition 5.11. We define a bijection by setting
f :Ed — Ad

(5.11.1) (n,§) = (j —n,2j —n),
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its inverse being given by

f71 Ay — By

(5.11.2) (m,w) — (w — 2m,w —m).

Under this bijection we can rewrite H*" as

(5.11.3) H" = P H'X,Rw+1-m)= @ HF (X, R(G+1)).
(m,w)€EAy (n,j)EEq

Which is therefore the same sum as in 5.8, taking the usual Deligne cohomology instead of the
reduced one.

The bijection between the sets A; and FEy is in fact paramount for the proofs we are going to
detail further in this document, as it allows to go back and forth between Deligne cohomology and
what we are going to define as the archimedean cyclic homology.

5.12. Relation between reduced and classic Deligne homology. Let X be a variety as
above. We first assume that the place v is complex. In that case, the short sequence 5.3 gives a
long exact sequence
(5.12.1)

s = HE(X(C),R(r) = Hp™ (Xe, R(r) = Hp™ (Xe, R(r) = HEMH(X(C).R(r)) — ..

)

The terms which interest us in these sequences are the groups Hjs ™ (X¢, R(r)) for (w,m) € Ay,
withr=w+1-n.

Proposition 5.13. Whenever w + 1 < 2r, there is a short exact sequence
(5.13.1) 0 — HE(X(C),R(r)) — HL™ (Xc,R(r)) — HE™ (Xc, R(r)) — 0.
Proof. First, for w < 2r, the natural map

(5.13.2) HE(X(C),R(r)) - Hijr(X(C),C)/F"

is injective (see [Hu|). Therefore we can split the long exact sequence in shorter ones, for (w,w +
1 —r) € Ay, because in that case, we have

(5.13.3) w+1—r<w/2, and thus w/2 + 1 <r, and finally w4+ 1 < 2r,

which is enough to split the sequence. O

Remark 5.14. Everything works here in the case where v is a complex place of the field k,
however, this does not apply to the real case, for which the study must be refined.

6. REAL TATE-TWISTED CYCLIC HOMOLOGY

In this section we will study the differences between the homologies of the schemes X¢ and
Spec(C*®(Xsm,C)), when X¢ is a smooth projective complex variety, and X, is the smooth
complex manifold underlying X¢(C), and from this define the real cyclic homology, together with
a Tate-twisted map. However, to correctly define these, it is necessary to take into account the
Frechet topology of Spec(C* (X4, C)) in the definition of the periodic homology of the algebra.
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6.1. From X¢ to Spec(C*(Xg,C)). Given X¢ a smooth projective complex variety viewed as
a scheme, and X, its set of closed points. There is a canonical morphism of locally ringed spaces
(6.1.1) o Xom — Xaig,

endowing X, with the structure sheaf Ox_ (U) = C*>°(U,C). This morphism can actually be
extended to a morphism of schemes

(6.1.2) mx : Spec(C(Xsm,C)) — Xc.

We define the topological periodic homology of the algebra using the topology given by the
family of semi-norms corresponding to the control of the supremum of the function and of its
derivatives of any order.

Definition 6.2. Let A be an algebra over a field k being the real or complex numbers, endowed
with a family of semi-norms which makes it a Fréchet space (e.g. (X4, C) for X, a smooth
variety). We define the projective tensor product of A with itself as

(6.2.1) A®. A=Ay, A

as a C-algebra, but endowed with the strongest locally convex topology making it a topological
vector space and making the natural application

(6.2.2) AXA—-A®A

continuous. This space is often not complete, and we will denote its completion by
(6.2.3) AR A =A®, A,

More generally we will denote

(6.2.4) AP =A@y, ... &4,

for the projective tensor product of n copies of the algebra A.

Definition 6.3. The topological periodic complex associated to the algebra A is then defined as

¢ ®5 ®4 ®3 ®2
B A B A B A B A B A
[ N
: ®4 ®3 ®2
B A B A B A B A

(6.3.1) lb l’) lb

. &2
BABA

It

B A ’

the red A still being in position (0, 0). The topological periodic homology of A, denoted H Py, (A)
is then defined as the cohomology of the total complex associated to this periodic bicomplex. The
A-operations are still defined and give a splitting of the topological periodic homology. We define
the topological cyclic homology HCyop n(A) the same way as before from the topological bicomplex.
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This morphism 7wy is in fact really useful the following proposition.

Proposition 6.4. Let X¢ be a smooth projective complex variety.

(1) The map 7% induced by wx on periodic cyclic homology is the composition of two isomor-
phisms as follows, for any integers j and n

HPy(L])(X(C) B HP(J)

top,n

(6.4.1) ¢ /

Hy"(X(C),C)

(€ (Xsm, C))

and therefore the map % s itself an isomorphism.
(2) If the pair of integers (n,j) is such that n > 2dim(Xc¢), and n < 25 < 2n, then the first
statement is true at the level of cyclic homology, that is

(6.4.2) HCY) (Xc) ~ HY ™ "(X(C),C) ~ HCY) . (C™(Xem, C)).
Remark 6.5. The isomorphism
(6.5.1) H¥~"(X(C),C) ~ HPY)

top,n

(C*(Xsm, C))
is in fact a refinement of Connes’ theorem, stated below, adding precision about the A-decomposition.

Theorem 6.6. (Connes) Let X, be a smooth manifold, then there is an isomorphism
(6.6.1) HPiopn(C(Xom, C)) ~ P Hyly "(Xom, C).
i€Z
Let us prove proposition 6.4.

