The Local Langlands correspondence: from extended quotients to affine Hecke algebras

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S., Sorbonne Université and Université Paris Cité

Arithmetic Quantum Field Theory Conference 28 March 2024

The main actors

- *G* group of *F*-rational points of a connected reductive algebraic *F*-group, with *F* a non-archimedean local field (finite extension of \mathbb{Q}_p or of $\mathbb{F}_p((t))$). We will refer to *G* as a *p*-adic group.
- G^{\vee} complex reductive group with root datum dual to that of G

Examples:

G	Dynkin diagram	G^{\vee}
$\operatorname{GL}_n(\mathbb{Q}_p)$	• • • • • •	$\operatorname{GL}_n(\mathbb{C})$
$\operatorname{SL}_n(\mathbb{Q}_p)$	••••	$\mathrm{PSL}_n(\mathbb{C})$
$\mathrm{PGL}_n(\mathbb{Q}_p)$	• • • • • •	$\operatorname{SL}_n(\mathbb{C})$
$\operatorname{Sp}_{2n}(\mathbb{Q}_p)$	• • • • • • • • • • • • • • • • • • • •	$SO_{2n+1}(\mathbb{C})$
$\mathrm{SO}_{2n+1}(\mathbb{Q}_p)$	• • • • • • • • • • • • • • • • • • • •	$\operatorname{Sp}_{2n}(\mathbb{C})$
$\mathrm{SO}_{2n}(\mathbb{Q}_p)$	•••	$\mathrm{SO}_{2n}(\mathbb{C})$
$G_2(\mathbb{Q}_p)$	æ	$G_2(\mathbb{C})$

The Local Langlands Correspondence (LLC)

predicts a surjective map, satisfying several properties,

$$\begin{cases} \text{irred. smooth} \\ \text{repres. } \pi \text{ of } G \end{cases} /\text{iso.} \xrightarrow{\mathcal{L}} \begin{cases} \textbf{L-parameters} \\ \text{i.e. cont. homomorphisms} \\ \varphi_{\pi} \colon W_{F} \times \mathrm{SL}_{2}(\mathbb{C}) \to {}^{L}G \end{cases} / G^{\vee}\text{-conj.},$$

where $W_F :=$ absolute Weil group of F and ${}^LG := G^{\vee} \rtimes W_F$. The fibers of \mathcal{L} , called *L*-packets, are expected to be finite.

Remark

In order to obtain a bijection LLC between the group side and the Galois side, the map \mathcal{L} was later enhanced: on the Galois side, one considers enhanced *L*-parameters: $(\varphi_{\pi}, \rho_{\pi})$, where the enhancement ρ_{π} is a representation of a certain component group attached to φ_{π} . $\Phi_{e}(G) :=$ set of G^{\vee} -conjugacy classes of enhanced *L*-parameters.

Introduction

A bijective LLC has been constructed in particular in the following cases:

- $G = F^{\times}$ Class field theory (first half of the 20th century);
- $G = GL_n(F)$ Harris-Taylor (1998), Henniart (2000), Scholze (2010);
- $G = SL_n(F)$ (and its inner twists) Hiraga-Saito char(F) = 0 (2012); A.-Baum-Plymen-Solleveld char(F) > 0 (2016).
- $G = \text{Sp}_{2n}(F), \text{SO}_{2n+1}(F) \text{ (char}(F) = 0) \text{ Arthur (2013);}$
- G = G₂(F) A.-Xu (2022), Gan-Savin (2022).

Spectral extended quotient

Let X be a space and Γ a finite group acting on X. For $x \in X$, let $\Gamma_x \subset \Gamma$ be the fixator of x: $\Gamma_x := \{\gamma \in \Gamma : \gamma \cdot x = x\}$. The (spectral) extended quotient of X by Γ is the quotient

$$X/\!/\Gamma := \{(x,\tau) : x \in X, \tau \in \operatorname{Irr}(\Gamma_x)\}/\Gamma.$$

Example 1

Let T be a torus in a reductive group G and $W := N_G(T)/T$ the corresponding Weyl group, acting on T by conjugation, then we can consider the extended quotient T//W.