Proof. To prove these assertions, we will use Cech cohomology to compute the groups. We begin
by considering an affine covering of X¢ by Zariski open sets, U = (U;);cr. The morphism 7x is a
morphism from an affine scheme to a projective scheme, and it is therefore affine, that is to say the
open sets V = (Vi)ier = (75" (U:))ier form an affine covering of the scheme Spec(C* (X, C)).
Using the Hochschild-Kostant-Rosenberg theorem 3.11 as we did in section 3, and section IIT
of [Ha|, we can replace the injective resolution of the algebraic de Rham complex by the Cech
bicomplex, that is

(6.6.2) C=(Cr!=CIU,0% ), 0,0),

where 9 is the usual de Rham differential on Q’)’(C, extended to the Cech complex, and § is the

Cech coboundary. With this bicomplex, the periodic cyclic homology is the cohomology of the
total cochain complex as follows

(6.6.3) HPY(X¢)=H™" ( P crta o+ 5) :
ptg=*
Then a class w in HPY )(XC) can be represented by a cocycle

(6.6.4) w= > wpg, withw,, € CUU, Q).

prg=-n
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The image of this class under 7% is therefore represented by the corresponding cocyle for the affine
covering V. On an affine open set of the form U = U;, N--- N Uj;,, the map 7% is the same as the
inclusion

(6.6.5) D(U, %) 5 (U, AP°T)

k?

of the algebraic sections of the sheaf Q’)’(C into the space of smooth sections of the vector bundle
APOTE of complex differential forms of type (p,0) on U (the bundle T¢ is the usual cotangent bundle
on U). This inclusion gives in particular a morphism between two resolutions of the constant sheaf
C, for the usual topology. The first resolution being given by the holomorphic differential forms
on X (C)

(6.6.6) 0= C— 0% 2% >,

and the second is given by the de Rham complex of sheaves of smooth differential forms, that is
to say
(6.6.7) 0 C —C(e, AOT) & C(e, AMTE) & ..,

where d = 0 + 0 This shows that the class of w in the Betti (de Rham) cohomology is exactly the
same as the class of 7% (w) which is represented by the Cech cocycle i(w) in the Cech bicomplex
associated to V, that is

(6.6.8) CP1 = CUV,C>=(e, APTE)).

As the covering V is made of affine open sets, this bicomplex has exact columns. From this we
deduce that the cocycle i(w) is cohomologous to a global section, that is to say it can be represented
by a closed differential form of degree 2j — n. This shows that we get the factorization of 7% as
wanted, in two isomorphims. For the second assertion, we have for n > 2dim X the following
decomposition

(6.6.9) HC1opn(C*(X(C),C)) = @ HF "(X(C),0),
j>n/2

this is a classic variation of Connes’ theorem about periodic homology, see [Lod]. The assertion
follows from the splitting of the cyclic homology thanks to the A-decomposition, using theorem
5.6. O

This proposition is important to understand the behaviour of the real periodic homology.

6.7. Real periodic homology. To define the real periodic homology, we need the notion of
derived pullback of two complexes.

Definition 6.8. Let A, B, and C three cochain complexes with two morphisms f : A — C and
g : B — C. The derived pullback of the diagram is defined by:

(6.8.1) AXCB:CW%A®B£$CNH
The two natural projections give two maps from A xX& B to A and B such that the diagram

AxeB —1— B

(6.8.2) lg, Jg

A—1 ¢
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commutes up to canonical homotopy. The definition gives also a short exact sequence

(6.8.3) 0 Cone (4L C)[1) > Axo B L B0,

and another, switching the roles of A and B. With this sequence, we see that f’ is a quasi-
isomorphism if and only if f is one.

The real periodic homology is then defined as follows.

Definition 6.9. The chain complex PCY,,,(Xc) is defined as the derived pullback of the diagram

PC*(Xc)
(6.9.1) |

im)©0
PCY, (€ (Xam, R)) 2255 PCY (C%(Xam, ©)),

top

where the morphism O is defined as the "generator of the A-operations", that is ©g is equal to j
on the j-th component of PC*, with the A-decomposition. The completed diagram is the following:

Po:eal(XC) a PC*(X(C)

(6.9.2) l lﬂ;

._\©
PCY, (€% (X gm, R)) 275 POy (€% (X g, ©)).

top

Moreover, the morphisms are compatible with the A-decomposition and we can therefore obtain
such a decomposition for H P!,

Proposition 6.10. As 7% is an isomorphism at the level of cohomology groups, the maps T and
(2im)®0 have the same effect of the cohomology. Therefore, we have a commutative diagram

HP;il]él7(j+l)(XC) S HP;ealv(j)(XC)

(6.10.1) f b

. i —1 .
HPOL (Xe) 272 HPY) (Xe)

Example 6.11. Suppose X¢ is the scheme Spec(C), which has a single point. In that case, we

have HPJ = C if n = 2j and 0 else. Therefore the map 7 : HPfLeal’(j)(X(c) — HPT(,,j)(X(C) is the
multiplication by (2i7)? from R to C.

Once again, the A-decomposition of the real periodic homology can be computed in terms of
Betti cohomology, using the morphism ¢ from proposition 6.4.

Proposition 6.12. The isomorphism ( gives an isomorphism
¢: HP M 9)(Xe) = HY ™" (X(C),R(j))

such that the following diagram commutes

HP;;eal,(j)(XC) é HEJ*” (X(C),R(j))

(6.12.1) lT J

HPY (Xe) —— HE ™" (X(C),C).
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7. THE ARCHIMEDEAN CYCLIC HOMOLOGY

The homology theory that really interests us is the archimedean cyclic homology of schemes,
which is a new definition generalizing the results of [Den].

7.1. Definition. Let X¢ be a smooth projective complex variety, of dimension d.
Definition 7.2. The archimedean cyclic homology of the variety X is defined as
(7.2.1) HC™ (X¢) = H™" (X(c, Cone <NC*(XC) ® PCE,(Xe) S PC*(XC)) [2])
the map [ being defined by
(7.2.2) Bw,a) =I(w) — 7(a).
The complex of which we take the hypercohomology is in fact the derived pullback of the following
diagram
PCl.w(Xc)

(7.2.3) JT

NC*(X¢) —— PC*(X¢).

Proposition 7.3. There is a long exact sequence

(7.3.1)
o= HPISY(Xe) 225 HC,(Xe) — HC™ (X¢) — HPLSY (Xe) 225 HC, 1(Xe) — -

Proof. The short exact sequence 6.8.3 is here of the form

(7.3.2) 0 — Cone (I) — Cone () — PC}. ., (Xc)[-1] — 0.

T

But as there is a short exact sequence of total complexes

(7.3.3) 0 — NC*(Xe) & PC*(X¢) = CC*(X¢)[=2] = 0,

the hypercohomology of the first term of 7.3.2 is the cyclic homology (up to a shift), namely
(7.3.4) H™" (X¢,Cone (I)) = HC,,_o(X¢).-

Taking the hypercohomology of 7.3.2, we get the sequence we were looking for. O
7.4. Agreement with Deligne cohomology. Just as we did above in the case when v was a
complex place of the field k, our goal is now to compare the archimedean homology with Deligne

cohomology in order to obtain a suitable space on which it will be convenient to express the
L-functions as a regularized determinant.

Proposition 7.5. The sequence of proposition 7.3 splits into sequences of the form

Sot

(7.5.1) - = HPW U (x0) 20 HOW (Xe) — HOM D (Xe) — HPLSPUT) (Xe) 220

Note that in this sequence, the value of j is kept fized, whereas the values of n decrease.

As in section 5, we can split these long exact sequences into short ones when the pair (n, j) is
in the set Ey (see 5.8).

Proposition 7.6. For a pair of integers (n,j) € Eq, there is a short exact sequence

(7.6.1) 0— HP WU (Xe) 220, HOW (X¢) — HC W) (Xe) — 0.
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Proof. For a such pair (n,j), recall that we have (2j —n,j —n) € Ay, and thus we can use the
short sequence 5.13
(7.6.2) 0= HY "(X(C),R(j + 1)) = Hy "(Xe, R(j + 1)) = HF " (Xe,R(j +1)) = 0.

Recall also that we have isomorphisms 5.6

(7.6.3) HCY)(Xc) ~ HY ™" (Xe, R(j + 1)).

Now, combining this and propositions 6.12 and 6.10, we can identify the maps

(7.6.4) HP“P U (X)) 2905 HOW) (Xe)

and

(7.6.5) HY™"(X(C),R(j +1)) = HF " (Xc,R(j + 1)),

which is injective and gives the splitting we were looking for. O

From this we get an isomorphism for the archimedean homology and the fact several groups
must be trivial.

Corollary 7.7. For (n,j) € E4, we have an isomorphism
(7.7.1) HEY "N (Xe,R(j + 1)) ~ HOU) (Xe).
Moreover, if the pair (n,j) is not in Eq with n > 0, then HCZT’U)(XC) =0.

Proof. The isomorphism in the case (n,j) € E4 follows from the comparison of the two sequences
used in the previous proposition, 5.13 and 7.6.1. To prove the groups are zero when (n, j) is not in

E,, we will use a result from [We2] (proposition 3.1), which states that H oy (X¢) is zero whenever
Jj is strictly lower than n/2, and the same is also true for 2j — n > 2d. Then, proposition 6.12
shows that we have

(7.7.2) HP9H) (Xe) =0, and HP.S%UHD (X¢) = 0,

whenever 25 — n > 2d, or2j <n-—1 With these two facts, we can apply the sequence 7.5 to get
that the groups HC,‘:T’(])(XC) are 0 if 2j —n > 2d or 2j < n — 1. Only one case remains, the limit
case n = 2j + 1. In this case, 2(j + 1) — (n + 1) = 0 and therefore

(7.7.3) HP I (Xe) ~ HY(X(C),R(j+ 1)) £ 0.
but the map of the long exact sequence 7.5 is then the same as
(7.7.4) HY(X(C),R(j +1)) = HY "(Xe, R(j +1)) ~ HC | (Xe),

which is injective, because its kernel lies in H%(X (C),R(j + 1)) N FV! which is 0. Therefore we
can still use the long exact sequence to get the result. O

7.8. The real archimedean homology. In this section, we will extend this definition to the
case of a real algebraic variety. In what follows, let Xg be a smooth projective variety over R, of
dimension d. We will denote X¢ = X Xgpecr Spec C the complex variety obtained by extension
of scalars from Xg. The variety X has a cyclic homology theory as developed over any field.

Lemma 7.9. For every n, we have

(7.9.1) HC,(X¢) ~ HC,(Xr) ®r C.
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Proof. The result follows from the expression of the cyclic homology in terms of product of co-
homology of the sheaves of Kéhler differentials on Xg (which can be found in [We2|, proposition
4.1), as done in section 4.32, and from the fact that these cohomology groups behave well with the
tensor products in the following way

(7.9.2) HY(Xc, V) ~ H(Xg, Q%) ®r C.
O

Definition 7.10. From this lemma, we can see that HC,(X¢) comes with a natural anti-linear
involution which we will denote F':

(7.10.1) F=id®gr",

where ~is the complex conjugation on C.

Remark 7.11. It is important to note that this involution preserves the Hodge spaces
(7.11.1) HP = HI( X, QI)’Q{)

Moreover the image of the map

(7.11.2) HP“P U (xe) 295 HOW) (Xe)

is invariant under F', as we can see thanks to the identification of this map with the following
(7.11.3) HY™(X(C),R(j + 1)) = HY "™ (X¢,R(j + 1)).

Therefore, the map F descends to the quotient HC2™! )(XC).

Definition 7.12. The archimedean cyclic homology of the variety Xp is defined as the group of
elements of the archimedean cyclic homology of X¢ fixed under the action of the involution F,
that is to say

(7.12.1) HO (Xg) = HO (Xc) =,
this can be written in the equivalent form
(7.12.2) HCY(Xr) = HC,(XRr)/(HC,(Xr) NIm(S o 7)).

The most important thing to note is the parallel with the definition of the Deligne cohomology in
the real case, taking the fixed points under the action of the de Rham conjugation, as in 5.4. Note
that the A-decomposition still exists for these groups, and will be denoted as before.

Exactly like we did in the complex case, we get the following correspondence with Deligne
cohomology.

Proposition 7.13. Recall that the dimension of Xg is denoted d. For any pair of integers (n, j) €
FE4, we have an isomorphism

(7.13.1) HC™ ) (Xg) ~ HE " (Xg, R(j + 1)),
and HC,‘:T’(j)(XR) = 0 if the pair (n,j) is not in Eq, and n > 0.

Proof. The same proof as in the complex case 7.7 still works here. g

8. THE MAIN THEOREM

We now have everything we need to state and prove the main theorem of this mémoire.
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8.1. Preliminaries: generalized products. To see what the true utility of the archimedean
homology developed through this mémoire, we need to define the L-function associated to a Hodge
structure over one of the fields R or C. The L-functions are defined as a product of shifted T’
functions. We will try to express them as determinant over certain infinite dimensional spaces.
Thus, we need a method to multiply infinite families of complex numbers.