Example 2

G a *p*-adic group, *L* Levi subgroup of *G* and $\operatorname{Irr}_{\operatorname{cusp}}(L)$ set of isomorphism classes of supercuspidal irrep. of *L*. The group $W(L) := N_G(L)/L$ acts on $\operatorname{Irr}_{\operatorname{cusp}}(L)$ and we can form the panoramic (spectral) *p*-adic extended quotient:

 $\operatorname{Irr}_{\operatorname{cusp}}(L)//W(L).$

Example 3

 G^{\vee} and L^{\vee} complex dual groups of G, L and $\Phi_{\rm e,cusp}(L)$ the set of L^{\vee} -conjugacy classes of cuspidal enhanced Langlands parameters for L. The group $W(L^{\vee}) := {\rm N}_{G^{\vee}}(L^{\vee})/L^{\vee}$ acts on $\Phi_{\rm e,cusp}(L)$ and we can form the panoramic (spectral) Galois extended quotient:

 $\Phi_{\mathrm{e,cusp}}(L)//W(L^{\vee}).$

Remark

The groups W(L) and $W(L^{\vee})$ are canonically isomorphic.

Conjecture

The local Langlands correspondence induces a bijection

$$\operatorname{Irr}_{\operatorname{cusp}}(L)/\!/W(L) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e,cusp}}(L)/\!/W(L^{\vee})$$

for any Levi subgroup L of G.

Notation

- \mathcal{G} complex (possibly disconnected) reductive group
- *P* parabolic subgroup of *G* (i.e., subgroup of *G* s.t. *P*[◦] is a parabolic subgroup of *G*[◦])
- $\bullet \ \mathcal{L}$ complement in $\mathcal P$ of its unipotent radical $\mathcal U$
- $\operatorname{Unip}_{\mathcal{G}}$ unipotent variety of \mathcal{G} , similarly, $\operatorname{Unip}_{\mathcal{P}}$, $\operatorname{Unip}_{\mathcal{L}}$
- $D_c^b(X)$ category of bounded constructible ℓ -adic sheaves on the algebraic stack X.

Geometric parabolic induction

We consider the correspondence of algebraic stacks

$$\mathrm{Unip}_{\mathcal{L}}/\mathcal{L} \xleftarrow{\pi} \mathrm{Unip}_{\mathcal{P}}/\mathcal{P} \xrightarrow{\iota} \mathrm{Unip}_{\mathcal{G}}/\mathcal{G}$$

induced by the natural maps $\pi \colon \mathcal{P} \twoheadrightarrow \mathcal{L}$ and $\mathcal{P} \hookrightarrow \mathcal{G}$. The functor $i_{\mathcal{L},\mathcal{P}}^{\mathcal{G}} \colon D_{c}^{b}(\mathrm{Unip}_{\mathcal{L}}/\mathcal{L}) \to D_{c}^{b}(\mathrm{Unip}_{\mathcal{G}}/\mathcal{G})$ is defined by

$$\mathbf{i}_{\mathcal{L},\mathcal{P}}^{\mathcal{G}} := \iota_! \circ \pi^*.$$

Definition of cuspidality

Let \mathcal{E} be an irreducible \mathcal{L} -equivariant local system on a unipotent class C in \mathcal{L} . We say that the pair (C, \mathcal{E}) is cuspidal if the intersection cohomology sheaf $\mathrm{IC}(C, \mathcal{E})$ does not occur in $\mathrm{i}_{\mathcal{L}, \mathcal{P}}^{\mathcal{G}}(\mathrm{D}_{c}^{b}(\mathrm{Unip}_{\mathcal{L}}/\mathcal{L}))$ for any proper Levi subgroup \mathcal{L} of \mathcal{G} .

Strategy

We will plug the above construction into the Galois side of the correspondence.

Notation

We set $W'_F := W_F \times SL_2(\mathbb{C})$, and define

$$S_{\varphi} := \mathbb{Z}_{G^{\vee}}(\varphi(W_F')) \tag{1}$$

if G is a pure inner twist of a quasi-split group. (There are variants for other cases.)