Definition 8.2. Given ()\;, ;) a sequence of complex numbers )\;, with a choice of arguments «;
such that only finitely many \; are zero, we say that the product

(8.2.1) H/\i =H(Ai,ai)
exists if the following holds: Let N > 0 be such that A; # 0 for all ¢ > N. Then the Dirichlet
series

(8.2.2) DA =D e

i>N i>N
converges absolutely for Re(s) > 0, and has an analytic continuation to a holomorphic function
(n(s) for Re(s) > —e, for some £ > 0. When this is true (independently of N), we define

(8.2.3) H()\iyai): IT 2 | exp (=i (0))

i i<N

Remark 8.3. The following properties insure the definition is suitable in order to define determi-
nants of linear maps on infinite dimensional spaces.

(1) For finite sequence (or sequence with finitely many complex numbers not equal to 1), then
the product has the same value as the usual product.

(2) Changing a finite number of arguments «; does not change the result, and it is also in-
dependent of the order of multiplication (that is to say invariant under the action of a
bijection of the integers).

(3) Given a partition of the integers N = M IT M’ such that

igj A; and g[[ A

- (1) (1)
holds.

(4) If X is a complex number with an argument «, then for N sufficiently large, we have

H()\)\“ o+ Oéi) = )\N+<N(O)H()\i, CYi) .

3

exist, then the equality

From this we can define the regularized determinant of a linear map.
Definition 8.4. Let © be an endomorphism of a complex vector space of countable dimension V,
such that

(1) V is a direct sum of spaces stable under the action of ©.
(2) the eigenvalues A of © occur with finite multiplicity m(\).
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(3) the eigenvalues A; are given a choice of argument «; such that their regularized product
exists.

In that case, the determinant of the operator © is defined as
(8.4.1) dete® = H(Ai, ).

The previous remark gives the following.

Remark 8.5. (1) The value of the determinant is independent from the ordering of the eigen-
values.
(2) For a finite dimensional space V', the regularized determinant agrees with the usual deter-
minant.

(3) Given a commutative diagram with exact lines

0 v/ v v 0
(8.5.1) l@/ l@ l@“
0 v/ v ' 0,

assuming det,,©’ and det.,O" are defined, then det,,© is too, and satisfies, for the obvious
choices of arguments,

(8.5.2) detoo® = detoo© - det,O”.
(4) For a complex number A with an argument «, and N sufficiently large, we have
detooAO = NV TN O det 0.
The first application is a rewriting of the I' function as a regularized product.

Definition 8.6. Let I' be the usual function defined as
(o)
(8.6.1) I'(z) = / t*"te~tat,
0

at first for Re(z) > 0. This function is holomorphic on the right half of the complex plane, and can
be extended to a meromorphic function defined on the whole complex plane, with simple poles at
points z € {0,—1,—2,...} and such that

(8.6.2) Res.—_,I'(z) = (—nl')"’

for all integers n > 0. Using this function we define the complex and real I-functions, as in [Ser]

(8.6.3) Te(z) = (2m) 7 T(2),
and
(8.6.4) Tp(z) =2 37 3T (g) .

Proposition 8.7. The inverse of these functions, which are everywhere holomorphic, can be writ-
ten as regqularized products as follows, for any complex number z,
oo

(8.7.1) (\/127;‘(2)) T H on+2),

m=0
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(8.7.2) Te(z)! = 17[ mtz
27
m=0
_ T 2m + z
(8.7.3) Pe(z)~t = H =2,
m=0
taking the arguments of the factors to be in the interval (—g, %), for m sufficiently large.

Proof. Since
z z
Ie(z+1) = %Fc(z), and T'r(z 4 2) = %FR(Z),

T
we can assume that z > 0 and thus we can take the argument of every factor in (—5, 5) We

define the Hurwitz zeta function
o0

(8.7.4) ((s,2) =)

m=0

—, fi
Tk or Re(z) > 0,

is defined for Re(s) > 1, and has an analytic continuation to C \ {1}. For s = 0, we have

1 1
(8.7.5) €(0,z) = 37 and (095¢)(0,2) = logT'(z) — §log(27r),
with a suitable branch of logI'. From this we go back to the definition of the right-hand product.
oo
1

8.7.6 — = —0,¢(0,z2)),

(57.6) 1 i = e(-0:00.2)
because the Hurwitz zeta function agrees with the corresponding Dirichlet series for s = 0. Thus,
as we know the value of —0,((0, z), taking the exponential gives the result. O

8.8. Definitions and statement. The general framework to define the L-function is the abelian
category of Hodge structures over R or C. The cohomology rings of a variety are a special case of
Hodge structure thanks to Hodge theory as we will see later.

Definition 8.9. A Hodge structure over C is a finite dimensional bigraded C-vector space H =
@p,q HP1 with a C-antilinear involution ¢ such that ¢(HP?) = H?P and the inclusion of Hg =
H*=" into H induces an isomorphism Hr @r C ~ H. A Hodge structure over R is a Hodge
structure over C together with a C-linear involution F,, which commutes with ¢ and is such that
Foo(HP?) = HTP,

A good way to get such structures is to endow the cohomology of complex manifold with

coefficient in C with the involutions we seek. This is possible when the considered manifold is a
Kdhler manifold.

Definition 8.10. Let Y be a complex manifold, endowed with a hermitian metric h. Then the
associated 2-form of the metric h is the 2-form w such that

(8.10.1) w(u,v) = Re(h(iu,v)) = Im(h(u,v)),

for u and v two tangent vectors. We say that the manifold Y is a Kdahler manifold if the (1,1)-form
w is closed.

Example 8.11. The manifold C with its usual hermitian metric is a K&hler manifold, and more
generally, submanifold of a Kahler manifold is Kéhler for the induced metric, therefore, any open
subset of C” is a Kéhler manifold.
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Proposition 8.12. The complex manifolds associated to the complex projective spaces, P4(C), can
be endowed with an hermitian metric, called the Fubini-Study metric.

Proof. We define the metric on P%(C) by specifying the hermitian matrices on every open set
of the usual covering (U;)o<i<a where U; = {z; # 0} C P4(C), in homogeneous coordinates
Z =[z9:2 :-:24). On the open set U;, isomorphic to C¢ be normalizing the i-th coordinate to
1, we define the functions

hij : (Cd — C
d _
(8.12.1) (1 + 2 i1 |Zi‘2) bij — Zizj
(2’1,...,Zd)l—> p .
(1+ L 152)
Putting these functions in a matrix, we get an hermitian matrix which defines the Fubini-Study
metric on the open sets of the usual covering. It is easy to check that the matrix defines a metric

on the whole space P4(C), which is invariant by the multiplication by a complex number of norm
equal to 1 in every open set (the i-th coordinate being fixed at 1). O

Proposition 8.13. Given X a smooth projective variety over the complex numbers, then the
manifold built from the complex points of X, X (C) is a Kdhler manifold, for the restriction of the
Fubini-Study metric on X(C) C P4(C), for a suitable integer d.

Thanks to Hodge theory, it is possible to get a decomposition of the cohomology of Y as a direct
sum of spaces defined by the degree of the forms. First, let us define the Hodge star operator on
the cohomology of such spaces.

Definition 8.14. The Hodge star operator * is an operator which acts on the exterior algebra of
any finite dimensional vector space V endowed with an inner product. In our case we will give the
definition for the cotangent bundle of a manifold. Let then M be an oriented Riemannian manifold
of dimension n, with volume form dVol, given by the Riemannian metric. The Riemannian metric
gives also rise to an inner product on the cotangent spaces Ty M and their exterior products, at
every point p of M, and therefore on the space of global differentials k-forms C> (M, A¥T*M). The
Hodge dual of a global k-form ( is then defined as the unique global (n — k)-form satisfying

(8.14.1) aAx¢ = (a, ) - dVol,
for any k-form a on M.

Definition 8.15. On a complex manifold Y of dimension NV, it is possible to define three different
Laplacian operators on the spaces of smooth forms, they are

(8.15.1) Ag = dd* + d*d,
(8.15.2) Ap = 00" + 070, and
(8.15.3) Ay = 00" + 0*0.

The operators with a star are defined using the Hodge star operator, x, previously defined
(8.15.4) d* = (=N« dx,

on C>®(Y,AP4T*Y), where r = p + ¢ is the degree of the form, the other two having the same
definition, replacing d with the other operators.
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Theorem 8.16. If Y is a Kdhler manifold, then the three Laplacians agree up to multiplication
by a scalar, more precisely

(8.16.1) Ag =20y =2A5.
A form w such that Aw is zero, for any of the three Laplacians, the form is said to be harmonic

This allows to split the spaces of homogeneous harmonic forms into a direct sum, indexed by
the degree of the forms.

Proposition 8.17. IfY is a Kdhler manifold, then we have for every integer n

(8.17.1) H'(y)= @ (),

p+q=n

where H™(Y") is the space of harmonic n-forms, and HP'4(Y') is the space of harmonic (p, q)-forms.
Moreover, these groups can be interpreted in the compact case as Dolbeault cohomology group.

Definition 8.18. Recall the definition of the Dolbeault complexes, for Y a compact Kéhler com-
plex manifold:

(8.18.1) 0 = C®(Y, APOT*Y) & e (v, APIT*Y) & c(v, AP2TYY) O L,
the Dolbeault cohomology groups are defined as
(8.18.2) HPA(Y) = HY(C®(Y, APIT*Y), D).

Theorem 8.19. (Dolbeault) The Dolbeault cohomology of Y in degree (p, q) is naturally isomorphic
to the cohomology of the sheaf Q. of holomorphic differential (p,0)-forms on'Y, that is to say

(8.19.1) HPUY) ~ HI(Y, ).

Theorem 8.20. IfY is compact and Kdhler, the canonical morphism

(8.20.1) HPUY) — HPUY)

s an isomorphism. Therefore, the Dolbeault cohomology groups are exactly the kernel of the Lapla-
cian Ag.

Proposition 8.21. The de Rham cohomology corresponds to the harmonic forms for Ay, that is

to say H,(Y) is equal to the kernel of the operator Agq on C°(Y,A"T*Y).

Proposition 8.22. From the previous theorem, and the equality of the Laplacians from theorem
8.16 we get the Hodge decomposition of the cohomology of the manifold Y if it is compact and
Kahler:

(8.22.1) H(Y)= @ H(Y).
p+gq=n

Moreover, we get an involution on the cohomology by considering the conjugation on the forms,

that is to say, the map sending a function f(z) to f(z) and the forms dzy to dzj involutively.

Proposition 8.23. This decomposition of the cohomology groups of Y come with an involution
¢, which correspond to the conjugation on the space of smooth forms on'Y, and this involution is
such that

(8.23.1) c(HP4(Y)) = HTP(Y).
Therefore, we get a complex Hodge structure for H*(Y).
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In the case where the variety comes from a real projective variety by extension of scalars, it is
possible to define an involution of the manifold, which will be anti-holomorphic and commute with
c. The following theorem is a kind of a "real form" of Grothendieck GAGA theorem.

Theorem 8.24. There is an equivalence of categories

Smooth projective varieties | ~ Analytic complex manifolds endowed
over R with an anti-holomorphic involution

X — X(C).

(8.24.1)

Proposition 8.25. Given a real smooth projective variety X, it can be seen as the zero locus of a
family of homogeneous polynomials with real coefficients, in a projective space P™, and therefore the
complex points are stable under the action of the canonical anti-holomorphic involution of P™(C),
defined by

(8.25.1) c([zo: - :za))=120::Znl,

and thus o gives an anti-holomorphic involution on X (C). We denote by Fu the action of this
involution on the cohomology of X (C), where the action is given by push-forward of the forms.

Remark 8.26. Even though it is not obvious, the two involutions ¢ and F,, do not necessarily
agree. For example, on the cohomology of the point {*}, seen as a complex manifold but also the
complexification of the single point over R as a scheme, the involution ¢ coming from the complex
stucture is the usual complex conjugation on the coefficient, whereas the one coming from the real
structure must be trivial, as the diffeomorphism associated on the manifold must be trivial as there

is a single point. Moreover, proposition 9.7 will give a larger family of non trivial examples where
this holds.