Definition

An enhanced *L*-parameter is a pair (φ, ρ) where φ is an *L*-parameter for G and $\rho \in \operatorname{Irr}(S_{\varphi})$, with $S_{\varphi} := \pi_0(S_{\varphi}) = S_{\varphi}/S_{\varphi}^{\circ}$.

We set $\mathcal{G} = \mathcal{G}_{\varphi} := \mathbb{Z}_{\mathcal{G}^{\vee}}(\varphi(W_{\mathcal{F}}))$. We have

 $\mathcal{S}_{\varphi} \simeq \pi_0(\mathbb{Z}_{\mathcal{G}_{\varphi}}(u)), \quad ext{where } u = u_{\varphi} := \varphi(1, (\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})).$

Definition

An enhanced *L*-parameter $(\varphi, \rho) \in \Phi_e$ is called cuspidal if the following properties hold:

- φ is discrete (i.e., φ(W_F × SL₂(ℂ)) is not contained in any proper Levi subgroup of G[∨]),
- (u_{φ}, ρ) is a *cuspidal pair* in \mathcal{G}_{φ} .

The cuspidality conjecture (special case of the above for L = G)

The local Langlands correspondence restricts to a bijection

 $\operatorname{Irr}_{\operatorname{cusp}}(G) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e,cusp}}(G).$

State of art

The cuspidality conjecture is known to hold for all the Levi subgroups (including the groups themselves) of

- general linear groups and split classical *p*-adic groups [Moussaoui, 2017],
- inner forms of linear groups and of special linear groups, and quasi-split unitary p-adic groups [A-Moussaoui-Solleveld, 2018],
- the *p*-adic group G₂ [A-Xu, 2022],
- pure inner forms of quasi-split classical *p*-adic groups [A-Moussaoui-Solleveld, 2022].

Property C(L)

There is a bijection
$$\mathfrak{L}_L \colon \operatorname{Irr}_{\operatorname{cusp}}(L) \xrightarrow{1-1} \Phi_{\operatorname{e,cusp}}(L)$$
 such that

$$\mathfrak{L}_L \circ \mathrm{Ad}(w) = \mathrm{Ad}(w^{\vee}) \circ \mathfrak{L}_L$$
 for any $w \in W_G(L)$

where $w \mapsto w^{\vee}$ denotes the canonical bijection $W(L) \to W(L^{\vee})$.

Remark

(Cuspidality conjecture) \Leftrightarrow (Property C(G) is satisfied with $\mathfrak{L}_G = LLC$).

A Langlands correspondence between panoramic extended quotients:

If Property C(L) is satisfied for L a Levi subgroup of G, then \mathfrak{L}_L induces a bijection

$\operatorname{Irr}_{\operatorname{cusp}}(L)//W_G(L) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e,cusp}}(L)//W_{G^{\vee}}(L^{\vee}).$ (2)

Theorem [A-Moussaoui-Solleveld, 2018]

For any G, there is a bijection:

$$\Phi_{\mathrm{e}}(G) \xleftarrow{1-1} \bigsqcup_{L \in \mathfrak{L}(G)} (\Phi_{\mathrm{e,cusp}}(L) / / W_{G^{\vee}}(L^{\vee})) \iota_{\natural}$$

Theorem [Solleveld, 2020]

For any G, there is a bijection:

$$\operatorname{Irr}(G) \stackrel{1-1}{\longleftrightarrow} \bigsqcup_{L \in \mathfrak{L}(G)} (\operatorname{Irr}_{\operatorname{cusp}}(L) / / W_G(L))_{\natural}.$$

Consequence

If Property C(L) is satisfied for all the Levi subgroups L of G (including L = G), and if the bijection (2) is "compatible with the twists", then we get a bijection (hopefully the LLC)

$$\operatorname{Irr}(G) \stackrel{1-1}{\longleftrightarrow} \Phi_{\operatorname{e}}(G).$$