Proposition 8.27. Let X be a real smooth projective variety, then the cohomology of X(C),
together with the involutions ¢ and Fo is a real Hodge structure.

Definition 8.28. The L-function associated to a Hodge structure H is defined as
(8.28.1) Le (H,s) = [ Te (s — min(p, )",

P.q
if the structure is complex, and
(8.28.2) Ly (H,s) = [] Te(s — )" ] Ta(s — )" "Ta(s —p+ )",
p<gq P
if the structure is real, where the exponents are defined as
(8.28.3) hP4 = dime HP?, and hP* = dimge HPPF==H0D7,
that is to say h?* is the complex dimension of the eigenspace of HP? associated to the eigenvalue

+(-1)? of Fre.

Example 8.29. The easiest example of a Hodge structure is the one associated to the scheme
Spec C, which is a single point. The cohomology of the corresponding manifold is H = H%°? = C,
with ¢ acting as the usual conjugation. In what follows, we will write

(8.29.1) L¢ (H(SpecC), s) =T'c(s).

Accordingly, as Spec C = Spec R®pg C, then it can also be endowed with a real structure, F,, being
the identity on the manifold and thus on the cohomology. We then get

(8.29.2) Ly (H(SpecR),s)) =T'r(s).
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The work done in [Den| explains how it is possible to express the L-function associated to
a Hodge structure as the determinant of an operator on a newly defined archimedean homology
(which is not the same as the one introduced in this mémoire). The goal of this mémoire is to see
how the archimedean cyclic homology is a great framework in order to do the same as Deninger.

Theorem 8.30. Let X be a smooth, projective variety of dimension d over an algebraic number
field K, and let v|oo be an archimedean place of K (K, =R or C). Let © = ©¢—T be the operator
on HCO (X)), with ©g the "generator" of the A-operations on the homology (that is to say ©¢ = j
on HC’fT’(j)(Xl,)), and T the grading operator (that is to say T’ =n on HC,,(X,)). Then the action
of © satisfies the formula

1)m+1

1
detoo <27r (s — @)chz;eTL(xu))

(8.30.1) [T £o@Em(x),9)" 1
0<m<2d detoo (27T (s — G))Hcg;‘d(xy))

i

for all complex numbers s. The spaces labeled "even" and "odd" are defined as

HCY (X @ HCY (X)), and
(8.30.2) 0
HCY (X EB HC (X
n=1[2
n>1

8.31. Proof of theorem 8.30. Let X be a variety of dimension d as above. First, recall that we
have

(8.31.1) H™W(X,) =0

whenever n > 0 and the pair (n,j) is not in Fy, thanks to propositions 7.7 and 7.13. Therefore, it
is possible to write the numerator of the right-hand side of 8.30.1 as

1 1
(8.31.2) detoo (% (s = O)ycer (x, )> = detoo <27r (s — @)5> ,
where we have defined the subspace £ of HCY, (X)) as
(8.31.3) E= @ HCmD(X).
n>0 even
(n’j)EEd

This equality holds as long as the determinant in the right-hand side is defined. Moreover, the
same holds with the denominator, replacing "even" by "odd" in the formulas.

Recall the identifications of the archimedean cyclic homology with Deligne cohomology, as seen
again in propositions 7.7 and 7.13, for all (n,j) € Ey4

(8.31.4) HC™U)(X,)) ~ HY "X, R(j +1)).

Remark 8.32. It is important to keep in mind that Deligne cohomology is not the same in the
real and in the complex case, the real one being defined as the fixed points of the complex one
through an involution, see 5.4.
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Using proposition 5.11, we can reindex the groups used in the definition of the space £ as

E= @ HCI(X,)
n>0 even
(n,j)€Eq

= @ HY "X R(+ D)
n>0 even
(n,j)€EEq

= @ HYNXRw-—m+1)).
w>0 even
(m,w)EA,

(8.32.1)

Moreover, it is easy to understand how the operator © acts on this space, as it is just the multi-
plication by m on every component indexed by a pair (m,w). We denote by M the corresponding
operator. From this, we have reduced the problem to showing that for any w such that 0 < w < 2d,
we have

_ 1
(8.32.2) L, (H"(X),s)”" = deto <2<S—M>|Dw)7
7r
where the space D,, is defined as
(8.32.3) Dy= @ HE(X,,R(w—m+1)).

m<w/2

Now to prove this, we will use results by Beilinson, which are developed again in [Den]. The
main point is that the poles of the L-function associated to a Hodge structure of a variety have
multiplicity that can be express in terms of dimension of Deligne cohomology groups. We partly
saw this fact as theorem 5.9.

Theorem 8.33. (Beilinson, [Bei]) Let M be a motive over a number field k (or in our case, a
smooth projective variety of dimension d). Let also w be o Hodge weight for M, and v be an
infinite (archimedean) place for k. Then for every integer m such that m < w/2, we have

8.33.1 ordy—p L, (HY(M),s)” " = dimg HE (M, R(w + 1 — m)).
D

The Deligne cohomology is different if the place v is real or complez, as in definition 5.4. Moreover,
this formula shows every possible pole for the considered L-function.

Moreover, Deninger showed in [Den| that the L-function in the left-hand side of 8.32.2 can be
express as the regularized determinant of another operator on a different archimedean homology,
and therefore, it is enough to check that the eigenvalues of the two operators occur in the product
with the same multiplicity, but this multiplicity is exactly defined by the previous theorem. In
conclusion, we get the equality 8.32.2 as expected.

The same reasoning can be done with the denominator of 8.30.1, with the odd Hodge weights.
We thus get the main theorem 8.30.

9. AN EXAMPLE: THE REAL AND COMPLEX PROJECTIVE SPACES

In this section, we will see how the two sides of the formula 8.30.1 agree in the case where
X =P{.
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9.1. The complex case. Recall that we know the cyclic homology of the projective spaces over
any field k with 4.16:

k41 for n > 0, n even
0 otherwise.