Notation

- \$\mathcal{X}_{nr}(L)\$ group of unramified characters of L (a character is unramified if it is trivial on every compact subgroup of L).
- s = s_G := [L, σ]_G the G-conjugacy class of the pair (L, X_{nr}(L) · σ), where σ ∈ Irr_{cusp}(L)
- Irr^s(G): set of (isomorphism classes of) irreducible representations of G whose supercuspidal support lies in s
- $\mathfrak{X}_{\mathrm{nr}}(L,\sigma) := \{\chi \in \mathfrak{X}_{\mathrm{nr}}(L) : \sigma \otimes \chi \cong \sigma\}$
- the bijection $\mathfrak{X}_{nr}(\mathcal{L})/\mathfrak{X}_{nr}(\mathcal{L},\sigma) \to \operatorname{Irr}^{\mathfrak{s}_{\mathcal{L}}}(\mathcal{L}), \ \chi \mapsto \sigma \otimes \chi$ endows $\operatorname{Irr}^{\mathfrak{s}_{\mathcal{L}}}(\mathcal{L})$ with the structure of a complex torus $\mathcal{T}^{\mathfrak{s}}$
- $W^{\mathfrak{s}} := N_{\mathcal{G}}(\mathfrak{s})/L$ acts on $\mathcal{T}^{\mathfrak{s}}$ by automorphisms of algebraic varieties
- $\mathfrak{B}(G)$ set of such classes \mathfrak{s} .

The partition of Irr(G) into Bernstein series

We have [Bernstein, 1984]:

$$\operatorname{Irr}(G) = \bigsqcup_{\mathfrak{s} \in \mathfrak{B}(G)} \operatorname{Irr}^{\mathfrak{s}}(G).$$
(3)

(4)

Moreover, for every $\mathfrak{s} \in \mathfrak{B}(G)$ [Solleveld, 2020]:

 $\operatorname{Irr}^{\mathfrak{s}}(G) \stackrel{1-1}{\longleftrightarrow} (T^{\mathfrak{s}}/W^{\mathfrak{s}})_{\natural}.$

Example

Suppose G is F-split and let $\mathfrak{s}^1 := [T, \operatorname{triv}]_G$, with T an F-split maximal torus. We have

$$\operatorname{Irr}^{\mathfrak{s}^1}(G) = \{ \text{Iwahori-spherical irreps. of } G \} / \sim .$$

Slogan: There is a similar decomposition on the Galois side.

Notation

- L^{\vee} Langlands dual group of L
- If G is F-split: $\mathfrak{X}_{nr}({}^{L}L) := \{\zeta : W_{F}/I_{F} \to \mathbb{Z}_{L^{\vee}}^{\circ}\}$, where I_{F} is the inertia group of F. In general, $\mathfrak{X}_{nr}({}^{L}L) :=$
- $\mathfrak{s}^{\vee} = \mathfrak{s}_{G^{\vee}}^{\vee} := [L^{\vee} \rtimes W_F, (\varphi_0, \rho_0)]_{G^{\vee}}$ the G^{\vee} -conjugacy class of $(L^{\vee} \rtimes W_F, \mathfrak{X}_{\mathrm{nr}}({}^L L) \cdot (\varphi_0, \rho_0))$, where $(\varphi_0, \rho_0) \in \Phi_{\mathrm{e,cusp}}(L)$
- $\Phi_{
 m e}^{\mathfrak{s}^ee}(G)$ enhanced *L*-parameters whose cuspidal support lies in \mathfrak{s}^ee
- $W^{\mathfrak{s}^{\vee}} := \mathrm{N}_{G^{\vee}}(\mathfrak{s}^{\vee})/L^{\vee}$ acts on $\Phi_{\mathrm{e}}^{\mathfrak{s}_{L}^{\vee}}(L)$
- $\mathfrak{B}^{\vee}(G)$ the set of such \mathfrak{s}^{\vee} .