(9.1.1) HC, (P4 = {
Using the short exact sequence for the computation of archimedean homology 7.6.1 (for suitable
pairs of integers (n,j) € Ey),

(9.1.2) 0— HPSU(Xe) » HOY) (Xe) — HCY D (Xe) — 0,

it suffices to compute the real periodic cyclic homology of Pfé. In order to do that we can use the
isomorphism

(9.1.3) HP; ") (Xe) = HY 7"(X(C),R(j)),
and the well-known Betti cohomology of the projective spaces:
(9.1.4) HZ(PY(C),R(5)) = R(j) if 0 < m < 2d, m even.

From this we get, that the real periodic homology is trivial at odd graduations, and if n is even

el R(j) for 2j —n € {0,2,4,...,2d — 2,2d
(9.1.5) HP; LO) (Pg) = { 0 E)Jt)herwisje. { }

Knowing the dimension of the groups HC, (X¢) to be equal to 0 or d + 1, we obtain the A-
decomposition of the cyclic homology of X¢, and thus the archimedean homology,

: C/R(j + 1) for 2j —n € {0,2,4,...,2d — 2, 2d}
ar,(j) d\ __ ) Ly Xy ; ;
(9-1.6) HC, (Pe) = { 0 otherwise.

The eigenvalues can be represented in a table, with n on the vertical axis and (n —25)/2 on the
horizontal axis. The formula used being j —n =n/2 — (n — 2j5)/2.

0 1 d—1 d

0 0 1 d—1 d

2 —1 0 d—2 d—1

(9.1.7) 4| =2 -1 d—3 | d-2
2m|-m|l—-m|... |d—1—-m |d—m

Proposition 9.2. By multiplying column by column, we can write the reqularized determinant as

deto (;N (s = G)Hcs;'en(ﬂ”é)) - ﬁ ﬁ (5 - (5”_ m)>

p=0m=0

(9.2.1) ]
= H Fc(s — p).
p=0

Let us now check that this agrees with the left-hand side of formula 8.30.1. The de Rham
cohomology of P4 is as we said above

(9.2.2) H™(PY(C),C) = C if 0 <m < 2d, m even,
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with for every integer p, H?? = HP'P the involution ¢ being everywhere the usual conjugation. The
left-hand side is thus

d
9.2.3) [T Zc@E™ @ ©),s)" =] Tels —p)*™,
0<m<2d, p=0

m even

which matches perfectly what we computed earlier.

9.3. The real case. Knowing the complex archimedean homology, it is easy to compute the
real one, using directly definition 7.12. Indeed, the involution F, on the complex archimedean
homology of the projective spaces depends only on j, as we know each H Cﬁr’(j ) is of the form
C/R(j + 1). The involution F is induced by the usual conjugation on C. Thus, F is trivial on
C/R(p) if p is odd, but acts as —Id if p is even. The fixed points are thus either the whole group,
if p is odd, or 0 if p is even.

Proposition 9.4. The real archimedean homology of IP’% 18, for d even:

o) (Pd) _ C/R(j+1) for2j —2m € {0,2,4,...,2d — 2,2d}, j even,
(9.4.1) 2m R 0 otherwise,
o _{ C/R(j+1) forj € {m,m+2,....,m~+d}, if m is even,

| C/RG+1) forje{m+1l,m+3,...,m+d—1}, if m is odd,
and for d odd:

Hoom6) (Pd) _ C/R(j+1) for2j —2m € {0,2,4,...,2d — 2,2d}, j even,
(0.4) 2m R 0 otherwise.
o [ C/R(j+1) forje{m,m+2,... m+d—1}, if m is even,

_{ C/R(j+1) forje{m+1,m+3,...,m~+d}, if m is odd,

To express the determinant of the operator © on the real archimedean homology, it is again
easier to summarize the values in a table. There are, as the homology groups suggest, four cases,
depending on the parity of d and m.

When d is even, the table for even m is (with j —m on the horizontal axis, and m = n/2 on the
vertical one):

0 2 d—2 d

0 0 2 d—2 d
2| =2 0 d—4 d—2
(9.4.3) 4| —4| -2 d—6 | d—4
m|-—-m|2—m d—2—-—m|d—m

For odd m, it is:

1 3 d—3 d—1
1 0 2 d—4 d—2
3 -2 0 d—©6 d—4
(9.4.4) 5| —4 —2 d—38 d—6
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Therefore, we can express the determinant of © on the archimedean homology as a product of
shifted I'-functions by multiplying column by column.

Proposition 9.5. When d is even, the left-hand side of formula 8.30.1 is

(9.5.1)
det 1 o _ < = s—(p—2m) o s—(p—(2m+1))
oo\ 9 (s = )‘Hcf«?m(m) o H H 2m H H 2m
p=0 m=0 p=1 m=0
peven podd
d d—2
1 ﬁ (s— <p—2m>> ﬁ (s—(p— <2m>>)
p=0 m=0 2 p=0 m=0 2m
peven peven
d—2
= | II T=(s—p)?| Ta(s—d)
p=0,
peven
Now when the dimension d is odd, we get for even m
0 2 d—3 d—1
0] O 2 e d—3 d—1
2| =2 0 e d—1>5 d—3
(9.5.2) 4 —a| =2 -1 d-5
m|—m|2—m d—3—-—m|d—1—m
And for odd m:
1 3 d—2 d
1 0 2 d—3 d—1
3 -2 0 d—5 d—3
(9.5.3) 50 —4 | =2 d—7 | d—-5
m|l—-m|3—-m]|...|d=2—m|d—m
We get then
Proposition 9.6. When d is odd, the left-hand side of formula 8.30.1 is
(9.6.1)
1 = (s — p 2m) s — 2m +1
dete (2 - O o)) - H 1 (5 (e v
p=1 m=0
peven podd
2
T ﬁ (8— (p—2m))
N 27
p=0 m=0
peven
d—1
= H (s —p)*
p=0,

p even
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Let us now check that these functions agree with the L-function of the varieties.

Proposition 9.7. The involution F, induced by the complex conjugation on the manifold P4(R)
acts on its cohomology as follows. On the groups H?P(P4(C)) = HP?(P4(C)) ~ C, F., acts as the
identity if p is even, and as —1 if p is odd (p < d).

We will now prove this proposition, by giving explicit bases of the de Rham cohomology groups
of these spaces. We begin by describing the volume forms on spheres of odd dimension, in order
to obtain the volume forms on the projective spaces from them through a quotient.