Theorem [A-Moussaoui-Solleveld, 2018

The set $\Phi_{e}(G)$ is partitioned into series à la Bernstein as

$$\Phi_{\mathbf{e}}(G) = \bigsqcup_{\mathfrak{s}^{\vee} \in \mathfrak{B}(G^{\vee})} \Phi_{\mathbf{e}}^{\mathfrak{s}^{\vee}}(G).$$
(5)

Moreover, for every $\mathfrak{s}^{\vee} \in \mathfrak{B}(\mathcal{G}^{\vee})$, we have

$$\Phi_{\rm e}^{\mathfrak{s}^{\vee}}(G) \stackrel{1-1}{\longleftrightarrow} (\Phi_{\rm e}^{\mathfrak{s}_{L^{\vee}}^{\vee}}(L)/\!/W^{\mathfrak{s}^{\vee}})_{{}^{L}\mathfrak{g}}.$$
(6)

Theorem

If G is

- an inner form of GL_n(F) [A-Baum-Plymen-Solleveld, 2019],
- \bullet the exceptional group of type G_2 [A-Xu, 2022],
- a pure inner form of a quasi-split classical *p*-adic group [A-Moussaoui-Solleveld, 2022],

then, for every $\mathfrak{s} = [L, \sigma]_{\mathcal{G}} \in \mathfrak{B}(\mathcal{G})$ and for $\mathfrak{s}^{\vee} := [L^{\vee} \rtimes W_{\mathcal{F}}, \mathrm{LLC}(\sigma)]_{\mathcal{G}^{\vee}}$,

$$\mathrm{Irr}^{\mathfrak{s}}(\mathsf{G}) \xrightarrow{1-1} \mathrm{Irr}^{\mathfrak{s}_{L}}(\mathsf{L})/\!/ \mathsf{W}^{\mathfrak{s}} \xrightarrow{1-1} \Phi_{\mathrm{e}}^{\mathfrak{s}_{L}^{\vee}}(\mathsf{L})/\!/ \mathsf{W}^{\mathfrak{s}^{\vee}} \xrightarrow{1-1} \Phi_{\mathrm{e}}^{\mathfrak{s}^{\vee}}(\mathsf{G})$$

coincides with the LLC, and the following diagram is commutative

$$\begin{array}{c|c} \operatorname{Irr}^{\mathfrak{s}}(G) \xrightarrow[-1-1]{\operatorname{LLC}} \Phi_{\operatorname{e}}^{\mathfrak{s}^{\vee}}(G) \\ & & & & \\ \operatorname{Sc} & & & \\ & & & \\ \operatorname{Irr}^{\mathfrak{s}_{L}}(L) \xrightarrow[-1-1]{\operatorname{LLC}} \Phi_{\operatorname{e}}^{\mathfrak{s}_{L}^{\vee}}(L) \end{array}$$

Theorem [A-Moussaoui-Solleveld, 2018]

There exist a (twisted) extended affine Hecke algebra $\mathcal{H}(G^{\vee},\mathfrak{s}^{\vee})$ such that

$$\Phi_{\mathrm{e}}^{\mathfrak{s}^{\vee}}(G) \stackrel{1-1}{\longleftrightarrow} \operatorname{Irr}(\mathcal{H}(G^{\vee},\mathfrak{s}^{\vee})).$$

The Bernstein decomposition [Bernstein, 1984]

The category $\mathfrak{R}(G)$ of smooth representations of a *p*-adic group *G* is a direct product

$$\mathfrak{R}(G) = \prod_{\mathfrak{s}\in\mathfrak{B}(G)}\mathfrak{R}^{\mathfrak{s}}(G) \tag{7}$$

of the full subcategories $\mathfrak{R}^{\mathfrak{s}}(G)$, where $\mathfrak{R}^{\mathfrak{s}}(G)$ is the subcategory of $\mathfrak{R}(G)$ whose objects are the representations π such that every irreducible *G*-subquotient of π has its supercuspidal support in \mathfrak{s} .

Theorem ([A.-Moussaoui-Solleveld], [A.-Xu])

If G an inner form of $GL_n(F)$, the group G_2 , or a pure inner form of a quasi-split classical *p*-adic group, then

 $\mathfrak{R}^{\mathfrak{s}}(\mathcal{G}) \overset{\mathsf{Morita}}{\sim} \mathrm{Mod}(\mathcal{H}(\mathcal{G}, \mathfrak{s})),$

where $\mathcal{H}(G,\mathfrak{s})$ is an affine Hecke algebra, which is isomorphic to $\mathcal{H}(G^{\vee},\mathfrak{s}^{\vee})$.

The Bernstein decomposition of the Hecke algebra of G

Let $\mathcal{H}(G)$ be the convolution algebra of locally constant, compactly supported functions $f: G \to \mathbb{C}$. By letting G act on $\mathcal{H}(G)$ by left translation, we obtain a decomposition

$$\mathcal{H}(G) = \bigoplus_{\mathfrak{s} \in \mathfrak{B}(G)} \mathcal{H}(G)^{\mathfrak{s}}, \tag{8}$$

with $\mathcal{H}(G)^{\mathfrak{s}} \in \mathfrak{R}^{\mathfrak{s}}(G)$. The spaces $\mathcal{H}(G)^{\mathfrak{s}}$ are two-sided ideals of $\mathcal{H}(G)$.

A version with C*-algebras

- From the point of view of noncommutative geometry, for the study of tempered representations of G, it is interesting to use the reduced C^* -algebra $C^*_r(G)$ of G (i.e. the completion of $\mathcal{H}(G)$ in the algebra of bounded linear operators on the Hilbert space $L^2(G)$).
- The spectrum of $C_{\rm r}^*(G)$ coincides with the tempered dual $\operatorname{Irr}^{\operatorname{temp}}(G)$ of G.
- We have the following decomposition of $C^*_{\rm r}(G)$:

 $C^*_{\mathrm{r}}(G) = \bigoplus_{\mathfrak{s} \in \mathfrak{B}(G)} C^*_{\mathrm{r}}(G)^{\mathfrak{s}}.$

Conjecture (topological *K*-theory version of the ABPS Conjecture)

Let $\mathfrak{s} \in \mathfrak{B}(G)$ and let $T_{un}^{\mathfrak{s}}$ be the set of unitary representations in $T^{\mathfrak{s}}$, a $W^{\mathfrak{s}}$ -stable compact real subtorus. There exists a canonical isomorphism

 $K^*_{W^{\mathfrak{s}}}(T^{\mathfrak{s}}_{\mathrm{un}}) \to K(C^*_{\mathrm{r}}(G)^{\mathfrak{s}})$

where $K_{W^s}^j(T_{un}^s)$ is the classical topological equivariant K-theory for the group W^s acting on T_{un}^s .

Remark

If G is a classical group, then $C_r^*(G)^{\mathfrak{s}}$ is Morita equivalent to the reduced C^* -completion of $\mathcal{H}(G,\mathfrak{s})$ (i.e. the closure of $\mathcal{H}(G,\mathfrak{s})$ in the algebra of bounded linear operators on the Hilbert space completion of $\mathcal{H}(G,\mathfrak{s})$).

Theorem [A., 2023]

Let $(G, G') = (\text{Sp}_{2n}(F), \text{O}_{2n'}(F))$, viewed as a dual pair in $\text{Sp}_{2nn'}(F)$, and fix $\mathfrak{s} \in \mathfrak{B}(G)$.

- O The images by the Howe correspondence of all the π ∈ Irr^s(G) belong to a unique Bernstein series Irr^{θ(s)}(G') of G'.
- The Howe correspondence for (G, G') induces a correspondence between simple modules of the extended affine Hecke algebras H(G_n, s) and H(G'_m, θ(s)), and hence a correspondence θ^s between Φ^s_e(G) and Φ^{θ(s)}_e(G').
- When n' = n or n' = n + 1, the Howe correspondence induces a correspondence between simple modules of C_r^{*}(G)^{\$\varsigma\$} and C_r^{*}(G)^{\$\varsigma\$}.

Thank you very much for your attention!