Proposition 9.8. Let S??™1 be the (2p + 1)-dimensional sphere, defined equivalently (for the
topological structure) as

2p+2
(9.8.1) S = (31,2, ... Topr2) ERPTE N a2 =14
j=1
or as
p+1
(982) sl — (21,227...7Zp+1) E(CP'H7 Z|ZZ|2 =1,
j=1

the change of coordinates from one description to another is given by
(9.8.3) 2k = Top_1 + 1xok,

for all integer k. These sphere are closed real submanifolds of R?P+2 or CP*1. Consider now the
(2p + 1)-form on R?PH1

2p+1
(984) w = Z (—1)k1']€d$1 A ANdxg—1 ANdzger A+ A dx2p+2.

k=1

Then the volume form on the sphere S?*1 is given by the pullback of the form w along the inclusion
L2 S?PHL s R2PH2 ) that is the form (*w. It is easy to see this form is invariant by the action of
O2p12(R) and is therefore nowhere zero.

Now we must use another property of the projective spaces in order to find their volume forms
from the one of the spheres we just got.

Proposition 9.9. There is a fibration of the form
Sl S2p+1
(9.9.1) l
Pr(C),
which realizes the projective spaces as quotient of the (2p+ 1)-sphere by the action of the Lie group
St.
Proof. Seeing the (2p + 1)-sphere embedded in CP*!, we can define an action of S* C C by
St x §?tt sl
(Av (Zlv sy Zp-‘rl)) = (Azla ceey )‘Zp-‘rl)'

It is easy to see that since |A| = 1, the action sends an element of the sphere to another element
of the sphere. The quotient of the sphere by this action is, similarly to the real case in which we

(9.9.2)
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consider the quotient of the sphere by the antipodal action to get the real projective space, the
complex projective space. The following homeomorphisms show it well

(9.9.3) PP(C) ~ (CPT1\ {0}) /~ =~ S?PF1/Sh.
where the relation ~ is defined by

(9.9.4) (215 2p1) ~ (215 Zpy1)

if and only if there exists A € C* such that

(9.9.5) 2, = A2k

for all k. The second homeomorphism is therefore obtained by restricting to the sphere, and
keeping only the action of the complexes of module equal to 1. O

Now, recall that our goal is to study the behavior of the volume form of P?(C) under the action
of the involution coming from the real structure, so we will begin by checking the behaviour of
the form volume of S?”*! under the same involution and then see how this changes through the
quotient map.

Proposition 9.10. The involution on S?P+! is given by the usual conjugation on CPT1 or equiv-
alently, through the identification of the coordinates, by the following involution of R?PT2:
o R?P+2 _ R2P+2

(9.10.1)
(,’L‘l, Ty ,$2p+2) — (3?1, —Z2,. .., XL2p+1, —x2p+2).
Thus, the action of o is sending the form w defined in 9.8.4 onto

2p+1
(9.10.2) O = Z (—D)F(=1)Papdey A Adag—y Adzgyr A~ Adoogpre = (—1)Pw.

k=1

The same holds for the pullback form (*w on the (2p + 1)-sphere.

To get the volume form on PP(C), one way is to consider he interior product of the volume form
of the sphere with the vector field that generates the action of S seen as a Lie group.

Proposition 9.11. The vector field generating the action of he Lie group S' on the sphere S?P+!
is the vector field X defined as follows

(9.11.1) X(xl,l‘Q, e ,$2p+2) = (—xQ,l‘l, —X4, L3y .., —$2p+2, $2p+1).

Proof. That is easy to check from the definition of the action of S' on the sphere, which can be
written as follows

(9112) (a+zb) . (l‘l, T2y Z2p+2) = (azl 7b1’2, bSUl +CL£L’2, s, AT2p41 7b1’2p+2, b$2p+1 +CL£L’2P+2).
Making a converging towards 0 and b towards 1 to get the infinitesimal action, we get the result. [

Theorem 9.12. We get a volume form of PP(C) by taking the interior product of the vector field
X with the volume form on S?P*1, 1xw. It is a (2p)-form defined as

(9121) wa(Xl,X2, ey Xgp) = w(X, X17X2, fe ,Xgp).

Furthermore, the action of the involution on this form is the same as on the volume form of S?P+1,
that is to say

(9.12.2) outxw = (—1)Pixw.
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Proof. The volume form w is invariant under the action of the vector field X and horizontal to it,
therefore the form ¢xw goes through the quotient and defines a volume form of PP(C), and the
action of ¢ is exactly the same as the one on the original form w. To see that, we will prove it in
the case p = 1, the other being the same. We begin with the form w on S? c R*:

(9.12.3) w = x1dxy Adas Adry — xodxy Adrs A dxy + x3dey A das Adey — xedxy Adzg A dxs.
Then the interior product with the vector field on S? is equal to
txw =9 (vodxs A dxy — x3dTo A dTy + T4d2o A dX3)

+ x1 (v1dxs A day — x3dey A dag + zedxy A das)

+ x4 (x1dzo A dry — Todxy A day + xadzy A das)

+ x3 (x1dze A drg — xodxy A das + xzdry A dxs) .

(9.12.4)

Now, we can note that every term is a combination of an odd number of factors xo, dxs, x4 and
dx4, which are the ones shifting the sign under the action of the involution o, thus we have the
equality

(9.12.5) OulxW = —LxWw.

The quotient does not alter this identity and therefore the same holds for the volume form on
P(C). O

As the volume form of PP(C) defines the cohomology class of maximal degree, we get the
proposition 9.7 that we wanted. From this same proposition 9.7, we get that if d is even, the
left-hand side is equal to:

d d—1
I Ze(®@™@®©).s)" = I[ Trts—p)*" [ Tals—p+1)*
0<m<2d, p=0 p:dld
m even peven o
(9.12.6) .
d—2
=| TI T —»?| Tals—d.
p=0,
peven
And if d is odd, it is:
41 d—1 d
[T Ze(#@™®@©),s)" = [[ Tets=p)™ [] Tels —p+ 1™
ety 20, p=1
(9.12.7) o podd
= [ Te(s—p)?
p=0,
peven

The two functions agree in every case.
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